
Bull. Malays. Math. Sci. Soc. (2018) 41:15–28
https://doi.org/10.1007/s40840-015-0216-z

A Matrix-Theoretic Perspective on Some Identities
Involving Well-Known Sequences

A. R. Moghaddamfar1 · S. Navid Salehy2 ·
S. Nima Salehy2

Received: 4 April 2015 / Revised: 9 August 2015 / Published online: 10 September 2015
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract We first consider the companion matrix associated with the characteristic
polynomial of a linear recurrence relation, and we investigate its powers. Next, we
introduce a new matrix associated with a given linear recurrence sequence, and we
get a factorization of this matrix. Finally, we give several applications of our results.
Actually, we obtain some identities concerning Fibonacci, Lucas, Pell, and Jacobsthal
numbers using matrix theory.

Keywords Recurrence relation · Matrix factorization · Fibonacci sequence · Lucas
sequence · Pell sequence · Jacobsthal sequence

Mathematics Subject Classification 15A23 · 11B37 · 11B39

Communicated by Emrah Kilic.

In memory of Professor Michael Neumann.

B A. R. Moghaddamfar
moghadam@ipm.ir; moghadam@kntu.ac.ir

S. Navid Salehy
navidsalehy@math.fsu.edu

S. Nima Salehy
nimasalehy@math.fsu.edu

1 Department of Mathematics, K. N. Toosi University of Technology,
P. O. Box 16315-1618, Tehran, Iran

2 Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0216-z&domain=pdf
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1 Introduction and Notation

Recurrence relations occur in a variety of mathematical contexts, and they play an
important role in the field of complexity. They are actually one of the basic mathemat-
ical tools of computation. In particular, they can be used to represent mathematical
sequences that cannot be easily represented non-recursively. Usually, a sequence gen-
erated by a recurrence relation is called a recurrence sequence. Some well-known
recurrence sequences are the Fibonacci sequence, Lucas sequence, Pell sequence and
Jacobsthal sequence.

In general, a sequence λ = (λ0, λ1, . . .) is said to satisfy a linear recurrence
relation of order k � 1with initial conditions λ0, λ1, . . . , λk−1, if there exist constants
c0, c1, . . . , ck−1, with c0 �= 0, such that

λi = c0λi−k + c1λi−k+1 + · · · + ck−1λi−1, (i � k). (1)

A linear recurrence sequence is a sequence satisfying some linear recurrence as above.
Occasionally, the indexing of the terms will start with something other than 0. In
particular, we note that the sequence λ can be easily extended to negative indices
using the rearranged recurrence relation

λi−k = c−1
0 (λi − c1λi−k+1 − · · · − ck−1λi−1), (i < k). (2)

This lets one define λ−1, λ−2, . . ., to obtain a doubly infinite sequence

. . . , λ−2, λ−1, λ0, λ1, λ2, . . .

that now satisfies the same linear recurrence for all integer indices i , positive or neg-
ative.

Some well-known linear recurrence sequences are special cases of (1), for instance,
we have

k λ0 λ1 c0 c1 λ Name of sequence OEIS

2 0 1 1 1 F Fibonacci sequence A000045 in [7]
2 2 1 1 1 L Lucas sequence A000032 in [7]
2 0 1 1 2 P Pell sequence A000129 in [7]
2 0 1 2 1 J Jacobsthal sequence A001045 in [7]

The characteristic polynomial of the linear recurrence relation (1) is defined to be the
polynomial

pλ(x) = xk − ck−1x
k−1 − · · · − c2x

2 − c1x − c0. (3)
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A Matrix-Theoretic Perspective on Some Identities… 17

It is well-known by Cayley-Hamilton theorem that the square matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . c0
1 0 0 0 . . . c1
0 1 0 0 . . . c2
...

...
. . .

... · · · ...

0 0 0 1 . . . ck−2
0 0 0 . . . 1 ck−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

satisfies the equation pλ(A) = 0; that is

Ak − ck−1A
k−1 − · · · − c2A

2 − c1A − c0 I = 0,

where I is the k × k identity matrix (see [4]). The matrix A is called the companion
matrix of the monic polynomial pλ(x), which will remain fixed throughout the paper.

In what follows, a new approach will be presented to find again this matrix and its
powers. To illustrate this, we introduce k new linear recurrence sequences of order k
as follows: for any integer s ∈ {0, 1, 2, . . . , k − 1}, we define the linear recurrence
sequence

ω(s) =
(
ω

(s)
0 , ω

(s)
1 , ω

(s)
2 , . . .

)

of order k, by

ω
(s)
i =

⎧⎪⎨
⎪⎩

δi,s i < k,

k−1∑
l=0

clω
(s)
i−k+l i � k,

(4)

where δi,s is the Kronecker delta.
These sequences and a few first terms of them are shown below:

s\i ω
(s)
0 ω

(s)
1 ω

(s)
2 . . . ω

(s)
k−1 ω

(s)
k ω

(s)
k+1 ω

(s)
k+2 . . .

ω(0) 1, 0, 0, . . . , 0, c0, c0ck−1, c0ck−2 + c0c2k−1, . . .

ω(1) 0, 1, 0, . . . , 0, c1, c0 + c1ck−1, c1ck−2 + c0ck−1 + c1c2k−1, . . .

ω(2) 0, 0, 1, . . . , 0, c2, c1 + c2ck−1, c0 + c2ck−2 + c1ck−1 + c2c2k−1, . . .

...
...

...
...

...
...

...
...

... · · ·
ω(k−1) 0, 0, 0, . . . , 1, ck−1, ck−2 + c2k−1, ck−3 + 2ck−1ck−2 + c3k−1, . . .

Again, the sequences ω(s) can be extended to negative indices using the rearranged
recurrence relation

ω
(s)
i−k = c−1

0

(
ω

(s)
i −

k−1∑
l=1

clω
(s)
i−k+l

)
, (i < k). (5)
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18 A. R. Moghaddamfar et al.

Note that each sequence ω(s), 0 � s � k − 1, is a special case of the sequence λ for
which the initial conditions (λ0, λ1, . . . , λk−1) are the row vector with all 0s except
for a 1 in the sth position.
An Example. Suppose that k = 2, λ0 = 2 and λ1 = c0 = c1 = 1. Then, we have

Sequence\n 0 1 2 3 4 5 6 7 . . . i . . .

λ 2 1 3 4 7 11 18 29 . . . Li . . .

ω(0) 1 0 1 1 2 3 5 8 . . . Fi−1 . . .

ω(1) 0 1 1 2 3 5 8 13 . . . Fi . . .

In general, for any integer m, we define

Am =
[
ω

(i)
m+ j

]
0�i, j�k−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(0)
m ω

(0)
m+1 ω

(0)
m+2 · · · ω

(0)
m+k−1

ω
(1)
m ω

(1)
m+1 ω

(1)
m+2 · · · ω

(1)
m+k−1

ω
(2)
m ω

(2)
m+1 ω

(2)
m+2 · · · ω

(2)
m+k−1

...
...

... · · · ...

ω
(k−1)
m ω

(k−1)
m+1 ω

(k−1)
m+2 · · · ω

(k−1)
m+k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We notice that the companion matrix A can be seen here again (shown in bold type
above). Actually, if we take m = 1, then we have

A = A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(0)
1 ω

(0)
2 ω

(0)
3 . . . ω

(0)
k

ω
(1)
1 ω

(1)
2 ω

(1)
3 . . . ω

(1)
k

ω
(2)
1 ω

(2)
2 ω

(2)
3 . . . ω

(2)
k

...
...

...
. . .

...

ω
(k−2)
1 ω

(k−2)
2 ω

(k−2)
3 . . . ω

(k−2)
k

ω
(k−1)
1 ω

(k−1)
2 ω

(k−1)
3 . . . ω

(k−1)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . c0
1 0 0 0 . . . c1
0 1 0 0 . . . c2
...

...
. . .

... · · · ...

0 0 0 1 . . . ck−2
0 0 0 . . . 1 ck−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For any integer m, it is an easy observation that Am = Am (see Theorem 1). Now,
using the fact that det Am = (det A)m , we immediately get

det Am = det(Am) = (det A)m = (−1)m(k−1)cm0 ,

(see also [5, Corollary 2.1]).
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A Matrix-Theoretic Perspective on Some Identities… 19

In the sequel, we shall introduce some more definitions and notation. Given
integers x , yi , and zi , 1 � i � k − 1, we define the k × k matrices
Rk(x, y1, . . . , yk−1, z1, . . . , zk−1) and Sk(y1, . . . , yk−1) as follows:

Rk(x, y1, . . . , yk−1, z1, . . . , zk−1) := [λx+i yi+ j z j ]0�i, j�k−1,

Sk(y1, . . . , yk−1) :=
[
ω

(i)
j y j

]
0�i, j�k−1

.

The associated matrices R4(x, y1, y2, y3, z1, z2, z3) and S4(y1, y2, y3), for example,
are given by

R4(x, y1, y2, y3, z1, z2, z3) =

⎡
⎢⎢⎢⎢⎣

λx λx+z1 λx+2z2 λx+3z3

λx+y1 λx+y1+z1 λx+y1+2z2 λx+y1+3z3

λx+2y2 λx+2y2+z1 λx+2y2+2z2 λx+2y2+3z3

λx+3y3 λx+3y3+z1 λx+3y3+2z2 λx+3y3+3z3

⎤
⎥⎥⎥⎥⎦

,

and

S4(y1, y2, y3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω
(0)
0 ω

(0)
y1 ω

(0)
2y2

ω
(0)
3y3

ω
(1)
0 ω

(1)
y1 ω

(1)
2y2

ω
(1)
3y3

ω
(2)
0 ω

(2)
y1 ω

(2)
2y2

ω
(2)
3y3

ω
(3)
0 ω

(3)
y1 ω

(3)
2y2

ω
(3)
3y3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In the case when x = 0 and yi = zi = 1, 1 � i � k − 1, we denote the matrix
Rk(0, 1, . . . , 1, 1, . . . , 1) by Rk . In this paper, we will present a matrix factorization
for Rk(x, y1, . . . , yk−1, z1, . . . , zk−1) (see Theorem 2). Finally, some applications of
the main results are given.

The outline of the paper is as follows. Basic definitions and notation are summarized
in Sect. 1. In Sect. 2, we derive some preparatory results. Section 3 contains three
theorems and some applications of our findings to obtain many identities involving
Fibonacci, Lucas, Pell, and Jacobsthal numbers.

2 Preliminaries

In the following lemma we give a relationship between the terms of sequences λ and
ω(s).

Lemma 1 For every integer m and n, we have

k−1∑
l=0

λm+lω
(l)
n = λm+n .
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20 A. R. Moghaddamfar et al.

In particular, if in addition 0 � s � k − 1 is an integer, we get

k−1∑
l=0

ω
(s)
m+lω

(l)
n = ω

(s)
m+n .

Proof First, we assume that m + n � 0. We will proceed by induction with respect to
m+n. The case when 0 � m+n � k−1 is trivial, so we may assume thatm+n � k.
Therefore, we have

λm+n =
k−1∑
l=0

clλm+n−k+l (by Eq. (1))

=
k−1∑
l=0

cl

k−1∑
s=0

λm+sω
(s)
n−k+l (using the induction hypothesis)

=
k−1∑
s=0

λm+s

k−1∑
l=0

clω
(s)
n−k+l

=
k−1∑
s=0

λm+sω
(s)
n (by Eq. (4))

as required. Now, let m + n < 0. Again, by induction on m + n, we obtain

λm+n = c−1
0

(
λm+n+k −

k−1∑
l=1

clλm+n+l

)
(by Eq. (2))

= c−1
0

(
k−1∑
s=0

λm+sω
(s)
n+k −

k−1∑
l=1

cl

k−1∑
s=0

λm+sω
(s)
n+l

)
(using the induction hypothesis)

=
k−1∑
s=0

λm+sc
−1
0

(
ω

(s)
n+k −

k−1∑
l=1

clω
(s)
n+l

)

=
k−1∑
s=0

λm+sω
(s)
n (by Eq. (5))

which completes the proof of the first result. The second result is a special case of the
first one. ��

The following lemma gives some relationships between sequences ω(s), 0 � s �
k − 1.

Lemma 2 The following statements hold for any integer i .

(i) ω
(0)
i+1 = c0ω

(k−1)
i .

(ii) ω
(s+1)
i+1 − ω

(s)
i = cs+1ω

(k−1)
i (0 � s � k − 2).

(iii) c0ω
(k−1)
i−1 + c1ω

(k−1)
i = ω

(1)
i+1.
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A Matrix-Theoretic Perspective on Some Identities… 21

Proof (i) We apply induction on i . For 0 � i � k − 1, the proof is obvious, because,
if 0 � i � k − 2, ω(0)

i+1 = c0ω
(k−1)
i = 0, and if i = k − 1, we have

ω
(0)
k =

k−1∑
l=0

clω
(0)
l = c0 = c0ω

(k−1)
k−1 .

Let us for the moment assume that i � k. Using Eq. (4) and the induction
hypothesis, we have

ω
(0)
i+1 =

k−1∑
l=0

clω
(0)
i−k+l+1 =

k−1∑
l=0

cl
(
c0ω

(k−1)
i−k+l

)
= c0

k−1∑
l=0

clω
(k−1)
i−k+l = c0ω

(k−1)
i .

Now, let i < 0. We obtain

ω
(0)
i+1 = c−1

0

(
ω

(0)
i+k+1 −

k−1∑
l=1

clω
(0)
i+l+1

)
(by Eq. (5))

= c−1
0

(
c0ω

(k−1)
i+k −

k−1∑
l=1

clc0ω
(k−1)
i+l

)
(using the induction hypothesis)

= ω
(k−1)
i+k −

k−1∑
l=1

clω
(k−1)
i+l

= c0ω
(k−1)
i (by Eq. (5))

which completes the proof of this part.
(ii) Suppose that 0 � s � k − 2. Once again, we prove the result by induction on i .

Assume first that 0 � i � k − 1. In this case, we get

ω
(s)
i + cs+1ω

(k−1)
i =

⎧⎪⎨
⎪⎩

1 i = s � k − 2,

0 i �= s � k − 2,

cs+1 i = k − 1,
= ω

(s+1)
i+1 .

Assume now that i � k. By a routine calculation, we obtain

ω
(s)
i + cs+1ω

(k−1)
i =

k−1∑
l=0

clω
(s)
i−k+l + cs+1

k−1∑
l=0

clω
(k−1)
i−k+l (by Eq. (4))

=
k−1∑
l=0

cl
[
ω

(s)
i−k+l + cs+1ω

(k−1)
i−k+l

]
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22 A. R. Moghaddamfar et al.

=
k−1∑
l=0

clω
(s+1)
i−k+l+1 (using the induction hypothesis)

= ω
(s+1)
i+1 (by Eq. (4))

as desired. For the case when i < 0, we verify the result as follows

ω
(s)
i + cs+1ω

(k−1)
i = c−1

0

(
ω

(s)
i+k −

k−1∑
l=1

clω
(s)
i+l

)

+cs+1

{
c−1
0

(
ω

(k−1)
i+k −

k−1∑
l=1

clω
(k−1)
i+l

)}
(by Eq. (5))

= c−1
0

{(
ω

(s)
i+k + cs+1ω

(k−1)
i+k

)
−

k−1∑
l=1

cl
(
ω

(s)
i+l + cs+1ω

(k−1)
i+l

)}

= c−1
0

{
ω

(s+1)
i+k+1 −

k−1∑
l=1

clω
(s+1)
i+l+1

}
(using the induction hypothesis)

= ω
(s+1)
i+1 (by Eq. (5)).

(iii) We obtain

c0ω
(k−1)
i−1 + c1ω

(k−1)
i = ω

(0)
i + c1ω

(k−1)
i (by part (i))

= ω
(1)
i+1 (by part (ii) for s = 0)

as desired. This completes the proof of the lemma. ��

3 Main Results and Some Applications

Before stating our main results we introduce some notation. Let λ = (λi )i∈Z be a
doubly infinite sequence satisfying the linear recurrence relation (1). Given an integer
m, we will consider the row vector

um := (λm, λm+1, . . . , λm+k−1),

which is called the mth state vector of λ. The state vector u0 = (λ0, λ1, . . . , λk−1) is
also referred to as the initial state vector.

We start with the following known result of Er [1], which is obtained by using the
approach of Kalman [4]. Here, we provide a proof for the sake of completeness.

Theorem 1 ([1]) For any integer m, we have Am = Am. Furthermore, we have
um = u0Am and

Am[c0 c1 c2 . . . ck−1]T =
[
ω

(0)
k+m ω

(1)
k+m ω

(2)
k+m . . . ω

(k−1)
k+m

]T
,

where T denotes transpose.
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A Matrix-Theoretic Perspective on Some Identities… 23

Proof First we assume that m � 0. In this case, we conclude the result by induction
on m. For m = 0 and m = 1, the result is straightforward. Assume that m � 2. Using
the definition of A and induction hypothesis, we have

Am = Am−1 · A =
[
ω

(i)
j+m−1

]
·
[
ω

(i)
j+1

]
.

Therefore, for 0 � i, j � k − 1, we have

(Am)i, j =
k−1∑
l=0

ω
(i)
l+m−1ω

(l)
j+1

= ω
(i)
j+m (by Lemma 1)

as desired. Now, suppose that m < 0. Since −m > 0, from the previous part we have

A−m =
[
ω

(i)
j−m

]
0�i, j�k−1

.

Thus, using Lemma 1, for 0 � i, j � k − 1, we get

([
ω

(i)
j+m

]
· A−m

)
i, j

=
k−1∑
l=0

ω
(i)
l+mω

(l)
j−m = ω

(i)
j =

{
1 i = j,
0 i �= j.

Therefore, we deduce

Am = (A−m)−1 =
[
ω

(i)
j+m

]
0�i, j�k−1

which completes the proof of the first part. The rest of conclusion follows immediately
from previous part and Lemma 1. ��
Theorem 2 For integers x, yi , and zi , 1 � i � k − 1, we have the following matrix
decomposition:

Rk(x, y1, . . . , yk−1, z1, . . . , zk−1) = Sk(y1, . . . , yk−1)
T Rk A

x Sk(z1, . . . , zk−1),

where XT is the transpose of X.

Proof Set D = Sk(y1, . . . , yk−1)
T Rk Ax Sk(z1, . . . , zk−1). For the proof of the claim

we compute the (i, j)-entry of D. Let 0 � i, j � k − 1. Then, by direct computation,
we obtain

Di, j =
k−1∑
r=0

(
Sk(y1, . . . , yk−1)

T
)
i,r

(Rk A
x Sk(z1, . . . , zk−1))r, j

=
k−1∑
r=0

ω
(r)
i yi

k−1∑
s=0

(Rk)r,s(A
x Sk(z1, . . . , zk−1))s, j
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24 A. R. Moghaddamfar et al.

=
k−1∑
r=0

ω
(r)
i yi

k−1∑
s=0

λr+s

k−1∑
t=0

(Ax )s,t (Sk(z1, . . . , zk−1))t, j

=
k−1∑
r=0

ω
(r)
i yi

k−1∑
s=0

λr+s

k−1∑
t=0

ω
(s)
t+xω

(t)
j z j

(by Theorem 1)

=
k−1∑
r=0

ω
(r)
i yi

k−1∑
t=0

( k−1∑
s=0

λr+sω
(s)
t+x

)
ω

(t)
j z j

=
k−1∑
r=0

ω
(r)
i yi

k−1∑
t=0

λr+t+xω
(t)
j z j

(by Lemma 1)

=
k−1∑
r=0

ω
(r)
i yi

λr+x+ j z j (by Lemma 1)

= λx+i yi+ j z j (by Lemma 1)

= (Rk(x, y1, . . . , yk−1, z1, . . . , zk−1))i, j .

This completes the proof of the theorem. ��
It is worthwhile to point out that Theorem 2 enables us to find many identities

between the terms of a linear recurrence sequence of any order. In the next result,
we will illustrate this situation for a linear recurrence sequence of order 2. A similar
situation occurs with higher order linear recurrence sequences.

Theorem 3 Let x, y, z, and t be arbitrary integers. Then the following identities hold
between the terms of linear recurrence sequences λ, ω(0) and ω(1) of order 2:

(i) λxλx+y+z − λx+yλx+z = (−c0)x (λ0λ2 − λ21)ω
(1)
y ω

(1)
z .

(ii) λx+tλx+y+z+t − λx+y+tλx+z+t = (−c0)t (λxλx+y+z − λx+yλx+z).

Proof (i) The identity is obtained by the following calculations:

λxλx+y+z − λx+yλx+z

= det[R2(x, y, z)]
= det[S2(y)T R2A

x S2(z)] (by Theorem 2)

= det[S2(y)T ] det[R2] det[Ax ] det[S2(z)]
=

(
ω

(0)
0 ω(1)

y − ω
(1)
0 ω(0)

y

)
(λ0λ2 − λ21)(−c0)

x
(
ω

(0)
0 ω(1)

z − ω
(1)
0 ω(0)

z

)

= (−c0)
x (λ0λ2 − λ21)ω

(1)
y ω(1)

z (Sinceω
(0)
0 = 1 andω

(1)
0 = 0).

(ii) Again, by a routine calculation, we obtain

λx+tλx+y+z+t − λx+y+tλx+z+t

= (−c0)
x+t (λ0λ2 − λ21)ω

(1)
y ω(1)

z (by part (i))
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A Matrix-Theoretic Perspective on Some Identities… 25

= (−c0)
t
{
(−c0)

x (λ0λ2 − λ21)ω
(1)
y ω(1)

z

}

= (−c0)
t (λxλx+y+z − λx+yλx+z) (by part (i)).

This completes the proof of the theorem. ��
In what follows, we have focused on some practical applications of the techniques

provided in this paper. First of all, we investigate some relations between Fibonacci,
Lucas, Pell, and Jacobsthal numbers.

Lemma 3 Let m and n be two arbitrary integers. Then there hold the following iden-
tities:

(i) Fm−1Fm+1 − F2
m = (−1)m.

(ii) Fm−1Fn + FmFm+1 = Fm+n.
(iii) Fm−1 + Fm+1 = F2m/Fm.

Proof (i) If k = 2 and c0 = c1 = 1, then we have

ω(0)
m = Fm−1 and ω(1)

m = Fm .

On the other hand, it follows from Theorem 1 that

[
0 1
1 1

]m
=

[
Fm−1 Fm
Fm Fm+1

]
. (6)

Taking the determinant of both sides yields

Fm−1Fm+1 − F2
m = (−1)m .

(ii) From the identity Am+n = Am · An and using Eq. (6), we get

[
Fm+n−1 Fm+n

Fm+n Fm+n+1

]
=

[
Fm−1 Fm
Fm Fm+1

] [
Fn−1 Fn
Fn Fn+1

]

=
[
Fm−1Fn−1 + FmFn Fm−1Fn + FmFn+1

FmFn−1 + Fm+1Fn FmFn + Fm+1Fn+1

]
.

Comparing (0, 1)-entries on both sides of this equation, we obtain

Fm+n = Fm−1Fn + FmFn+1.

(iii) Setting n = m in the previous part, we conclude that

Fm−1 + Fm+1 = F2m/Fm,

which completes the proof. ��
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Lemma 4 For any two integers m and n, there hold:

(i) Pm−1Pm+1 − P2
m = (−1)m.

(ii) Pm−1Pn + Pm Pm+1 = Pm+n.
(iii) Pm−1 + Pm+1 = P2m/Pm.

Proof By taking k = 2, c0 = 1 and c1 = 2, we conclude that

ω(0)
m = Pm−1 and ω(1)

m = Pm .

Moreover, by Theorem 1, we have

[
0 1
1 2

]m
=

[
Pm−1 Pm
Pm Pm+1

]
.

Now, the result follows immediately with arguments analogous to those of Lemma 3.
��

Lemma 5 Let m and n be two arbitrary integers. Then the following identities hold
true:

(i) Jm + Jm+1 = 2m.
(ii) [Jm + (−1)m]Jn + Jm Jn+1 = Jm+n.
(iii) 2n Jm + (−1)m Jn = Jm+n.
(iv) J2m/Jm = 2m + (−1)m.
(v) Jm = (

2m + (−1)m+1
)
/3.

Proof (i) If k = c0 = 2 and c1 = 1, then we have

ω(0)
m = Jm + (−1)m and ω(1)

m = Jm .

Again by Theorem 1, we obtain

[
0 2
1 1

]m
=

[
Jm + (−1)m Jm+1 + (−1)m+1

Jm Jm+1

]
. (7)

Taking the determinant of both sides yields

Jm + Jm+1 = 2m . (8)

(ii) Comparing (0, 1)-entries on both sides of the identity Am+n = Am · An , where

A =
[
0 2
1 1

]
,

and by Eq. (7), we obtain

[Jm + (−1)m]Jn + Jm Jn+1 = Jm+n . (9)
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(iii) Applying Eq. (8), we obtain

Jm+n = [Jm + (−1)m]Jm Jn+1

= Jm[Jn + Jn+1] + (−1)m Jn
= 2n Jm + (−1)m Jn .

(iv) Setting n = m in part (i i i), we get J2m/Jm = 2m + (−1)m .
(v) We proceed as follows:

2m+n = Jm+n + Jm+n+1 (by Eq. (8))

= [Jm + (−1)m]Jn + Jm Jn+1

+[Jm + (−1)m]Jn+1 + Jm Jn+2 (by Eq. (9))

= [Jm + (−1)m][Jn + Jn+1] + Jm[Jn+1 + Jn+2]
= [Jm + (−1)m]2n + Jm2

n+1 (by Eq. (8)),

and so 2m = Jm + (−1)m + 2Jm , or equivalently

Jm =
(
2m + (−1)m+1

)
/3.

This completes the proof of lemma. ��
A consequence of Theorem 3(i) is the following result stated again on Fibonacci,

Lucas, Pell, and Jacobsthal numbers.

Corollary 1 For any three integers x, y, and z, the following identities hold true:

(i) Fx+y Fx+z − Fx Fx+y+z = (−1)x Fy Fz (See [2]).
(ii) Lx Lx+y+z − Lx+y Lx+z = (−1)x5FyFz.
(iii) Px+y Px+z − Px Px+y+z = (−1)x Py Pz.
(iv) Jx+y Jx+z − Jx Jx+y+z = (−2)x Jy Jz.
(v) Lx Lx+y+z − Lx+y Lx+z = 5(Fx+y Fx+z − Fx Fx+y+z).

Proof All parts (i) − (iv) of this corollary can be derived from Theorem 3(i) by
choosing suitable values for k, λ0, λ1, c0, and c1:

(i) k = 2, λ0 = 0, λ1 = c0 = c1 = 1: In this case, we have λi = Fi , ω
(0)
i = Fi−1

and ω
(1)
i = Fi .

(ii) k = λ0 = 2, λ1 = c0 = c1 = 1: In this case, we have λi = Li , ω
(0)
i = Fi−1 and

ω
(1)
i = Fi .

(iii) k = c1 = 2, λ0 = 0, λ1 = c0 = 1: In this case, we have λi = Pi , ω
(0)
i = Pi−1

and ω
(1)
i = Pi .

(iv) k = c0 = 2, λ0 = 0, λ1 = c1 = 1: In this case, we have λi = Ji , ω
(0)
i =

Ji + (−1)i and ω
(1)
i = Ji .

Finally, the part (v) is obtained by using parts (i) and (i i). ��
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In the next corollary, we point out some well-known identities which are special
cases of the previous results in Corollary 1, and consequently, Theorem 3(i).

Corollary 2 For any integers m, n, and p, there hold

(i) Fm+n = Fm+1Fn+1 − Fm−1Fn−1 (See [6]).
(ii) F2m+1F2n+1 = F2

m+n+1 + F2
m−n (See [8,9]).

(iii) F2
m+2n − F2

m = F2n F2m+2n (See [8]).
(iv) Fn−1Fn+1 − F2

n = (−1)n (Cassini’s identity).
(v) Fm+n Fm−n − F2

m = (−1)m+n+1F2
n (Catalan’s identity).

(vi) FmFn+p − FpFn+m = (−1)pFm−pFn (See [10]).
(vii) 2Lm+n = LmLn + 5FmFn (See [3]).
(viii) L2mL2n = L2

m+n + 5F2
m−n.

In the following table we show how to obtain the identities in Corollaries 1 and 2
directly from Theorem 3(i).

λ0 λ1 c0 c1 x y z Identity Refs.

0 1 1 1 x y z Fx+y Fx+z − Fx Fx+y+z = (−1)x Fy Fz [2]

0 1 1 1 2 m − 1 n − 1 Fm+n = Fm+1Fn+1 − Fm−1Fn−1 [6]

0 1 1 1 2n + 1 m − n m − n F2m+1F2n+1 = F2
m+n+1 + F2

m−n [8,9]

0 1 1 1 2n m m F2
m+2n − F2

m = F2n F2m+2n [8]

0 1 1 1 n − 1 1 1 Fn−1Fn+1 − F2
n = (−1)n Cassini’s identity

0 1 1 1 m − n n n Fm+n Fm−n − F2
m = (−1)m+n+1F2

n Catalan’s identity

0 1 1 1 p n m − p Fm Fn+p − FpFn+m = (−1)p Fm−p Fn [10]

2 1 1 1 x y z Lx Lx+y+z − Lx+y Lx+z = (−1)x5Fy Fz

2 1 1 1 0 m n 2Lm+n = LmLn + 5FmFn [3]

2 1 1 1 2n m − n m − n L2mL2n = L2m+n + 5F2
m−n

0 1 1 2 x y z Px+y Px+z − Px Px+y+z = (−1)x Py Pz

0 1 2 1 x y z Jx+y Jx+z − Jx Jx+y+z = (−2)x Jy Jz
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