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Abstract Let p be a prime, E be a normal subgroup of a finite group G. In this
paper, we will investigate the way E embedded in G under the assumption that some
p-subgroups of E are c-normal in G. We pay more attention to the p-subgroups of E
with given order pd . We generalized several recent results of other scholars.
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1 Introduction

All groups considered in this paper are finite.Weuse conventional notions andnotation,
as in [5]. G always denotes a finite group, |G| is the order of G, π(G) denotes the set
of all primes dividing |G|, and Gp is a Sylow p-subgroup of G for a prime p ∈ π(G).
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In [13], Wang defined the c-normality of a subgroup as follows and prove that a
finite group G is solvable if and only if every maximal subgroup of G is c-normal in
G.

Definition 1.1 ([13, Definition 1.1]) Let H be a subgroup of a finite group G. We say
that H is c-normal in G if there exists a normal subgroup N of G such that HN = G
and H ∩ N ≤ HG .

The basic properties of c-normality are as follows.

Lemma 1.2 (see [13, Lemma 2.1] and [9, Lemma 2.4]) Let G be a group. Then

(1) If H is normal in G, then H is c-normal in G.
(2) If H is c-normal in G and H ≤ K ≤ G, then H is c-normal in K .
(3) Suppose that K is a normal subgroup of G and that H is c-normal in G. Then

HK/K is c-normal in G/K when K ≤ H or (|H |, |K |) = 1.

Let G be a finite group. Several authors successfully use the c-normal property
of some subgroups of G of prime power order to determine the structure of G (see
[1,2,8–12]). Many results in these previous papers have the following form: Let E be
a normal subgroup of G and F be a saturated formation containing the class of all
supersolvable groups. Suppose that G/E is in F . If for each prime divisor p of |E |,
some p-subgroups of E are c-normal G, then G ∈ F . Actually, in a more general
case, if we can get a criterion that E lies in the F-hypercenter, then G/E ∈ F implies
that G ∈ F . In order to get good results, many authors have to impose the c-normal
hypotheses on all the prime divisors or the minimal or maximal divisor p of |G| rather
than any prime divisor. In this paper, we try to get more general results.

Now let p be a fixed prime. In this paper, we focus on how a normal subgroup E
embedded in G provided every p-subgroup of E with some fix order is c-normal in
G. For this purpose, we introduce the concept of p-hypercentrally embedded:

Definition 1.3 Let G be a finite group. A normal subgroup E of G is said to be
p-hypercentrally embedded in G if every p-chief factor of G below E is cyclic.

The main result of this paper is the following theorem.

Theorem A Let p be a fixed prime and E be a normal subgroup of a finite group
G. Suppose that Ep is a Sylow p-subgroup of E and pd is a prime power such that
1 < pd ≤ max(|Ep|/p, p). If all the subgroups of Ep with order pd and 2pd (if a
quaternion group is involved in Ep) are c-normal in G, then E is p-hypercyclically
embedded in G.

2 Proof of the Results

First, we need some results on c-supplemented subgroups of finite groups. Following
[3], a group H is said to be c-supplemented in G if there exists a subgroup K of G
such that G = HK and H ∩ K ≤ HG . It is clear from the definition that if a subgroup
H of G is c-normal in G, then H is c-supplemented in G.

123



C-Normal and Hypercyclically Embedded... 1107

Lemma 2.1 If N is a minimal abelian normal subgroup of G, then any proper sub-
group of N is not c-supplemented in G.

Proof Suppose that this Lemma is not true and let H be a proper subgroup of N
such that H is c-supplemented in G. Obviously, HG = 1 since HG < N and N is
a minimal normal subgroup of G. By the definition of c-supplemented subgroups,
there exists a subgroup M of G such that G = HM with H ∩ M ≤ HG = 1. Hence
NM ≥ HM = G. Since N is abelian, we know that N ∩ M �G. Hence N ∩ M = 1.
Therefore, we have |G| = |NM | = |N ||M | > |H ||M | = |HM |, a contradiction. ��

For a saturated formationF , theF-hypercenter of a group G is denoted by ZF (G)

(see [5, p. 389, Notation and Definitions 6.8(b)]). Let U denote the class of all super-
solvable groups and letN denote the class of all nilpotent groups. Suppose that A is a
normal subgroup of G. It is clear that A ≤ ZU (G) if and only if every chief factor of
G below A is cyclic and that A ≤ ZN (G) if and only if every chief factor of G below
A is central. In [1], Asaad gave the following result: Let P be a nontrivial normal p-
subgroup, where p is an odd prime. If every minimal subgroup of P is c-supplemented
in G, then P ≤ ZU (G). It is helpful to give a result for p = 2. In fact, we have the
following proposition:

Proposition 2.2 Let P be a normal 2-subgroup of G. If all minimal subgroups of P
and all cyclic subgroups of P with order 4 (if a quaternion group is involved in P)
are c-supplemented in G, then P ≤ ZN (G).

Proof Let Q be a Sylow q-subgroup of G, where q is prime different from p. We
claim that PQ is nilpotent. Suppose that the claim is not true and let H be a minimal
non-nilpotent subgroup of PQ. Then H = [H2]Hq , where Hq ∈ Sylq(H) and H2
is a normal Sylow 2-subgroup of H . By Itô’s result (see [4, Chap. 3, 5.2]), we have
that exp(H2) ≤ 4 and that Hq acts irreducibly on H2/�(H2). It is easy to see that
|H2/�(H2)| ≥ 4. Clearly, Hq acts nontrivially on H2 but acts trivially on any proper
Hq -invariant subgroupof H2. It follows by the reduction theoremofHall andHigmman
(see [7, Chap. 5 Theorem 3.7]) that H ′

2 = �(H2).
Case 1. Suppose first that a quaternion group is involved in H2. Then exp(H2) = 4,

andwemay take a subgroup 〈x〉 ≤ H2 ofG of order 4 and 〈x〉 � �(H2). Byhypotheses
〈x〉 is c-supplemented in G, and thus 〈x〉�(H2)/�(H2) �= 1 is c-supplemented in
H/�(H), which contradicts Lemma 2.1.

Case 2. Suppose that H2 is quaternion free. Assume that H2 is abelian. Then
H ′
2 = �(H2) = 1 and thus H2 is a minimal normal subgroup of H . It follows from

Lemma 2.1 that H2 = 1, a contradiction. Assume that H2 is not abelian. Applying [6,
Theorem 2.7], Hq acts on H2/�(H2) with at least one fixed point. This implies that
|H2/�(H2)| = 2, a contradiction.

The above proof shows that PQ is nilpotent as claimed. In particular, P centralizes
all odd elements of G. Thus for any G-chief factor H/K of P , G/CG(H/K ) is a
2-group. By [5, A, Lemma 13.6], we have O2(G/CG(H/K )) = 1. It follows that
G/CG(H/K ) = 1 and thus P ≤ ZN (G). ��

As an application of Proposition 2.2, we have
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Corollary 2.3 If all minimal subgroups of G2 and all cyclic subgroups of G2 with
order 4 (if a quaternion group is involved in G2) are c-supplemented in G, then G is
2-nilpotent.

Proof Suppose that this corollary is not true and let G be a counterexample with
minimal order. Obviously, the hypotheses are inhered by all subgroups of G, hence
G is a minimal non- 2-nilpotent group. It follows that G2 is a normal subgroup in G.
Applying Proposition 2.2 to G2, we get a contradiction. ��

By combining [1, Theorem 1.1] and Proposition 2.2, we have

Lemma 2.4 Let P be a normal p-subgroup of G. If all cyclic subgroups of P with
order p or 4 (if a quaternion group is involved in P) are c-supplemented in G, then
P ≤ ZU (G).

Next, we will show that if some class of p-subgroups of G is c-normal in G, then
G is p-solvable.

Lemma 2.5 If G p is c-normal in G then G is p-solvable.

Proof Suppose that this Lemma is not true and consider G to be a counterexample
with minimal order. By Lemma 1.2 (3), the hypothesis holds for both G/Op(G) and
G/Op′(G), thus the minimal choice of G implies that Op(G) = Op′(G) = 1. By the
definition of c-normality, there exists a normal subgroup H of G such that G = GpH
and H ∩ Gp ≤ (Gp)G . But (Gp)G = Op(G) = 1, hence H is a normal p′-subgroup
of G. The fact that Op′(G) = 1 then indicates that H = 1 and thus G = Gp, a
contradiction. ��
Lemma 2.6 LetG beafinite groupand pd beaprimepower such that3 ≤ pd ≤ |G|p.
If all subgroups of G with order pd are c-normal in G, then G is p-solvable.

Proof ByLemma2.4,wemay assume that pd < |G|p. Let D be any subgroup of order
pd . By the hypotheses, there exists a normal subgroup H ofG such thatG = DH and
D

⋂
H ≤ DG . Assume that H < G. Since G/H is a p-group, we may take a normal

subgroup M of G such that M ≥ H and |G : M | = p. As pd < |G|p, pd ≤ |M |p.
Clearly, all subgroups ofM with order pd are c-normal inM . It follows by induction

thatM is p-solvable, and so isG.Hencewemay assume that H = G and then D = DG

is normal in G. Assume that D is not a minimal normal subgroup of G. Let V be a
minimal G-invariant subgroup of D and |V | = pe. Then p ≤ |V | < pd and all
subgroups of G/V with order pd−e are c-normal in G/V . By Induction G/V is p-
solvable, and so is G. Hence we may assume that D is minimal normal in G whenever
D is a subgroup of order pd .

Note that if all subgroups of order pd are contained in Z(G), then G is p-nilpotent
by a well-known result of Itô (see [4, IV, 5.3]). Hence we may assume that there is a
subgroupU of order pd such thatU � Z(G). Suppose that |U | = pd ≥ p2. Let K be
a subgroup of order pd+1 such that U < K . Clearly U is not cyclic, and hence there
is a maximal subgroup U1 of K such that U1 �= U . Since U1 is normal as assumed,
we get thatU ∩U1 is a nontrivial G-invariant subgroup of U , and this contradicts the
minimal normality of U . Hence |U | = p. Observe that G/CG(U ) is a p′-group and
that CG(U ) < G. It follows by induction that CG(U ) is p-solvable, and so is G. ��
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Now, we will study the properties of p-hypercyclically embedding. Clearly, if a
normal subgroup E is p-hypercyclically embedded in G, then E is p-solvable and
every normal subgroup of G contained in E is also p-hypercyclically embedded in
G. The following lemma shows that for a p-solvable normal subgroup E , we can
deduce that E is p-hypercyclically embedded in G if the maximal p-nilpotent normal
subgroup of E (denoted by Fp(E)) is p-hypercyclically embedded in G.

Lemma 2.7 A p-solvable normal subgroup E is p-hypercyclically embedded in G if
and only if Fp(E) is p-hypercyclically embedded in G.

Proof We only need to prove the sufficiency. Suppose that the assertion is false and
let (G, E) be a counterexample with |G| + |E | minimal. We claim that Op′(E) = 1.
Indeed, since Fp(E/Op′(E)) = Fp(E)/Op′(E), it is easy to verify that the hypothe-
ses hold for (G/Op′(E), E/Op′(E)). If Op′(E) �= 1, then the minimal choice
of (G, E) implies that E/Op′(E) is p-hypercyclically embedded in G/Op′(E).
ClearlyOp′(E) is p-hypercyclically embedded inG. Therefore, E is p-hypercyclically
embedded in G, a contradiction.

Let N be a minimal normal subgroup of G contained in E . N is an abelian normal
p-subgroup since E is p-solvable and Op′(E) = 1. Consider the group CE (N )/N .
Let L/N = Op′(CE (N )/N ) and K be a Hall p′-subgroup of L . Then L = K N .
Since K ≤ L ≤ CE (N ), we have K = Op′(L) ≤ Op′(G) = 1. Consequently,
Op′(CE (N )/N ) = 1 and we have Fp(CE (N )/N ) = Op(CE (N )/N ) ≤ Op(E)/N =
Fp(E)/N . As a result, we know that the hypotheses hold for (G/N ,CE (N )/N ) and
the minimal choice of (G, E) yields that CE (N )/N is p-hypercyclically embedded
in G/N . But N ≤ Fp(G) and thus N is also p-hypercyclically embedded in G. It
follows that CE (N ) is p-hypercyclically embedded in G.

Since N is a normal p-subgroup that is p-hypercyclically embedded in G, |N | =
p. It yields that G/CG(N ) is a cyclic group. As a result, ECG(N )/CG(N ) is p-
hypercyclically embedded in G/CG(N ). Note that E/CE (N ) = E/(E ∩ CG(N ))

is G-isomorphic to ECG(N )/CG(N ) and E/CE (N ) is p-hypercyclically embedded
in G/CE (N ). But CE (N ) is p-hypercyclically embedded in G and thus E is or p-
hypercyclically embedded in G, a final contradiction. ��

Denote A(p − 1) as the formation of all abelian groups of exponent divisible by
p − 1. The following proposition is well known:

Lemma 2.8 ([15, Theorem 1.4]) Let H/K be a chief factor of G and p be a prime
divisor of |H/K |. Then |H/K | = p if and only if G/CG(H/K ) ∈ A(p − 1).

Let f be a formation function and E be a normal subgroup of G. We say that G
acts f -centrally on E ifG/CG(H/K ) ∈ f (p) for every chief factor H/K ofG below
E and every prime p dividing |H/K | ([5], p. 387, Definitions 6.2). Fixing a prime p,
define a formation function gp as follows:

gp(q) =
{
A(p − 1) (if q = p)

all finite group (if q �= p)
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From Lemma 2.8, we can see that E is p-hypercyclically embedded in G if and
only if G acts gp-centrally on E . By applying [5, p. 388, Theorem 6. 7], we get the
following useful results:

Lemma 2.9 A normal subgroup E of G is p-hypercyclically embedded in G if and
only if E/�(E) is p-hypercyclically embedded in G/�(E).

Then the following lemma is evident.

Lemma 2.10 Let K and L be two normal subgroups of G contained in E. If E/K
is p-hypercyclically embedded in G/K and E/L is p-hypercyclically embedded in
G/L, then E/(L ∩ K ) is p-hypercyclically embedded in G/(L ∩ K ).

The following proposition indicates that Theorem A holds when pd = p.

Proposition 2.11 Let E be a normal subgroup of G. If all cyclic subgroups of Ep

with order p and 4 (if a quaternion group is involved in Ep) are c-normal in G, then
E is p-hypercyclically embedded in G.

Proof Note that E is p-solvable by Lemma 2.6. Suppose that Op′(E) > 1. Since
the hypotheses hold for G/Op′(E), we conclude by induction that E/Op′(E) is p-
hypercyclically embedded in G/Op′(E) and thus E is p-hypercyclically embedded
in G. Suppose that Op′(E) = 1. By Lemma 2.4, Op(E) ≤ ZU (G). As Op′(E) = 1,
Fp(E) = Op(E). It follows that E is p-hypercyclically embedded in G by Lemma
2.7. ��

With the aid of the preceding results, we can now prove Theorem A.

Proof of Theorem A. Suppose that Theorem A is not true and let (G, E) be a coun-
terexample such that |G|+|E | is minimal. Then the minimal choice of (G, E) implies
that Op′(E) = 1. If |Ep| = p, then Ep itself is c-normal in G and by Lemma 1.2, Ep

is also c-normal in E . By Lemma 2.5, we know that E is p-solvable and consequently
E is p-hypercyclically embedded in G since |Ep| = p. Therefore, we may assume
that |Ep| > p and 1 < pd < |Ep|. By Proposition 2.11, we may further assume
that pd > p. By Lemma 2.6, E is p-solvable. We derive a contradiction through the
following steps.

(1) If N is a minimal G-invariant subgroup of E , then |N | > p.
Suppose that |N | = p, then pd > |N | by the assumption that pd > p.

Hence (G/N , E/N ) also satisfies the hypotheses of this Theorem and E/N is p-
hypercyclically embedded in G/N by the choice of (G, E). Since |N | = p, E is
p-hypercyclically embedded in G, a contradiction. Hence |N | > p.

(2) If N is a minimal G-invariant subgroup of E , then pd > |N |.
By Lemma 2.1 we have pd ≥ |N |. Suppose that pd = |N |. Since pd < |Ep| by

our assumption, Ep has a subgroup H such that N is a maximal subgroup of H . By
(1), N is not cyclic and so is H . Hence we can choose a maximal subgroup K of H
other than N . Obviously we have H = NK . If N ∩ K = 1, then |N | = |H |/|K | = p,
a contradiction. Thus N ∩ K �= 1 and |K : K ∩ N | = |K N : N | = |H : N | = p.
Since KG ∩ N ≤ K ∩ N < N , we have KG ∩ N = 1. Assume that KG > 1.
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Then |KG | = |KGN/N | = |H/N | = p and this contradicts (1). Therefore we have
KG = 1. Since |K | = |N | = pd , K is c-normal in G by the hypotheses of this
theorem. So there exists a proper normal subgroup L of G such that G = K L and
K ∩ L ≤ KG = 1. Since K ∩ N �= 1 and K ∩ L = 1, we have N �= L and
thus N ∩ L = 1. Consequently, |NL| = |N ||L| = |K ||L| = |K L| = |G| and thus
G = NL . Let M be a maximal subgroup of G containing L , then |G : M | = p since
G/L is a p-group.ObviouslyG = NM and N∩M = 1. But then |N | = |G : M | = p,
a contradiction.

(3) �(E) = 1 and E contains a unique minimal G-invariant subgroup, say N .
Let L be any minimal G-invariant subgroup of E . Since pd > |L| by (2), it is easy

to verify that (G/L , E/L) satisfies the hypotheses of this theorem. Thus the minimal
choice of (G, E) implies that E/L is p-hypercyclically embedded inG/L . By Lemma
2.9, we have �(E) = 1. By Lemma 2.10, we have that E contains a unique minimal
G-invariant subgroup, say N .

(4) Final contradiction.
Since �(E) = 1, E is split over N (see [5, Chap. A, 9.10]). Hence E = [N ]Y

for some subgroup Y of E , and so Ep = [N ]Yp for some Yp ∈ Sylp(Y ). Let U be
a maximal subgroup of N such that U is Ep-invariant. Since dp < |Ep|, we may
take a subgroup D = UV such that V ≤ Yp and |D| = pd . Assume that DG > 1.
Then D ≥ DG ≥ N because N is the unique minimal G-invariant subgroup of E ,
a contradiction. Hence DG = 1. Now, the hypotheses imply that G = D[L] for
some G-invariant subgroup L . Note that E ∩ L = 1 contrary to |D| = |E |. Thus
E ∩ L is a nontrivial normal subgroup of G, so U < N ≤ E ∩ L ≤ L , but then
1 < U ≤ D ∩ L = 1, a contradiction. ��
Remark The conclusion of Theorem A does not hold if we replace “c-normal” with
“c-supplemented” in the hypothesis. One can take A5 for example. Obviously, every
subgroup of A5 with order 5 is c-supplemented in A5, but A5 is not 5-hypercyclically
embedded in itself.

Corollary 2.12 Let p be a fixed prime and G p be a Sylow p-subgroup of a finite
group G. Suppose that pd is a prime power such that 1 < pd ≤ max(|Gp|/p, p). If
all the subgroups of G p with order pd and 2pd (if a quaternion group is involved in
G p) are c-normal in G, then G is p-supersolvable.

Corollary 2.13 Let p be a fixed prime and E be a normal subgroup of a finite group
G. Suppose that Ep is a Sylow p-subgroup of E and pd is a prime power such that
1 < pd ≤ max(|Ep|/p, p). If G/E is p-supersolvable and all the subgroups of Ep

with order pd and 2pd (if a quaternion group is involved in Ep) are c-normal in G,
then G is p-supersolvable.

Corollary 2.14 Let p be a fixed prime and E be a normal subgroup of a finite group
G. Suppose that Ep is a Sylow p-subgroup of E and pd is a prime power such that
1 < d ≤ max(|Ep|/p, p). Suppose that NG(Ep) is p-nilpotent. If either Ep is abelian
or every subgroup of Ep with order pd and 2pd (if a quaternion group is involved in
Ep) is c-normal in E, then G is p-nilpotent.
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Proof If Ep is abelian, then E is p-nilpotent by Burnside’s theorem. If Ep is not
abelian, then E is p-supersolvable by Theorem A. In both cases, we have that
Ep Op′(E) is a normal subgroup of G. By Frattini argument, G = NG(Ep)Op′(E).
Note that NG(Ep) is p-nilpotent by hypotheses, and we have that G is p-nilpotent, as
wanted. ��
Corollary 2.15 Let p be a fixed prime and G p be a Sylow p-subgroup of a finite group
G. Suppose that pd is a prime power such that 1 < pd ≤ max(|Gp|/p, p). Suppose
that NG(Gp) is p-nilpotent. If all the subgroups of G p with order pd and 2pd (if a
quaternion group is involved in G p) are c-normal in G, then G is p-nilpotent.

3 Some Applications

In this section, we give some applications to show that we can apply our results to get
some known results.

Corollary 3.1 ([2, Theorem 3.4]) Let F be a saturated formation containing U . If all
minimal subgroups and all cyclic subgroups with order 4 of GF are c-normal in G,
then G ∈ F .

Proof From Theorem A, we know that GF is p-hypercentrally embedded in G for
all p ∈ π(GF ) and thus GF ≤ ZU (G). Since F is a saturated formation containing
U , we have that ZU (G) ≤ ZF (G). Consequently, G ∈ F because G/GF ∈ F and
GF ≤ ZU (G) ≤ ZF (G). ��

The following lemma is evident.

Lemma 3.2 Let G be a group and p be a prime such that (p − 1, |G|) = 1. Then G
is p-nilpotent if and only if G is p-supersolvable.

Corollary 3.3 ([12, Theorem 0.1]) Let E be a normal subgroup of a group G of odd
order such that G/E is supersolvable. Suppose that every non-cyclic Sylow subgroup
P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with
order |H | = |D| are c-normal in G. Then G is supersolvable.

Proof Let p be the minimal prime divisor of |E |. If Ep is cyclic, then E is p-nilpotent
by [14, Lemma 2.8]. If Ep is not cyclic, then by Theorem A, E is p-supersolvable
and thus p-nilpotent by Lemma 3.2. By repeating this argument, we know that E has
a Sylow-tower and therefore E is solvable. Let p be any prime divisor of |E |. If Ep is
cyclic, then E is p-hypercentrally embedded in G since now E is p-solvable. If Ep is
not cyclic, then E is also p-hypercentrally embedded in G by Theorem A. Therefore
we have E ≤ ZU (G). It follows that G is supersolvable since G/E is supersolvable
and E ≤ ZU (G). ��
Corollary 3.4 ([9, Theorem 3.1]) Let p be an odd prime dividing the order of a group
G and P be a Sylow p-subgroup of G. If NG(P) is p-nilpotent and every maximal
subgroup of P is c-normal in G, then G is p-nilpotent.
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Corollary 3.5 ([9, Theorem 3.4]) Let p be the smallest prime dividing the order of
a group G and P be a Sylow p-subgroup of G. If every maximal subgroup of P is
c-normal in G, then G is p-nilpotent.

Proof If |P| = p, then G is p-nilpotent by [14, Lemma 2.8]. If |P| > p, then by
Corollary 2.12 G is p-supersolvable. Hence G is p-nilpotent by Lemma 3.2. ��
Corollary 3.6 ([9, Theorem 3.6]) Let p be the smallest prime dividing the order of
group G and P be a Sylow p-subgroup of G. If every minimal subgroup of P ∩ G ′ is
c-normal in G and when p = 2, either every cyclic subgroup of P ∩ G ′ with order 4
is also c-normal in or P is quaternion free, then G is p-nilpotent.

Proof By TheoremA,G ′ is p-hypercyclically embedded inG. SinceG/G ′ is abelian,
G is p-supersolvable. It then follows from Lemma 3.2 that G is p-nilpotent. ��
Corollary 3.7 ([9, Corollary 3.9]) Let p be an odd prime dividing the order of a group
G and P be a Sylow p-subgroup of G. If every minimal subgroup of P∩G ′ is c-normal
in G, then G is p-supersolvable.

Acknowledgments The authors would like to thank the referee for his/her careful corrections and valuable
suggestions. In fact, the proofs of several results of this paper were modified by the referee in order to make
them more simple and clear.
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