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Abstract The neighborhood graph G ′ of a graph G has the same vertex set as G
and two vertices are adjacent in G ′ if and only if they have a common neighbor in
G. We study the diameter diam(G ′) of the neighborhood graph G ′ in terms of the
diameter of G. We show that if G is a connected non-bipartite graph of diameter d,
then �d/2� ≤ diam(G ′) ≤ d and the bounds are best possible for every d ≥ 1. If
G is a connected bipartite graph, then G ′ has 2 components. We also present results
on the diameter of components of G ′, if G ′ is the neighborhood graph of a connected
bipartite graph.
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1 Introduction

One interesting problemof a discretemathematicsmodel used in biology is a foodweb.
Each organism depends for food on one or more other organisms. In an ecosystem the
vertices of a graph represent the species in the community and there is a directed edge
from a vertexw to a vertex v if and only ifw is a prey of v. Predator–prey relationships
are often modeled by undirected graphs called competition graphs, where we have an
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edge between the species u and v if and only if u and v have a common prey. Food
webs and competition graphs were studied for example in the recent work of Cozzens
[6]. In this paper we consider competition graphs, which arise from undirected base
graphs; and they are called neighborhood graphs.

Let G be an undirected graph with the vertex set V (G) and with the edge set E(G).
The neighborhood graph G ′ of a graph G has the same vertex set as G, so we have
V (G) = V (G ′), and two vertices u, v are adjacent in G ′ if and only if they have at
least one common neighbor in G (if and only if there exists a path of length 2 between
u and v in G).

A path of length n is a sequence of n edges which connects a sequence of n + 1
distinct vertices. The distance dG(u, v) between two vertices u and v in a graph G
is the number of edges in a shortest path connecting them. The eccentricity ecG(v)
of a vertex v in G is the greatest distance between v and any other vertex of G. The
diameter diam(G) of G is the maximum eccentricity among the vertices of G. If
G consists of components G1,G2, . . . ,Gp, then the diameter of the component Gi ,
i = 1, 2, . . . , p, is defined as the greatest distance between all pairs of vertices in Gi .
The i-th neighborhood Ni (v) of a vertex v in G is the set of vertices at distance i from
v. N0(v) = {v} and N1(v) is often denoted by N (v). A graph is bipartite if its vertices
can be divided into 2 disjoint sets, such that no 2 vertices in the same set are adjacent.
A tree is a graph which contains no cycles.

Let us mention a few works, which consider neighborhood graphs. Boland,
Brigham, and Dutton [4,5] studied the connection between neighborhood graphs and
the embedding number. Brigham and Dutton [7] studied graphs G such that the neigh-
borhood graph ofG is isomorphic to the complement ofG. Schiermeyer, Sonntag, and
Teichert [9] considered the Hamiltonicity of neighborhood graphs. Two recent papers
[2,3] present results on the energy of neighborhood graphs. The diameter of a graph
is the most common of the classical distance parameters. In this paper we consider
the diameter of connected neighborhood graphs and the diameter of the components
of disconnected neighborhood graphs.

2 Results

It is known that if G is a connected graph, then the neighborhood graph G ′ of G has
at most 2 components (see [2,9]). Moreover, G ′ is connected if and only if G is a
connected non-bipartite graph. Thus the neighborhood graph of a connected bipartite
graph has exactly 2 components. Evidently, neighborhood graphs of disconnected
graphs are also disconnected.

We first consider connected non-bipartite graphs G. The neighborhood graph of
the complete graph is the same graph, hence if diam(G) = 1, then diam(G ′) = 1
too. We present a lower bound on the diameter of the neighborhood graph of G if
diam(G) ≥ 2.

Theorem 2.1 Let G be a connected non-bipartite graph of diameter d where d ≥ 2.
Then diam(G ′) ≥ �d/2�.
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Proof Let G be a connected non-bipartite graph of diameter d ≥ 2, and let v, v′ be
two vertices of G, such that dG(v, v′) = d. Let Ni (v) be the i-th neighborhood of v in
G, i = 0, 1, . . . , d. No vertex of Ni (v) can be adjacent to a vertex of N j (v) in G ′ for
|i− j | > 2, since such vertices do not have a commonneighbor inG. On the other hand,
every vertex in Ni (v) is of distance 2 to some vertex of Ni−2(v) in G, i = 2, 3, . . . , d,
therefore any vertex in Ni (v) is adjacent to some vertex of Ni−2(v) inG ′. Thus for any
vertex u ∈ Ni (v), where i is even, we have dG ′(v, u) = i/2. If w ∈ Ni (v), where i is
odd, say i = 2p+1, then dG ′(v,w) > p, hence dG ′(v,w) ≥ p+1 = (i +1)/2. Then
for v′ ∈ Nd(v) we obtain dG ′(v, v′) ≥ �d/2�, which implies diam(G ′) ≥ �d/2�. �	

We give a construction, which shows that the bound given in Theorem 2.1 is best
possible for every d ≥ 2.

Construction 2.1 Let P be the path of length d ≥ 2. We can write P = u0u1 . . . ud .
The graph G is constructed from the path P by adding p new vertices v1, v2, . . . , vp,
p ≥ 1, where vi , i = 1, 2, . . . , p, is adjacent to the vertices u�d/2�−1, u�d/2�, u�d/2�+1.
Thus we have

V (G) = {u0, u1, . . . , ud , v1, v2, . . . , vp},
E(G) = {u0u1, u1u2 . . . , ud−1ud}

∪ {
vi u�d/2�−1, vi u�d/2�, vi u�d/2�+1 | i = 1, 2, . . . , p

}
.

It is easy to see that diam(G) = d. The graph G ′ has the following edge set:

E(G ′) = {u0u2, u1u3 . . . , ud−2ud} ∪ {
u�d/2�−1u�d/2�, u�d/2�u�d/2�+1

}

∪ {viv j | i, j = 1, 2, . . . , p; i �= j}
∪ {

vi u j | i=1, 2, . . . , p; j =�d/2�−2, �d/2�−1, . . . , �d/2�+2 if d≥4;
j = 0, 1, 2, 3 if d = 3; j = 0, 1, 2 if d = 2} .

It can be checked that the diameter of G ′ is �d/2� and the diametral path is
u0u2 . . . u�d/2�−1u�d/2�u�d/2�−2 . . . u1 if �d/2� is odd, and it isu0u2 . . . u�d/2�u�d/2�−1
u�d/2�−3 . . . u1 if �d/2� is even.

Nowwe show that ifG is not bipartite, then the diameter of the neighborhood graph
of G cannot exceed the diameter of G.

Theorem 2.2 Let G be a connected non-bipartite graph. Then diam(G ′) ≤ diam(G).

Proof Let G be a connected non-bipartite graph of diameter d where d ≥ 1. We prove
that diam(G ′) ≤ d. Let v be any vertex of G and let ecG(v) = p. Clearly p ≤ d. We
show that ecG ′(v) ≤ d.

Let Ni (v) be the i-th neighborhood of v in G, i = 0, 1, . . . , p. Any vertex in Ni (v)

is adjacent to some vertices of Ni−2(v) in G ′, i = 2, 3, . . . , p, therefore we have
dG ′(v, v′) = i/2 for any vertex v′ ∈ Ni (v), where i is even and i ≤ p. Since i/2 < d,
we get dG ′(v, v′) < d.

It can be checked that since G is not bipartite, it contains an odd cycle, and there
exists at least 2 vertices in the same neighborhood Ni (v), i ∈ {1, 2, . . . , p}, which are
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adjacent in G. LetU be the set of vertices, where u ∈ U if u is adjacent to at least one
vertex in the same neighborhood.

Let vi be any vertex in Ni (v), where i is odd. We show that dG ′(v, vi ) ≤ d. Let
u′ be a vertex of U such that dG(vi , u′) ≤ dG(vi , u) for every u ∈ U , so the vertex
u′ is the closest to vi in G among the vertices of U . Let u0u1 . . . uk be the shortest
path between vi = u0 and u′ = uk in G. Clearly, for the length k of the path, we have
0 ≤ k ≤ d. Note that, for k ≥ 1, if ul ∈ N j (v), l = 0, 1, . . . k − 1, then ul+1 is in
N j−1(v) or N j+1(v), since ul /∈ U . Hence for ul ∈ N j (v), if l is even, 0 ≤ l ≤ k,
then j is odd; and if l is odd, then j is even. We distinguish 2 cases:

(i) k is odd.
Then u0u2 . . . uk−1 is the path of length (k−1)/2 inG ′. If d is even, then k ≤ d−1
and dG ′(vi , uk−1) ≤ d/2 − 1. If d is odd, then k ≤ d and dG ′(vi , uk−1) ≤
(d − 1)/2. We know that uk ∈ N j (v), where j is even, and uk is in G adjacent
to a vertex, say w ∈ N j (v). Thus dG ′(uk−1, w) = 1 and w ∈ N j (v) is of
distance j/2 from v in G ′. If d is even, then j ≤ d and dG ′(w, v) ≤ d/2;
and if d is odd, then j ≤ d − 1 and dG ′(w, v) ≤ (d − 1)/2. Consequently
dG ′(vi , v) ≤ dG ′(vi , uk−1) + dG ′(uk−1, w) + dG ′(w, v) ≤ d.

(ii) k is even.
Then u0u2 . . . uk is the path of length k/2 in G ′. If d is even, then k ≤ d and
dG ′(vi , uk) ≤ d/2. If d is odd, then k ≤ d − 1 and dG ′(vi , uk) ≤ (d − 1)/2. We
know that u′ = uk ∈ N j (v), where j is odd, and uk is inG adjacent to a vertex, say
w ∈ N j (v). Theremust be a vertex in N j−1(v), sayw′,which is adjacent tow inG.
Since uk andw′ have a common neighbor inG, we obtain dG ′(uk, w′) = 1. Every
vertex in N j−1(v) is of distance ( j−1)/2 from v inG ′. If d is even, then j ≤ d−1
and dG ′(w′, v) ≤ d/2−1; and if d is odd, then j ≤ d and dG ′(w′, v) ≤ (d−1)/2.
Thus dG ′(vi , v) ≤ dG ′(vi , uk) + dG ′(uk, w′) + dG ′(w′, v) ≤ d.

Since dG ′(v, v′) ≤ d for every vertex v′ ∈ V (G ′), we obtain ecG ′(v) ≤ d. This
inequality holds for every vertex v, hence diam(G ′) ≤ d. �	

Construction 2.2 shows that the bound presented in the previous theorem is sharp.

Construction 2.2 Let T be a tree, such that every leaf of T is of distance d (d ≥ 1)
from the central vertex of T . We form G from T by connecting any two leaves.

We show that diam(G) = diam(G ′) = d. Let v be the central vertex of T and let
Ni (v) be the i-th neighborhood of v in T (and in G), i = 0, 1, . . . , d. Since any two
vertices of Nd(v) are adjacent inG, any pair of vertices ofG, say u and u′, is contained
in a cycle of length at most 2d + 1 in G. Hence dG(u, u′) ≤ d. We also know that for
any vertex, say w, in Nd(v), we have dG(v,w) = d. Thus the diameter of G is d. By
Theorem 2.2, diam(G ′) ≤ d. It can be checked, that the distance between v and any
vertex in N (v) is d in G ′, hence diam(G ′) = d.

Note that one simple example of a graph G, for which diam(G) = diam(G ′), is
the cycle C2d+1.

In the next theorem we consider the case when G is bipartite. It is known that if G
is bipartite, then G ′ has exactly 2 components. We present a result about the diameter
of the components of G ′ in terms of the diameter of G.
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Theorem 2.3 Let G be a connected bipartite graph of diameter d where d ≥ 2, and
let G1, G2 be the components of G ′ such that diam(G1) ≤ diam(G2).

(i) If d is odd, then diam(G1) = diam(G2) = (d − 1)/2.
(ii) If d is even, then d/2 − 1 ≤ diam(G1) ≤ d/2 and diam(G2) = d/2.

Proof Let G be a bipartite graph of diameter d ≥ 2. Let v0, vd be any two vertices of
distance d in G, and let v0v1 . . . vd be a shortest path between v0 and vd in G. Note
that, if u, w are 2 vertices of G such that dG(u, w) = p, then dG ′(u, w) = p/2 if p
is even. If p is odd, then there is no walk (or path) of even length between u and w

in G (because bipartite graphs do not contain odd cycles), therefore u and w are in
different components in G ′. Let H1 be the component of G ′ containing v1, and let H2
be the component of G ′ containing v0. We distinguish 2 cases:

(i) d is odd. From the previous part of this proof it follows that any 2 vertices u, w
of G are either in different components in G ′ or of even distance p in G. Then
p ≤ d−1 and u, w are of distance atmost (d−1)/2 inG ′. It follows that diam(H1)

and diam(H2) are at most (d − 1)/2. We also know that each component of G ′
contains a pair of vertices of distance (d − 1)/2, dH1(v1, vd) = (d − 1)/2 and
dH2(v0, vd−1) = (d−1)/2, hence the diameter of both components ofG ′ is exactly
(d − 1)/2.

(ii) d is even.
Any 2 vertices, which are in the same component in G ′ must be of even distance
p ≤ d in G, thus they are of distance at most d/2 in G ′. Thus diam(H1) ≤ d/2
and diam(H2) ≤ d/2. Since there is a pair of vertices of distance d/2 − 1 in H1
(dH1(v1, vd−1) = d/2−1),we haved/2−1 ≤ diam(H1) ≤ d/2. In H2 there exists
a pair of vertices of distance d/2 (dH2(v0, vd) = d/2), hence diam(H2) = d/2.
The proof is complete. �	
From Theorem 2.3 we know that if the diameter of a bipartite graph G is d, where

d is even, then one component of G ′ has diameter d/2, and the diameter of the other
component of G ′ is either d/2 − 1 or d/2. For example, if G is a tree of an even
diameter d ≥ 2, one component of G ′ has diameter d/2 and the other component has
diameter d/2−1. On the other hand, if G is the cycle of length 2d, then diam(G) = d
and the diameter of both components of G ′ is d/2.

Finally, let us mention that one interesting open problem is to bound the diameter
of the derived graph of G in terms of the diameter of G. This problem seems to be a
very complicated one. Note that the derived graph of a graph G has the same vertex
set as G and two vertices are adjacent in the derived graph if and only if they are of
distance 2 in G. Derived graphs were studied for example in [1] and [8].
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