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Abstract Let R be a commutative ring and M an R-module. Let Specs(M) be the
collection of all second submodules of M . In this article, we consider a new topology
on Specs(M), called the second classical Zariski topology, and investigate the inter-
play between the module theoretic properties of M and the topological properties of
Specs(M). Moreover, we study Specs(M) from point of view of spectral space.
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1 Introduction

Throughout this paper, R will denote a commutative ring with identity. If N is a subset
of an R-module M , we write N ≤ M to indicate that N is a submodule of M .
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1090 H. Ansari-Toroghy et al.

Let M be an R-module. A proper submodule N of M is said to be prime if for any
r ∈ R and m ∈ M with rm ∈ N , we have m ∈ N or r ∈ (N :R M). The prime
spectrum of M denoted by Spec(M) is the set of all prime submodules of M .

A non-zero submodule N of M is said to be second if for each a ∈ R, the homo-
morphism N

a→ N is either surjective or zero [24]. More information about this class
of modules can be found in [5–7,14], and [15].

The concept of prime submodule has led to the development of topologies on the
spectrum of modules. A brief history of this development can be seen in [20, p.808].
More information concerning the spectrum of rings, posets, and modules can be found
in [1,2,10–13,17,18], and [23].

Let Specs(M) be the set of all second submodules of M . For any submodule N of
M , V s∗(N ) is defined to be the set of all second submodules of M contained in N . Of
course, V s∗(0) is just the empty set and V s∗(M) is Specs(M). It is easy to see that
for any family of submodules Ni (i ∈ I ) of M , ∩i∈I V s∗(Ni ) = V s∗(∩i∈I Ni ). Thus if
ζ s∗(M) denotes the collection of all subsets V s∗(N ) of Specs(M), then ζ s∗(M) con-
tains the empty set and Specs(M), and ζ s∗(M) is closed under arbitrary intersections.
In general ζ s∗(M) is not closed under finite unions. A module M is called a cotop
module if ζ s∗(M) is closed under finite unions. In this case, ζ s∗(M) is called the quasi
Zariski topology [7].

Now let N be a submodule ofM .We defineWs(N ) = Specs(M)−V s∗(N ) and put
�s(M) = {Ws(N ) : N ≤ M}. Let ηs(M) be the topology on Specs(M) by the sub-
basis �s(M). In fact, ηs(M) is the collection U of all unions of finite intersections of
elements of�s(M) [21].We call this topology the second classical Zariski topology of
M . It is clear that if M is a cotop module, then its related topology, as it was mentioned
in the above paragraph, coincide with the second classical Zariski topology. In this
paper, we obtain some new results analogous to those for classical Zariski topology
considered in [12] and [13]. In Sect. 2 of this paper, among other results, we investigate
the relationship between the module theoretic properties of M and the topological
properties of Specs(M) (see Proposition 2.2, Corollary 2.6, and Theorems 2.7, 2.9,
2.11, 2.12). Moreover, Theorems 2.12 and 2.19 provide some useful characterizations
for those modules whose second classical Zariski topologies are cofinite topologies.

FollowingM. Hochster [16], we say that a topological spaceW is a spectral space if
W is homeomorphic to Spec(S), with the Zariski topology, for some ring S. Spectral
spaces have been characterized byM. Hochster as quasi-compact T0-spacesW having
a quasi-compact open base closed under finite intersection and each irreducible closed
subset of W has a generic point [16]. In Sect. 3, we follow the Hochster’s character-
ization and consider Specs(M) from point view of spectral spaces. We prove that if
M has dcc on socle submodules, then for each n ∈ N, and submodule Ni (1 ≤ i ≤ n)

of M , Ws(N1) ∩ Ws(N2)∩, ... ∩ Ws(Nn). In particular, Specs(M) is quasi compact
with second classical Zariski topology (see Theorem 3.15). It is shown that if M is
a finite R-module, then Specs(M) is a spectral space (see Theorem 3.10). Also, it
is proved that if M is an R-module such that M has dcc on socle submodules, and
then Specs(M) is a spectral space (see Theorem 3.17). Moreover, we show that if R
is a commutative Noetherian ring and M is a comultiplication R-module with finite
length, then Specs(M) is spectral (see Proposition 3.9).

In the rest of this paper, Xs(M) will denote Specs(M).
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On the Second Spectrum of a Module 1091

2 Topology on Specs(M)

We will consider the cases that an R-module M satisfies the following condition:

For any submodules N1, N2 ≤ M, V s∗(N1) = V s∗(N2) ⇒ N1 = N2. (∗∗)

Example 2.1 Every vector space satisfies the (∗∗) condition.

We recall that for an R-module M , the second socle of M is defined to be the sum
of all second submodules of M and denoted by soc(M) (or sec(M)). If M has no
second submodule, then soc(M) is defined to be 0. Also, a submodule N of M is said
to be a socle submodule of M if soc(N ) = N [5].

Proposition 2.2 Let M be a nonzero R-module. Then the following statements are
equivalent.

(a) M satisfies the (∗∗) condition.
(b) Every nonzero submodule of M is a socle submodule of M.

Proof (a) ⇒ (b). Let S1 be a nonzero submodule of M . We claim that V s∗(S1) �= ∅.
Otherwise, V s∗(S1) = ∅ = V s∗(0) implies that S1 = 0, a contradiction. Now let
S2 = ∑

Ś∈V s∗(S1) Ś. Clearly, V
s∗(S1) = V s∗(S2). So by hypothesis, S1 = S2. Hence

S1 is a socle submodule of M .
(b) ⇒ (a). This follows from the fact that every submodule N of M is a sum of

second submodules if and only if N = ∑
S∈V s∗(N ) S. 
�

Corollary 2.3 Every semisimple R-module M satisfies the (∗∗) condition.

Proof This follows from the fact that every minimal submodule of M is a second
submodule of M by [24, 1.6] 
�

Let M be an R-module. A proper submodule P of M is said to be a semiprime
submodule if I 2N ⊆ P , where N ≤ M and I is an ideal of R, then I N ⊆ P . M is
said to be fully semiprime if each proper submodule of M is semiprime.

A nonzero submodule N of M is said to be semisecond if r N = r2N for each
r ∈ R [4].

Remark 2.4 Let M be an R-module and N be a submodule of M . Let denote the set of
all prime submodules of M by SpecR(M). Define V (N ) = {P ∈ SpecR(M) : P ⊇
N }. An R-module M is said to satisfy the (∗) condition provided that if N1, N2 are
submodules of M with V (N1) = V (N2), then N1 = N2 [12].

Definition 2.5 We call an R-module M fully semisecond if each nonzero submodule
of M is semisecond.

Corollary 2.6 Let M be an R-module. Then the following statements are equivalent.

(a) M satisfies the (∗) condition.
(b) M is a fully semiprime module.
(c) M is a cosemisimple module.
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1092 H. Ansari-Toroghy et al.

(d) M satisfies the (∗∗) condition.
(e) M is a fully semisecond module.

Proof (a) ⇔ (b) ⇔ (c). By [12, 2.6].
(d) ⇔ (e). By Proposition 2.2.
(b) ⇔ (e). By [4, 4.8]. 
�

The second submodule dimension of an R-module M , denoted by S.dimM , is defined
to be the supremum of the length of chains of second submodules of M if Xs(M) �= ∅
and −1 otherwise [8].

Let X be a topological space and let x and y be points in X . We say that x and y
can be separated if each lies in an open set which does not contain the other point. X
is a T1-space if any two distinct points in X can be separated. A topological space X
is a T1-space if and only if all points of X are closed in X .

Theorem 2.7 Let M be an R-module. Then Xs(M) is a T1-space if and only if
S.dim(M) ≤ 0.

Proof First assume that Xs(M) is a T1-space. If Xs(M) = ∅, then dim(M) = −1.
Also, if Xs(M) has one element, clearly S.dimM = 0. So we can assume that
Specs(M) has more than two elements. We show that every element of Xs(M)

is minimal. To show this, let S1 ⊆ S2, where S1, S2 ∈ Xs(M). Now {S2} =
∩i∈I (∪ni

j=1V
s∗(Ni j )), where Ni j ≤ M and I is an index set. So for each i ∈ I ,

S2 ∈ ∪ni
j=1V

s∗(Ni j )), so that S2 ∈ V s∗(Nit ), 1 ≤ t ≤ ni . Thus S1 ∈ V s∗(Nit )

for 1 ≤ t ≤ ni . This implies that S1 ∈ ∪ni
j=1V

s∗(Ni j )) for each i . Therefore,

S1 ∈ ∩i∈I (∪ni
j=1V

s∗(Ni j )) = {S2} as desired.
Conversely, suppose that S.dim(M) ≤ 0. If S.dim(M) = −1, then Xs(M) = ∅

and hence it is a T1-space. Now let S.dim(M) = 0. Then Xs(M) �= ∅ and for every
second submodule S of M , V s∗(S) = {S}. Hence Xs(M) is a T1-space. 
�
Proposition 2.8 For every finitely cogenerated R-module M, the following are equiv-
alent.

(a) M is a semisimple module with S.dim(M) = 0.
(b) Xs(M) is a T1-space and M satisfies the (∗∗) condition.

Proof (a) ⇒ (b). By Corollary 2.3 and Theorem 2.7.
(b) ⇒ (a). Since Xs(M) is a T1-space, S.dim(M) ≤ 0 by Theorem 2.7. As M

is finitely cogenerated, every second submodule of M is a minimal submodule of M .
Now the claim follows from Proposition 2.2 
�

An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :M I ), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N )) [3]. Further M is said to be a
weak comultiplication module if M does not have any second submodule or for every
second submodule S of M , S = (0 :M I ) for some I is an ideal of R [6]

Theorem 2.9 Let M be a finite length module over a commutative Noetherian ring
R such that Xs(M) is a T1-space. Then M is a comultiplication module.
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On the Second Spectrum of a Module 1093

Proof By [6, 3.6], it is enough to show that M is a weak comultiplication R-module.
To see this, let S be a second submodule of M . Since S is finitely cogenerated and
S.dim(M) = 0 by Theorem 2.7, S is a minimal submodule ofM . Thus AnnR(S) = P
is a maximal ideal of R. Since S ⊆ (0 :M P) and (0 :M P) is a second submodule of
M by [24, 1.4], S = (0 :M P), as required. 
�
Theorem 2.10 Let M be an R-module. If either R is an Artinian ring or M is a
Noetherian module, then M has a minimal submodule if and only if M has a second
submodule. In addition if M has a second submodule, then every second submodule
of M is a semisimple submodule of M.

Proof First assume that R is an Artinian ring. Then every prime ideal of R is maximal.
Let S be a second submodule of M . Then AnnR(S) is a maximal ideal of R. Thus S
is a semisimple R/AnnR(S)-module. Hence S has a minimal submodule and so M
has minimal submodule. Now let M be a Noetherian R-module and S be a second
submodule of M . Since S is finitely generated, one can see that S is a semisimple R-
module. Therefore, S has a minimal submodule and so M has a minimal submodule,
as required. 
�
Theorem 2.11 Let M be an R-module. If either R is an Artinian ring or M is a
Noetherian R-module, then Xs(M) is a T1-space if and only if either Xs(M) = ∅ or
Xs(M) = Min(M), where Min(M) denotes the set of all minimal submodules of M.

Proof By Theorem 2.7, Xs(M) is a T1-space if and only if S.dim(M) ≤ 0. First
suppose that S.dim(M) ≤ 0. If S.dim(M) = −1, then Xs(M) = ∅. If S.dim(M) =
0, then Xs(M) �= ∅. Let S be a second submodule of M . Then by Theorem 2.10, S
has a minimal submodule. Since S.dim(M) = 0, S is a minimal submodule of M .
Hence, Xs(M) ⊆ Min(M). The reverse inclusion is clear. Now suppose that either
Xs(M) = ∅ or Xs(M) = Min(M). In the first case, S.dim(M) = −1. In the second
case, S.dim(M) = 0 and hence Xs(M) is a T1-space by Theorem 2.7 
�

The cofinite topology is a topology which can be defined on every set X . It has
precisely the empty set and all cofinite subsets of X as open sets. As a consequence,
in the cofinite topology, the only closed subsets are finite sets, or the whole of X .

Theorem 2.12 Let M ba an R-module. Then the following are equivalent.

(a) Xs(M) is the cofinite topology.
(b) S.dim(M) ≤ 0 and for every submodule N of M either V s∗(N ) = Xs(M) or

V s∗(N ) is finite.

Proof (a) ⇒ (b). Assume that Xs(M) is the cofinite topology. Since every cofinite
topology satisfies the T1 axiom, S.dim(M) ≤ 0 by Theorem 2.7. Now assume that
there exists a submodule N of M such that |V s∗(N )| = ∞ and V s∗(N ) �= Xs(M).
Then Ws(N ) = Xs(M) − V s∗(N ) is open in Xs(M) with infinite complement, a
contradiction.

(b) ⇒ (a). Suppose that S.dim(M) ≤ 0 and for every submodule N of M ,
V s∗(N ) = Xs(M) or |V s∗(N )| < ∞. Then the complement of every open set in
Xs(M) is of the form ∩i∈I (∪n

j=1V
s∗(Ni j )) which is a finite set or Xs(M) obviously.


�
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Corollary 2.13 Let M be an R-module such that Xs(M) is finite. Then the following
statements are equivalent.

(a) Xs(M) is a Hausdorff space.
(b) Xs(M) is a T1-space.
(c) Xs(M) is the cofinite topology.
(d) Xs(M) is discrete.
(e) S.dim(M) ≤ 0.

Lemma 2.14 Let M be a finite length weak comultiplication module. Then Xs(M) is
a cofinite topology.

Proof The result follows fromCorollary 2.13 (e) ⇒ (c) becauseM has a finite number
of second submodules and every second submodule of M is minimal by [6, 3.4]. 
�
Corollary 2.15 Let R be a Noetherian ring and M be a finitely generated cocyclic
R-module. Then M is Artinian and Xs(M) is a cofinite topology.

Proof By [22], M is Artinian. Also, M is a comultiplication R-module [9, 2.5]. Now
the result follows from the above Lemma. 
�

The following example shows that the converse of the above corollary is not true
in general.

Example 2.16 Consider M = Z6 as a Z-module. Then M is an Artinian Z-module
and Xs(M) is a cofinite topology but M is not a cocyclic Z-module.

Theorem 2.17 Let M be an R-module with |Xs(M)| ≥ 2. If Xs(M) is a Hausdorff
space, then S.dim(M) = 0 and there exist submodules N1, N2, ..., Nn of M such that
V s∗(Ni ) �= Xs(M), for all i , and Xs(M) = ∪n

i=1V
s∗(Ni ).

Proof The proof is similar to that of [12, 2.26]. 
�
Maximal second submodules are defined in a natural way. By Zorn’s Lemma one

can easily see that each second submodule of a module M is contained in a maximal
second submodule of M [5]. In [5] and [6], it is shown that Artinian modules and
Noetherian modules contain only finitely many maximal second submodules.

Corollary 2.18 Let M be an Artinian R-module. Then the following statements are
equivalent.

(a) Xs(M) is a Hausdorff space.
(b) Xs(M) is a T1-space.
(c) Xs(M) is the cofinite topology.
(d) Xs(M) is discrete.
(e) Xs(M) = Min(M).

Proof First we note that since M is Artinian, Xs(M) is not empty.
(a) ⇒ (b). This is clear.
(b) ⇒ (c). By Theorem 2.7, S.dim(M) ≤ 0. Thus every second submodule of M

is a maximal second submodule of M . As M is Artinian, it contains only finitely many
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On the Second Spectrum of a Module 1095

maximal second submodules by [5, 2.6]. Therefore, Xs(M) is finite. Hence, Xs(M)

is a cofinite topology by Corollary 2.13.
(c) ⇒ (d). By Theorem 2.12, S.dim(M) ≤ 0 so that, as we saw in the proof of

(b) ⇒ (c), Xs(M) is finite. Now the result follows from the corollary 2.13.
(d) ⇒ (e). Since Xs(M) is a T1-space, by Theorem 2.7, S.dim(M) = 0. Since

M is Artinian, every second submodule of M contains a minimal submodule of M .
Therefore, every second submodule of M is minimal so that Xs(M) ⊆ Min(M). The
reverse inclusion follows from the fact that every minimal submodule of M is second
by [24, 1.6].

(e) ⇒ (a). SinceM is Artinian,M contains only a finite number ofmaximal second
submodule by [5, 2.6]. As Xs(M) = Min(M), every maximal second submodule of
M is minimal. Therefore, S.dim(M) ≤ 0 and Xs(M) is finite. Now the result follows
from Corollary 2.13. 
�
Theorem 2.19 Let M be a Noetherian R-module. Then the following statements are
equivalent.

(a) Xs(M) is a Hausdorff space.
(b) Xs(M) is a T1-space.
(c) Xs(M) is the cofinite topology.
(d) Xs(M) is discrete.
(e) Either Xs(M) = ∅ or Xs(M) = Min(M).

Proof (a) ⇒ (b). This is clear.
(b) ⇒ (c). Let Xs(M) be a T1-space. By Theorem 2.11, either Xs(M) = ∅ or

Xs(M) = Min(M). Let Xs(M) �= ∅. Then by using [5, 2.2], every second submodule
of M is a maximal second submodule of M . Since M is Noetherian, it has a finite
number of maximal second submodules by [6, 2.4]. Thus, Xs(M) is finite and so by
Corollary 2.13, Xs(M) is the cofinite topology.

(c) ⇒ (d). Assume that Xs(M) is the cofinite topology. Then by Theorem 2.12,
S.dim(M) ≤ 0. Now as we see in the proof of (b) ⇒ (c), Xs(M) is finite. Therefore,
Xs(M) is discrete by Corollary 2.13.

(d) ⇒ (e). This follows from Theorem 2.11.
(e) ⇒ (a). If Xs(M) = Min(M), then by using [5, 2.2], every second submodule

ofM is amaximal second submodule ofM . AsM is Noetherian,M has a finite number
of maximal second submodules. Therefore, Xs(M) is finite. Now by Corollary 2.13,
Xs(M) is a Hausdorff space. 
�
Lemma 2.20 Let M be a second module. Then Xs(M) is T1-space if and only if M
is the only second submodule of M.

Proof This follows from Theorem 2.7. 
�
Lemma 2.21 Let f : Ḿ → M be an R-module monomorphism, and let N be a
submodule of M such that N ⊆ f (Ḿ). Then V s∗(N ) → V s∗( f −1(N )), given by
S → f −1(S) is a bijection. If V s∗(N ) = ∅, then so is V s∗( f −1(N )).

Proof It is straightforward. 
�
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1096 H. Ansari-Toroghy et al.

Theorem 2.22 Let f : Ḿ → M be an R-module homomorphism. Define ϕ :
�s(M) → �s(Ḿ) by ϕ(∩i∈I (∪ni

j=1V
s∗(Ni j ))) = ∩i∈I (∪ni

j=1V
s∗( f −1(Ni j ))), where

I is an index set, ni ∈ N and Ni j ≤ M. Then ϕ is a well-defined map.

Proof Suppose that∩i∈I (∪ni
j=1V

s∗(Ni j )) = ∩t∈T (∪nt
j=1V

s∗(Kt j )), where Ni j , Kt j ≤
M and I, T are index sets. We show that

∩i∈I (∪ni
j=1V

s∗( f −1(Ni j ))) = ∩t∈T (∪nt
j=1V

s∗( f −1(Kt j ))) (1)

Let S ∈ ∩i∈I (∪ni
j=1V

s∗( f −1(Ni j ))). Then for each i ∈ I , there exists ji (1 ≤ ji ≤ ni )

such that S ∈ V s∗( f −1(Ni ji )). If S ⊆ Ker( f ), then for each t ∈ T , and each j
(1 ≤ j ≤ nt ) we have S ⊆ f −1(Kt j ). It follows that S ∈ ∩t∈T (∪nt

j=1V
s∗( f −1(Kt j ))).

Now let S � Ker( f ). Then f (S) is a second submodule of M . Hence for each
i ∈ I , f (S) ∈ V s∗(Ni j ). Thus f (S) ∈ ∩i∈I (∪ni

j=1V
s∗(Ni j )). Therefore, f (S) ∈

∩t∈T (∪nt
j=1V

s∗(Kt j )), and hence for each t ∈ T , there exists jt (1 ≤ jt ≤ nt )

such that f (S) ∈ V s∗(Kt jt ). It follows that for each t ∈ T , S ⊆ f −1(Kt jt ) so
that S ∈ V s∗( f −1(Kt jt )). Consequently, we have S ∈ ∩i∈T (∪nt

j=1V
s∗( f −1(Kt j ))).

Therefore,

∩i∈I (∪ni
j=1V

s∗( f −1(Ni j ))) ⊆ ∩i∈T (∪nt
j=1V

s∗( f −1(Kt j ))).

By a similar argument, we see that

∩i∈T (∪nt
j=1V

s∗( f −1(Kt j ))) ⊆ ∩i∈I (∪ni
j=1V

s∗( f −1(Ni j ))).

Thus (1) holds. 
�
Proposition 2.23 Let f : Ḿ → M beamonomorphism such that Ḿ is not secondless.
Define ν : Xs(Ḿ) → Xs(M) by ν(S) = f (S) ∈ Xs(M) for each S ∈ Xs(Ḿ). Then
ν is a continuous map.

Proof Clearly, ν is well-defined. Let V = ∩i∈I (∪ni
j=1V

∗s(Ni j )) be a closed set in

Xs(M). We show that ν−1(V ) = ∩i∈I (∪ni
j=1V

∗s( f −1(Ni j )). Let S ∈ ν−1(V ). Then

ν(S) ∈ V , so f (S) ∈ ∩i∈I (∪ni
j=1V

∗s(Ni j )). Therefore, for each i ∈ I , there exists ji
such that f (S) ∈ V ∗s(Ni ji ). But φ : V s∗(Ni ji ∩ Im( f )) → V s∗( f −1(Ni ji )), given
by Ś → f −1(Ś), is a bijective map by Lemma 2.21. Hence we have φ( f (S)) =
f −1 f (S) = S + Ker( f ) = S ∈ V s∗( f −1(Ni ji )) by Lemma 2.21. It follows that
ν−1(V ) ⊆ ∩i∈I (∪ni

j=1V
s∗( f −1(Ni j )). The reverse inclusion is proved similarly and

the proof is completed. 
�
Remark 2.24 Clearly, for an R-module M , Xs(M) = Xs(soc(M)). This fact shows
that the study of Zariski topology on the second spectrum of M can be easily reduced
to that of socle modules.

Lemma 2.25 Let M bean R-module and S ∈ Xs(M). Let V s∗(S)be endowedwith the
induced topology of Xs(M). Then V s∗(S) = Xs(S), where S is a second submodule
of M.
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On the Second Spectrum of a Module 1097

Proof Straightforward 
�
Proposition 2.26 Let M be an R-module, IM := AnnR(SocR(M)) and R = R/IM .
Then the natural map ψM : Xs(M) → Spec(R/IM ) given by S → AnnR(S) =
AnnR(S)/IM is a continuous for the Zariski topology on Xs(M) (see [7, 3.1] and [7,
3.4]) and Zariski topology in rings. Moreover, ψM = ψsoc(M).

Proof Let A be a closed subset of Spec(R). Then A = V (I ) for some ideal I of R. We
claim that ψ−1

M (V (I )) = V s∗((0 :M I )). So let S ∈ ψ−1
M (V (I )). Then ψ(S) ∈ V (I ).

Hence I ⊆ AnnR(S)) and so I ⊆ AnnR(S). Thus S ⊆ (0 :M I ) so that S ∈ V s∗(0 :M
I ). To see the reverse inclusion, let S ∈ V s∗((0 :M I )). Then S ⊆ (0 :M I ). Hence
I ⊆ AnnR(S). Therefore, I ⊆ AnnR(S). Hence AnnR(S) ∈ V (I ). This implies that
ψ(S) ∈ V (I ) and so S ∈ ψ−1(V (I )). Therefore, ψ−1

M (V (I )) = V s∗((0 :M I )) and
hence ψM is continuous. The second assertion follows from the Remark 2.24. 
�

3 Modules Whose Second Classical Zariski Topologies are Spectral
Spaces

Let Z be a subset of a topological space W . Then the notation cl(Z) will denote the
closure of Z in W .

A topological space X is called irreducible if X �= ∅ and every finite intersection
of non-empty open subset of X is non-empty. A non-empty subset Y of a topology X
is called irreducible set if the subspace Y of X is irreducible, equivalently if Y1 and
Y2 are closed subset of X and satisfy Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1 or Y ⊆ Y2.

Let Y be a closed subset of a topological space. An element y ∈ Y is called a
generic point of Y if Y = cl({y}). A generic point of an irreducible closed subset of
a topological space is unique if the topological space is a T0 space.

A spectral space is a topological space homeomorphic to the prime spectrum of a
commutative ring equipped with the Zariski topology. This concept plays an important
role in studying of algebraic properties of an R-module M when we have a related
topology. For an example, when Xs(M) is homeomorphic to Spec(S), where S is a
commutative ring, we can transfer some of known topological properties of Spec(S)

to Xs(M), and then by using these properties explore some of algebraic properties of
M .

Spectral spaces have been characterized by Hochster [16, p. 52, Prop. 4] as the
topological spaces W which satisfy the following conditions:

(a) W is a T0-space;
(b) W is quasi-compact;
(c) the quasi-compact open subsets ofW are closed under finite intersection and form

an open base;
(d) each irreducible closed subset of W has a generic point.

Let M be an R-module and N be a submodule of M . In [12], among other nice
results, Proposition 3.1 states that if Y is a nonempty subset of SpecR(M), then
cl(Y ) = ∪P∈Y V (P), where V (N ) = {P ∈ SpecR(M) | P ⊇ N }. Unfortunately, this
result is not true in general because if we take M = Z, where Z is the ring of integers,
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and Y = Max(Z), then we have cl(Y ) = Max(Z), while cl(Y ) = V (∩P∈Y P) =
V (0) = Z by [19, 5.1]. However, this theorem is true when Y is a finite set which has
been used by the authors during their results in [12] and [13].

Let M be an R-module and Y a subset of Xs(M). We will denote
∑

S∈Y S by T (Y ).

Proposition 3.1 Let M be an R-module.

(a) If Y is a finite subset of Xs(M), then cl(Y ) = ∪S∈Y V s∗(S).
(b) if Y is a closed subset of Xs(M), we have Y = ∪S∈Y V s∗(S).
(c) If M is a cotop R-module and if Y is a subset of Xs(M), then cl(Y ) =

V s∗(T (Y )) = V s∗(
∑

S∈Y S).

Proof (a) Clearly, Y ⊆ ∪S∈Y V s∗(S). Let K be a closed subset of Xs(M) containing
Y . Thus K = ∩i∈I (∪ni

j=1V
s∗(Ni j )), for some Ni j ⊆ M , i ∈ I , and ni ∈ N. Let

S1 ∈ ∪S∈Y V s∗(S). Then there exists S ∈ Y such that S1 ∈ V s∗(S) so that S1 ⊆ S.
But S ∈ Y implies that for each i ∈ I , there exists j , 1 ≤ j ≤ ni , such that S ⊆ Ni j .
Thus we have S1 ⊆ S ⊆ Ni j . Therefore S1 ∈ K so that ∪S∈Y V s∗(S) ⊆ K . In
other words, ∪S∈Y V s∗(S) is the smallest closed subset of Xs(M) containing Y , i.e.,
cl(Y ) = ∪S∈Y V s∗(S).

(b) It is enough to show ∪S∈Y V s∗(S) ⊆ Y because the other side is clear. To see
this, we note that for every element S of Y , V s∗(S) = cl({S}) ⊆ cl(Y ) = Y by part
(a). Hence ∪S∈Y V s∗(S) ⊆ Y , as required.

(c) First we note that since M ia a cotop module, each closed set is of the form
of V s∗(N ) for some N ≤ M . Clearly Y ⊆ V s∗(T (Y )). Now let V s∗(N ) be any
closed subset of Xs(M) containing Y . Then for each S ∈ Y , we have S ⊆ N so
that T (Y ) ⊆ N . So if S ∈ V s∗(T (Y )), then S ⊆ T (Y ) ⊆ N . Hence S ∈ V s∗(N ),
i.e., V s∗(T (Y )) ⊆ V s∗(N ). This shows that cl(Y ) = V s∗(T (Y )). This completes the
proof. 
�
Corollary 3.2 Let M be an R-module. Then we have the following.

(a) cl({S}) = V s∗(S), for all S ∈ Specs(M).
(b) S1 ∈ cl({S}) ⇔ S1 ⊆ S ⇔ V s∗(S1) ⊆ V s∗(S).
(c) The set {S} is closed in Xs(M) if and only if S is a minimal second submodule of

M.

Proof Use Proposition 3.1(a). 
�
Lemma 3.3 Let M be an R-module. Then for each S ∈ Xs(M), V s∗(S) is irreducible.
In particular, Xs(M) is irreducible.

Proof The proof is straightforward. 
�
We need the following evident Lemma.

Lemma 3.4 Let S be a submodule of an R-module M. Then the following are equiv-
alent.

(a) S is a second submodule of M.
(b) For each r ∈ R and submodule K of M, r S ⊆ K implies that r S = 0 or S ⊆ K.
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Proof The proof is straightforward. 
�
Theorem 3.5 Let M be an R-module and Y ⊆ Xs(M).

(a) If Y is irreducible, then T (Y ) is a second submodule.
(b) If T (Y ) is a second submodule and T (Y ) ∈ cl(Y ), then Y is irreducible.

Proof (a) Assume that Y is an irreducible subset of Xs(M). Then obviously T (Y )

is a nonzero submodule of M and Y ⊆ V s∗(T (Y )). Now let rT (Y ) ⊆ K , hence
r ∈ R and K is a submodule of M . It is easy to see that Y ⊆ V s∗((K :M r)) ⊆
V s∗(K ) ∪ V s∗((0 :M r)). Since Y is irreducible, we have Y ⊆ V s∗((0 :M r)) or
Y ⊆ V s∗(K ). If Y ⊆ V s∗((0 :M r)), then r S = 0 for all S ∈ Y . Thus rT (Y ) = 0.
If Y ⊆ V s∗(K ), then S ⊆ K for each S ∈ Y , so T (Y ) ⊆ K . Hence by Lemma 3.4,
T (Y ) is a second submodule of M .

(b) Assume that S := T (Y ) is a second submodule of M and S ∈ cl(Y ). It is easy
to see that cl(Y ) = V s∗(S). Now let Y ⊆ Y1 ∪ Y2, where Y1, Y2 are closed sets. Then
we have V s∗(S) = cl(Y ) ⊆ Y1 ∪ Y2. Since V s∗(S) is irreducible, V s∗(S) ⊆ Y1 or
V s∗(S) ⊆ Y2. Hence Y ⊆ Y1 or Y ⊆ Y2. So Y is irreducible. 
�
Corollary 3.6 Let M be an R-module and let N be a submodule of M. Then V s∗(N )

of Specs(M) is irreducible if and only if soc(N ) is a second submodule of M. Con-
sequently, Specs(M) is irreducible if and only if soc(M) is a second module.

Proof (⇒). Let Y := V s∗(N ) be an irreducible subset of Xs(M). Then we have
T (Y ) = soc(N ) so that soc(N ) is a second submodule of M by Theorem 3.5(a).

(⇐). Suppose soc(N ) is a second submodule of M . Then by Theorem 3.1(b),
Y := V s∗(N ) = ∪S∈Y V s∗(S) so that soc(N ) ∈ cl(Y ). Hence V s∗(N ) is irreducible
by Theorem 3.5(b). 
�

We remark that any closed subset of a spectral space is spectral for the induced
topology, and we note that a generic point of an irreducible closed subset Y of a
topological space is unique if the topological space is a T0-space. The following
proposition shows that for any R-module M , Xs(M) is always a T0-space.

Lemma 3.7 Let M be an R-module. Then the following hold.

(a) Xs(M) is a T0-space.
(b) Let S ∈ Xs(M). Then S is a generic point of the irreducible closed subset V s∗(S).

Proof (a) This follows from Corollary 3.2 and the fact that a topological space is a
T0-space if and only if the closures of distinct points are distinct.

(b) By Corollary 3.2. 
�
By [7, 3.3], if M is a comultiplication R-module M , then the second classical

Zariski topology of M and the Zariski topology of M considered in [7] coincide (note
that every comultiplication module is a cotop module).

Proposition 3.8 Let R be a commutative Noetherian ring and let M be a cotop R-
module with finite length. Then M is a comultiplication R-module.
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Proof This follows from [7, 2.6(e)] and [7, 2.11]. 
�
Proposition 3.9 Let M be a comultiplication R-module with finite length. Then
Xs(M) is a spectral space (with the second classical Zariski topology).

Proof This follows from Lemma 3.7, [7, 3.10], and [7, 6.2] and the fact that since M is
a cotop module, its assigned topology coincide with the the second classical topology.
In this case, every closed set can be written as V s∗(N ) for some submodule N of M .


�
Theorem 3.10 Let M be an R-module with finite second spectrum. Then Xs(M) is a
spectral space (with the second Zariski topology). Consequently, for each finitemodule
M, Specs(M) is a spectral space.

Proof Since Xs(M) is a nonempty finite set, every subset of Xs(M) is quasi-compact.
So the quasi-compact open sets of Xs(M) are closed under finite intersection. Further
β = {Ws(N1) ∩ Ws(N2)∩, ... ∩ Ws(Nn), Ni ≤ M, n ∈ N} is a basis for Xs(M)

with the property that each basis element, in particular Ws(M) = Xs(M), is quasi-
compact. Also if Y = {y1, y2, ..., yn} is an irreducible subset of Xs(M), then we have
cl(Y ) = ∪n

i=1cl({yi }. Since Y is irreducible, cl(Y ) = cl({yi }) for some 1 ≤ i ≤ n.
Moreover, Xs(M) is a T0-space by Lemma 3.7. Therefore Xs(M) is a spectral space
by Hochster’s characterization. 
�
Definition 3.11 Let M be an R-module and let H(M) be the family of all subsets of
Xs(M) of the form V s∗(N )∩Ws(K ), where N , K ≤ M . H(M) contains both Xs(M)

and ∅ because Xs(M) = V s∗(M)∩Ws(0) and ∅ = V s∗(M)∩Ws(M). Let Z(M) be
the collection of all unions of finite intersections of elements of H(M). Then Z(M)

is a topology on Xs(M) and called the finer patch topology or constructible topology.
In fact, H(M) is a sub-basis for the finer patch topology of M .

Theorem 3.12 Let M be an R-module such that M satisfies descending chain con-
dition of socle submodules. Then Xs(M) with the finer patch topology is a compact
space.

Proof Let A be a family of finer patch-open sets covering Xs(M), and suppose that
no finite subfamily of A covers Xs(M). Since V s∗(soc(M)) = V s∗(M) = Xs(M),
we may use the dcc on socle submodules to choose a submodule N minimal with
respect to the property that no finite subfamily of A covers V s∗(N ) (note that we may
assume N = soc(N ) because V s∗(N ) = V s∗(soc(N )). We claim that N is a second
submodule of M , for if not, then there exist a submodule L of M and r ∈ R such that
r N ⊆ L , r N �= 0, and N � L . Thus N ∩ L ⊂ N and Soc(N ∩ (0 :M r)) ⊆ N ∩ (0 :M
r) ⊂ N . Hence without loss of generality, there must be a finite subfamily Á of A that
covers both V s∗(N ∩ (0 :M r)) and V s∗(N ∩ L). Let S ∈ V s∗(N ). Since r N ⊆ L ,
we have r S ⊆ L . Since S is second, S ⊆ L or r S = 0. Thus either S ∈ V s∗(N ∩ L)

or S ∈ V s∗(N ∩ (0 :M r)). Therefore,

V s∗(N ) ⊆ V s∗(N ∩ (0 :M r)) ∪ V s∗(N ∩ L).
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Thus V s∗(N ) is covered with the finite subfamily Á, a contradiction. Hence N is a
second submodule of M . Now choose U ∈ A such that N ∈ U . Thus N must have a
patch-neighborhood ∩n

i=1(W
s(Ki ) ∩ V s∗(Ni )), for some Ki , Ni ≤ M , n ∈ N, such

that

∩n
i=1[Ws(Ki ) ∩ V s∗(Ni )] ⊆ U.

We claim that for each i (1 ≤ i ≤ n),

N ∈ Ws(Ki ∩ N ) ∩ V s∗(N ) ⊆ Ws(Ki ) ∩ V s∗(Ni ).

To see this, assume that S ∈ Ws(Ki ∩ N ) ∩ V s∗(N ) so that S � Ki ∩ N and S ⊆ N .
Thus S � Ki , i.e., S ∈ Ws(Ki ). On the other hand, N ∈ V s∗(Ni ) and S ⊆ N . Thus
S ∈ V s∗(Ni ). Hence we have

N ∈ ∩n
i=1[Ws(Ki ∩ N ) ∩ V s∗(N )] ⊆ ∩n

i=1[Ws(Ki ) ∩ V s∗(Ni )] ⊆ U.

Thus [∩n
i=1W

s(Ḱi )] ∩ V s∗(N ), where Ḱi := Ki ∩ N ⊂ N is a neighborhood of N

with [∩n
i=1[Ws(Ḱi )] ∩V s∗(N ) ⊆ U . Since for each i (1 ≤ i ≤ n), Ḱi ⊂ N , V s∗(Ḱi )

can be covered by some finite subfamily Ái of A. But

Ns∗(N ) − [∪n
i=1V

s∗(Ḱi )] = V s∗(N ) − [∩n
i=1W

s(Ḱi )]c
= [∩n

i=1[Ws(Ḱi )] ∩ V s∗(N ) ⊆ U.

Hence V s∗(N ) can be covered by Á1 ∪ Á2 ∪ ... ∪ Án ∪ {U }, contrary to our choice of
N . Thus there exists a finite subfamily of A which covers Xs(M). Therefore, Xs(M)

is compact in the finer patch topology of M . 
�
Proposition 3.13 Let M be R-module such that M has dcc on socle submodules. Then
every irreducible closed subset of Xs(M) (with second classical Zariski topology) has
a generic point.

Proof Let Y be an irreducible closed subset of Xs(M). First we note that if N is a
submodule of M , then V s∗(N ) and Ws(N ) are both open and closed in finer patch
topology. Hence V s∗(S), where S ∈ Y , and Y are also an open and a closed set in
finer patch topology, respectively. Since Xs(M) is a compact space in finer patch
topology by Theorem 3.12 and Y is closed in Xs(M), we have Y is a compact space in
finer patch topology. Now Y = ∪S∈Y V s∗(S) by Proposition 3.1(b) and each V s∗(N )

is open in finer patch topology. Hence there exists a finite set Y1 ⊆ Y such that
Y = ∪S∈Y1V s∗(S). Since Y is irreducible, Y = V s∗(S) = cl({S}) for some S ∈ Y .
Hence S is a generic point for Y , as desired. 
�
Lemma 3.14 Assume ζ1 and ζ2 are two topologies on Xs(M) such that ζ1 ≤ ζ2. If
Xs(M) is quasi-compact (i.e., every open cover of it has a finite subcover) in ζ2, then
Xs(M) is also quasi-compact in ζ1.
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Theorem 3.15 Let M be an R-module such that M has dcc on socle submodules. Then
for each n ∈ N, and submodules Ni (1 ≤ i ≤ n) of M, Ws(N1) ∩ Ws(N2)∩, ... ∩
Ws(Nn), is a quasi compact subset of Xs(M) with the second classical Zariski topol-
ogy.

Proof Clearly, for each n ∈ N and each submodule Ni (1 ≤ i ≤ n) of M , Ws(N1) ∩
Ws(N2)∩, ... ∩ Ws(Nn) is a closed set in Xs(M) with finer patch topology, so that
it compact in Xs(M) with finer patch topology. Hence it is quasi-compact in Xs(M)

with the second classical Zariski topology by Lemma 3.14, as desired. 
�
Corollary 3.16 Let M be an R-module such that M has dcc on socle submodules.
Then quasi-compact open sets of Xs(M) are closed under finite intersections.

Proof It suffices to show that the intersectionU = U1∩U2 of two quasi-compact open
setsU1 andU2 of Xs(M) is a quasi-compact set. EachUi , i = 1, 2, is a finite union of
members of the open base β = {Ws(N1)∩Ws(N2)∩, ...∩Ws(Nn), Ni ≤ M, n ∈ N},
hence so is U = ∪m

i=1(∩ni
j=1W

s(N j ). Let � be any open cover of U . Then � also

covers each ∩ni
j=1W

s(N j ) which is quasi-compact by Theorem 3.15. Hence each

∩ni
j=1W

s(N j ) has a finite subcover of � and so does U . 
�
Theorem 3.17 Let M be an R-module R-module such that M has dcc on socle sub-
modules. Then Xs(M) with the second classical Zariski topology is a spectral space.

Proof We have Xs(M) is a T0 space by Lemma 3.7. Further β = {Ws(N1) ∩
Ws(N2)∩, ... ∩ Ws(Nn), Ni ≤ M, n ∈ N} is a basis for Xs(M) with the property
that each basis element, in particular Ws(M) = Xs(M), is quasi-compact by Theo-
rem 3.15. Moreover, by Corollary 3.16, the quasi-compact open sets are closed under
any finite intersections. Finally, every irreducible closed set has a generic point by
Proposition 3.13. Therefore, Xs(M) is a spectral space by Hochster’s characteriza-
tion. 
�
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