

Neighbor Sum Distinguishing Edge Colorings of Graphs with Small Maximum Average Degree

Yuping Gao ^1 \cdot Guanghui Wang ^1 \cdot Jianliang Wu ^1

Received: 28 March 2013 / Revised: 10 December 2013 / Published online: 6 August 2015 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract A proper edge-k-coloring of a graph G is an assignment of k colors 1, 2, ..., k to the edges of G such that no two adjacent edges receive the same color. A neighbor sum distinguishing edge-k-coloring of G is a proper edge-k-coloring of G such that for each edge $uv \in E(G)$, the sum of colors taken on the edges incident with u is different from the sum of colors taken on the edges incident with v. By $ndi_{\Sigma}(G)$, we denote the smallest value k in such a coloring of G. The maximum average degree of G is $mad(G) = max\{2|E(H)|/|V(H)|\}$, where the maximum is taken over all the non-empty subgraphs H of G. In this paper, we obtain that if G is a graph without isolated edges and mad(G) < 8/3, then $ndi_{\Sigma}(G) \leq k$ where $k = max\{\Delta(G) + 1, 6\}$. It partially confirms the conjecture proposed by Flandrin et al. (Graphs Comb 29:1329–1336, 2013).

Keywords Proper edge coloring · Neighbor sum distinguishing edge coloring · Maximum average degree

1 Introduction

In this paper, all graphs considered are finite, simple, and undirected. The terminology and notation used but undefined in this paper can be found in [1]. Let G = (V, E)

Communicated by Xueliang Li.

Guanghui Wang ghwang@sdu.edu.cn
Yuping Gao gaoyuping123@126.com

¹ School of Mathematics, Shandong University, Jinan 250100, China

be a graph. We use V(G), E(G), $\Delta(G)$, and $\delta(G)$ to denote the vertex set, edge set, maximum degree, and minimum degree of *G*, respectively. Let $d_G(v)$ or simply d(v)denote the degree of a vertex *v* in *G*. A vertex *v* is called a *k*-vertex (resp. k^- -vertex, or k^+ -vertex) if d(v) = k [resp. $d(v) \leq k$, or $d(v) \geq k$]. A vertex is called a leaf of *G* if d(v) = 1. A 2-vertex is called bad if it is adjacent to a 2-vertex, otherwise we call it good. A 5-vertex is called bad if it is adjacent to four bad 2-vertices, otherwise we call it good. The girth of a graph *G* is the length of a smallest cycle in *G*, and we denote it by g(G). The maximum average degree of *G* is $mad(G) = max\{2|E(H)|/|V(H)|\}$, where the maximum is taken over all the non-empty subgraphs *H* of *G*.

A proper edge-*k*-coloring of a graph *G* is an assignment of *k* colors 1, 2, ..., k to the edges of *G* such that no two adjacent edges receive the same color. Let *c* be a proper edge-*k*-coloring of *G*. By w(v) [resp. S(v)], we denote the sum (resp. set) of colors taken on the edges incident with *v*, i.e., $w(v) = \sum_{uv \in E(G)} c(uv)$ [resp. $S(v) = \{c(uv) | uv \in E(G)\}$]. We call the coloring *c* such that $w(u) \neq w(v)$ [resp. $S(u) \neq S(v)$] for each edge $uv \in E(G)$ a neighbor sum distinguishing (resp. neighbor distinguishing) edge-*k*-coloring of *G*. For simplicity, we use *nsd*-*k*-coloring (resp. *nd*-*k*-coloring of *G*. By $ndi_{\Sigma}(G)$ [resp. ndi(G)], we denote the smallest value *k* such that *G* has an *nsd*-*k*-coloring (resp. *nd*-*k*-coloring) of *G*.

Obviously, a graph *G* has a neighbor sum distinguishing (neighbor distinguishing) coloring if and only if *G* has no isolated edges (we call it normal). Apparently, for any normal graph G, $ndi(G) \le ndi_{\sum}(G)$. In 2002, Zhang et al. [2] proposed the following conjecture.

Conjecture 1.1 [2] *If G is a normal graph with at least six vertices, then* $ndi(G) \le \Delta(G) + 2$.

Balister et al. [3] proved Conjecture 1.1 for bipartite graphs and for graphs *G* with $\Delta(G) = 3$. If *G* is bipartite planar with maximum degree $\Delta(G) \ge 12$, Conjecture 1.1 was confirmed by Edwards et al. [4]. Hatami [5] showed that if *G* is a normal graph and $\Delta(G) > 10^{20}$, then $ndi(G) \le \Delta(G) + 300$. Akbari et al. [6] proved that $ndi(G) \le 3\Delta(G)$ for any normal graph. Wang et al. [7,8] confirmed Conjecture 1.1 for sparse graphs and K_4 -minor free graphs. More precisely, in [7] they showed that if *G* is a normal graph and mad(G) < 5/2, then $ndi(G) \le \Delta(G) + 1$. Furthermore, $ndi(G) = \Delta(G) + 1$ if and only if *G* has two adjacent maximum degree vertices. Recently, Hocquard et al. [9] proved that for every normal graph with $\Delta(G) \ge 5$ and $mad(G) < 3-2/\Delta(G)$, then $ndi(G) \le \Delta(G) + 1$.

Recently, Flandrin et al. [11] studied the neighbor sum distinguishing colorings of cycles, trees, complete graphs, and complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 1.2 [11] *If G is a connected graph on at least three vertices and* $G \neq C_5$, *then* $ndi_{\Sigma}(G) \leq \Delta(G) + 2$.

Flandrin et al. [11] also proved that for each connected graph G with maximum degree $\Delta \ge 2$, we have $ndi_{\Sigma}(G) \le \lceil (7\Delta - 4)/2 \rceil$. Dong et al. [12] considered the

neighbor sum distinguishing colorings of planar graphs and showed that if G is a normal planar graph, then $ndi_{\Sigma}(G) \leq \max\{2\Delta(G) + 1, 25\}$. In [13], Dong et al. proved that if G is a normal graph and $mad(G) \leq 5/2$, then $ndi_{\Sigma}(G) \leq k$ where $k = \max\{\Delta(G) + 1, 6\}$. Other results on graph coloring problems are referred to [14–16].

In this paper, we will prove the following results.

Theorem 1.3 Let G be a normal graph. If $mad(G) < \frac{8}{3}$, then $ndi_{\sum}(G) \le k$ where $k = \max{\Delta(G) + 1, 6}$.

Corollary 1.4 Let G be a normal graph. If $mad(G) < \frac{8}{3}$, $\Delta(G) \ge 5$, then $ndi_{\sum}(G) \le \Delta(G) + 1$.

In [17], the authors obtained that mad(G) < 2g/(g-2) if G is a planar graph with girth g. The following corollary is obvious.

Corollary 1.5 Let G be a normal planar graph. If $g(G) \ge 8$ and $\Delta(G) \ge 5$, then $ndi_{\sum}(G) \le \Delta(G) + 1$.

We note that if G contains two adjacent vertices of maximum degree, then $ndi_{\sum}(G) \ge \Delta(G) + 1$. So the bound $\Delta(G) + 1$ in Corollary 1.4 is sharp. Furthermore, Corollary 1.4 implies a result of Hocquard et al. [9] about the neighbor distinguishing coloring of sparse graphs.

2 Proof of Theorem 1.3

Firstly, we give two lemmas obtained by Dong et al. in [13], all the elements in each set are integers.

Lemma 2.1 [13] Let S_1 , S_2 be two sets and $S_3 = \{\alpha + \beta | \alpha \in S_1, \beta \in S_2, \alpha \neq \beta\}$.

(i) If $|S_1| = 2$ and $|S_2| = 3$, then $|S_3| \ge 3$.

(ii) If $|S_1| = 2$ and $|S_2| = 4$, then $|S_3| \ge 4$.

(iii) If $|S_1| = |S_2| = 2$ and $S_1 \neq S_2$, then $|S_3| \ge 3$.

Lemma 2.2 [13] Let *S* be a set of size
$$k + 1$$
. If $S_1 = \left\{ \sum_{i=1}^k x_i | x_i \in S, x_i \neq x_j \text{ if } 1 \le i < j \le k \right\}$, then $|S_1| \ge k + 1$.

Let $k = \max{\Delta(G) + 1, 6}$ and $[k] = \{1, 2, ..., k\}$. Suppose to the contrary that *G* is a counterexample to Theorem 1.3, such that |E(G)| is minimum. By the choice of *G*, it is clear that *G* is connected and any normal subgraph *G'* has an *nsd-k*-coloring *c*. We use w(v) and S(v) to denote the sum and the set of colors taken on the edges incident with *v* in the coloring *c* of *G'*, i.e., $w(v) = \sum_{v \in e, e \in E(G')} c(e)$ and $S(v) = \{c(e) \mid v \in e, e \in E(G')\}$. In the following, we will extend *c* to the whole graph *G*.

Let *H* be the graph obtained by removing all the leaves of *G*. Obviously, *H* is a connected graph and mad(H) < 8/3. In the following, we give some properties of *H*.

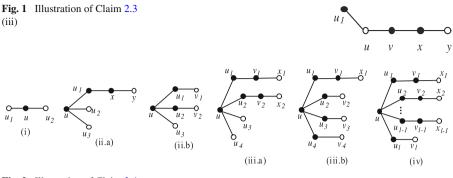


Fig. 2 Illustration of Claim 2.4

Claim 2.3 *H* has the following properties:

- (i) [13] $\delta(H) \ge 2$, where $\delta(H)$ is the minimum degree of H.
- (ii) [13] Let $v \in V(H)$ such that $d_H(v) = 2$, then $d_G(v) = 2$.
- (iii) Let uvxy be a path in H such that $d_H(v) = d_H(x) = 2$, then $d_G(u) = d_H(u)$ and $d_G(y) = d_H(y)$ (Fig. 1).

Proof (iii) Let uvxy be a path in H such that $d_H(v) = d_H(x) = 2$. By Claim 2.3 (ii), $d_G(v) = d_G(x) = 2$. By contradiction suppose $d_G(u) \neq d_H(u)$ [it follows from Claim 2.3 (i) and construction of H that $d_G(u) \ge 3$]. Hence there exists at least one 1-vertex adjacent to u in G, say u_1 . Consider $G' = G \setminus \{vx\}$. By the minimality of G, G' admits an *nsd-k*-coloring c. If $c(uv) \neq c(xy)$, then we color vx with a color distinct from c(uv), c(xy), w(u) - w(v), w(y) - w(x), then we obtain an *nsd-k*-coloring of G. Otherwise, we permute the colors assigned to uu_1 and uv. The obtained coloring is still an *nsd-k*-coloring of G'. We then extend this coloring to G as previously. This is a contradiction.

Claim 2.4 Let $u \in V(H)$, $d_H(u) = l$, $uu_i \in E(H)$, i = 1, 2, ..., l.

- (i) [13] If l = 2, then u is adjacent to at most one 2-vertex.
- (ii) (a) [13] If l = 3 and $d_H(u) < d_G(u)$, then u is adjacent to at most one 2-vertex.
- (b) If l = 3, then u is not adjacent to any bad 2-vertex. Furthermore, u is adjacent to at most one good 2-vertex.
- (iii) If l = 4, then u is adjacent to at most one bad 2-vertex. Furthermore, if u is adjacent to one bad 2-vertex, then u is adjacent to at most two good 2-vertices.
- (iv) If $l \ge 5$ and u is adjacent to (l-1) bad 2-vertices, then u is adjacent to at most (l-1) 2-vertices (Fig. 2).

Proof (ii) (b) Firstly, we prove that *u* is not adjacent to any bad 2-vertex. Suppose to the contrary that u_1 is a bad 2-vertex. Let *x* be the other neighbor of u_1 with $d_H(x) = 2$, and $xy \in E(H)$, $y \neq u_1$. By Claim 2.3 (iii), $d_G(u) = d_H(u) = 3$. Consider the graph $G' = G \setminus \{uu_1\}$, then G' admits an *nsd-k*-coloring *c*. Color uu_1 with a color α in $S = [k] \setminus \{(c(xy))\} \cup \{c(uu_2), c(uu_3)\} \cup \{w(u_2) - w(u)\} \cup \{w(u_3) - w(u)\})$.

Recolor u_1x with a color distinct from α , c(xy), w(y) - c(xy), $c(uu_2) + c(uu_3)$ and we obtain an *nsd-k*-coloring of *G*, a contradiction.

In the following, we prove that u is adjacent to at most one good 2-vertex. Suppose to the contrary that $d_H(u_1) = d_H(u_2) = 2$, $v_i u_i \in E(H)$, $v_i \neq u$, i = 1, 2. **Case 1** $d_G(u) > d_H(u) = 3$. By Claim 2.4 (ii) (a), this Claim holds. **Case 2** $d_G(u) = d_H(u) = 3$.

Subcase 2.1 $k \ge 7$. Consider the graph $G' = G \setminus \{uu_1, uu_2\}$, then G' has an *nsdk*-coloring *c*. Let $S_i = [k] \setminus \{c(u_iv_i)\} \bigcup \{c(uu_3)\} \bigcup \{w(v_i) - w(u_i)\} \bigcup \{w(u_{3-i}) - c(uu_3)\}\}, i = 1, 2$, then $|S_i| \ge 3, i = 1, 2$. By Lemma 2.1 (ii), we can choose $\alpha_i \in S_i, i = 1, 2$ such that $\alpha_1 \ne \alpha_2, \alpha_1 + \alpha_2 + c(uu_3) \ne w(u_3)$. We obtain an *nsd-k*-coloring of *G*, which is a contradiction.

Subcase 2.2 k = 6. From the above discussion, $d_G(v_i) \ge 3, i = 1, 2$. If $d_G(v_1) = 5$, then u_1 can be distinguished from v_1 under an arbitrary proper edge coloring of G. Consider $G' = G \setminus \{uu_1, uu_2\}$, then G' has an *nsd*-6-coloring c. The colors in $\{c(u_1v_1)\} \cup \{c(uu_3)\} \cup \{c(u_2v_2) - c(uu_3)\}$ are forbidden for uu_1 . Let $S_1 = [6] \setminus \{c(u_1v_1)\} \cup \{c(uu_3)\} \cup \{c(u_2v_2) - c(uu_3)\}\}$, $S_2 = [6] \setminus \{\{c(u_2v_2)\} \cup \{c(uu_3)\} \cup \{w(v_2) - w(u_2)\} \cup \{c(u_1v_1) - c(uu_3)\}\}$, then $|S_1| \ge 3$, $|S_2| \ge 2$. By Lemma 2.1 (ii), we can choose $\alpha_i \in S_i$, i = 1, 2 such that $\alpha_1 \neq \alpha_2$, $\alpha_1 + \alpha_2 + c(uu_3) \neq w(u_3)$. We obtain an *nsd*-6-coloring of G, which is a contradiction. Therefore, $d_G(v_1) \neq 5$. Similarly, $d_G(v_2) \neq 5$.

If $d_G(v_1) = 3$ and x_1, y_1 are the other two neighbors of v_1 . Consider $G' = G \setminus \{uu_1, uu_2, u_1v_1\}$, then G' has an nsd-6-coloring c. Let $S_1 = [6] \setminus (\{c(v_1x_1) + c(v_1y_1)\} \cup \{c(uu_3)\}), S_2 = [6] \setminus (\{c(uu_3)\} \cup \{c(u_2v_2)\} \cup \{w(v_2) - w(u_2)\}), S_3 = [6] \setminus (\{c(v_1x_1), c(v_1y_1)\} \cup \{w(x_1) - w(v_1)\} \cup \{w(y_1) - w(v_1)\})$, then $|S_1| \ge 4$, $|S_2| \ge 3, |S_3| \ge 2$. We can choose $\alpha_i \in S_i, i = 1, 2, 3$ such that $\alpha_1 \neq \alpha_2, \alpha_1 \neq \alpha_3, u$ can be distinguished from u_1, u_2, u_3 , and v_1 can be distinguished from x_1, y_1 . We obtain an nsd-6-coloring of G, a contradiction. Therefore, $d_G(v_1) \neq 3$. Similarly, $d_G(v_2) \neq 3$.

Now we assume that $d_G(v_1) = d_G(v_2) = 4$, x_i, y_i, z_i are the other three neighbors of v_i , i = 1, 2. Consider $G' = G \setminus \{uu_1, uu_2\}$, then G' has an nsd-6-coloring c. If $c(v_1x_1) + c(v_1y_1) + c(v_1z_1) > 6$, then u_1 and v_1 can be distinguished. Let $S_1 = [6] \setminus (\{c(u_1_3)\} \cup \{c(u_1v_1)\} \cup \{w(u_2) - c(uu_3)\}), S_2 =$ $[6] \setminus \{c(uu_3)\} \cup \{c(u_2v_2)\} \cup \{w(v_2) - w(u_2)\} \cup \{w(u_1) - c(uu_3)\}, \text{ then } |S_1| \geq 0$ 3, $|S_2| \ge 2$. We can choose $\alpha_i \in S_i$, i = 1, 2 such that $\alpha_1 \neq \alpha_2, \alpha_1 + \alpha_2 + c(uu_3) \neq i \le 2$. $w(u_3)$. We obtain an *nsd*-6-coloring of G, which is a contradiction. Therefore, $c(v_1x_1) + c(v_1y_1) + c(v_1z_1) = 6$. Similarly, $c(v_2x_2) + c(v_2y_2) + c(v_2z_2) = 6$. Without loss of generality we assume that $c(v_i x_i) = 1, c(v_i y_i) = 2, c(v_i z_i) =$ 3, i = 1, 2. Suppose that $c(u_1v_1) \neq c(u_2v_2)$ or $c(uu_3) = 6$, then we can obtain an *nsd*-6-coloring of G as previously. Hence, $c(u_1v_1) = c(u_2v_2), c(uu_3) \neq 6$. From the above discussion, $d_G(u_3) \ge 3$. If $d_G(u_3) = 3$, let x_3, y_3 be the neighbors of u_3 distinct from u. Consider the graph $G' = G \setminus \{uu_1, uu_2, uu_3\},\$ then G' has an *nsd*-6-coloring c. Let $S_1 = [5] \setminus \{c(u_1v_1)\}, S_2 = [5] \setminus \{c(u_2v_2)\},$ $S_3 = [6] \setminus (\{c(v_3x_3), c(v_3y_3)\} \bigcup \{w(x_3) - w(u_3)\} \bigcup \{w(y_3) - w(u_3)\}), \text{ then } |S_1| \ge 1$ 4, $|S_2| \ge 4$, $|S_3| \ge 2$. From the above discussion, we know that $S_1 = S_2 = \{1, 2, 3, 4\}$ or $\{1, 2, 3, 5\}$, so we can choose $\alpha_i \in S_i$, i = 1, 2, 3 such that $\alpha_1, \alpha_2, \alpha_3$ are pairwise distinct and u can be distinguished from u_1, u_2, u_3 . We obtain an *nsd*-6-coloring of G, which is a contradiction. Therefore, $d_G(u_3) \ge 4$. If $c(uu_3) \in \{1, 2, 3\}$, color uu_1, uu_2 properly with $\{1, 2, 3\} \setminus \{c(uu_3)\}$. Otherwise, properly color uu_1, uu_2 with colors in $\{1, 2, 3\}$. In both cases, we obtain an *nsd*-6-coloring of *G*, a contradiction.

(iii) Suppose to the contrary that $d_H(u_1) = d_H(u_2) = 2$, $u_i v_i \in E(H)$, $d_H(v_i) = 2$, $i = 1, 2, x_i$ is the other neighbor of v_i , i = 1, 2. By Claim 2.3 (iii), $d_G(u) = d_H(u) = 4$. Consider the graph $G' = G \setminus \{uu_1, uu_2\}$, then G' has an *nsd-k*-coloring c. Let $S_i = [k] \setminus \{\{c(uu_3), c(uu_4)\} \cup \{c(v_ix_i)\}\}$, i = 1, 2, then $|S_i| \ge 3$. By Lemma 2.1 (i), we can choose $\alpha_i \in S_i$, i = 1, 2 such that $\alpha_1 \neq \alpha_2$ and u can be distinguished from u_3, u_4 . Recolor $u_i v_i$ with a color distinct from $\alpha_i, c(v_ix_i), w(x_i) - c(v_ix_i), \alpha_1 + \alpha_2 + c(uu_3) + c(uu_4) - \alpha_i$, i = 1, 2, then u can be distinguished from u_1, u_2 . We obtain an *nsd-k*-coloring of G, a contradiction.

Now assume that *u* is adjacent to a bad 2-vertex u_1 with $u_1v_1 \in E(H)$, $d_H(v_1) = 2$, $v_1x_1 \in E(H)$, $x_1 \neq v_1$. Suppose to the contrary that $d_H(u_i) = 2$, $u_iv_i \in E(H)$, $v_i \neq u$, i = 2, 3, 4. By Claim 2.3 (iii), $d_G(u) = d_H(u) = 4$. Consider $G' = G \setminus \{uu_1\}$, then G' has an *nsd-k*-coloring *c*. Let $S = [k] \setminus (\{c(uu_2), c(uu_3), c(uu_4)\} \bigcup \{c(v_1x_1)\})$. When $k \leq 7$, if $1 \in S$, then color uu_1 with $\alpha \in S \setminus \{1\}$, otherwise color uu_1 with $\alpha \in S \setminus \{2\}$. In both cases $w(u) + \alpha > w(u_i)$, i = 2, 3, 4. Then recolor u_1v_1 with a color distinct from α , $c(v_1x_1)$, w(u), $w(x_1) - c(v_1x_1)$. We obtain an *nsd-k*-coloring of *G*, a contradiction. When $k \geq 8$, $|S| \geq 4$, we can choose $\alpha \in S$ such that $\alpha + w(u) \neq w(u_i)$, i = 2, 3, 4. Then recolor u_1v_1 , w(u), $w(x_1) - c(v_1x_1)$. We obtain an *nsd-k*-coloring of *G*, a contradiction. When $k \geq 8$, $|S| \geq 4$, we can choose $\alpha \in S$ such that $\alpha + w(u) \neq w(u_i)$, i = 2, 3, 4. Then recolor u_1v_1 with a color distinct from α , $c(v_1x_1)$. We obtain an *nsd-k*-coloring of *G*, a contradiction.

(iv) Suppose to the contrary that $d_H(u_i) = 2, i = 1, 2, ..., l, u_i v_i \in E(H), v_i \neq u, i = 1, 2, ..., l$ and $d_H(v_j) = 2, v_j x_j \in E(H), x_j \neq v_j, j = 1, 2, ..., l - 1$. By Claim 2.3 (iii), $d_G(u) = d_H(u) = l$. Let $G' = G \setminus \{uu_1\}$, then G' has an *nsd-k*-coloring c. If $l < \Delta = k - 1$, color uu_1 with $\alpha \in [k] \setminus \left(\{c(uu_2), ..., c(uu_l)\} \bigcup \{c(v_1x_1)\} \bigcup \{\alpha + \sum_{i=2}^{l-1} c(uu_i)\}\right)$. Otherwise color uu_1 with $\alpha \in [k] \setminus (\{c(uu_2), ..., c(uu_l)\} \bigcup \{c(v_1x_1)\})$. In both cases, u can be distinguished from u_i and

guished from u_l . Properly recolor $u_i v_i$ such that u can be distinguished from u_i and v_i can be distinguished from $x_i, i = 1, 2, ..., l - 1$. We obtain an *nsd-k*-coloring of *G*, a contradiction.

Claim 2.5 Let $u \in V(H)$, $d_H(u) = 5$, $uu_i \in E(H)$, i = 1, 2, 3, 4, 5.

 (i) If Δ(G) ≥ 6, then u is adjacent to at most two bad 2-vertices. If Δ(G) = 5 and u is adjacent to three bad 2-vertices, then u is adjacent to at most one good 2-vertex.

Furthermore, if $\Delta(G) = 5$ and u is a bad 5-vertex, then by Claim 2.3 (iii), $d_G(u) = d_H(u) = 5$. Let $d_H(u_i) = 2$, $u_i v_i \in E(H)$, $d_H(v_i) = 2$, x_i be the other neighbor of v_i , i = 1, 2, 3, 4, we have

- (ii) $d_H(u_5) \ge 4$.
- (iii) If $d_H(u_5) = 4$, then u_5 is adjacent to no bad 2-vertex.
- (iv) If $d_H(u_5) = 5$, then u_5 is adjacent to at most two bad 2-vertices (Fig. 3).

Proof (i) Assume $\Delta(G) \geq 6$. Suppose to the contrary that $d_H(u_1) = d_H(u_2) = d_H(u_3) = 2$, v_i is the other neighbor of u_i with $d_H(v_i) = 2$, x_i is the other

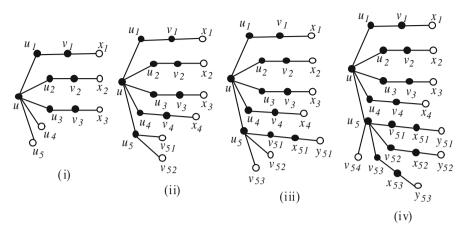


Fig. 3 Illustration of Claim 2.5

neighbor of v_i , i = 1, 2, 3. By Claim 2.3 (iii), $d_G(u) = d_H(u) = 5$. Consider the graph $G' = G \setminus \{uu_1, uu_2, uu_3\}$, then G' has an *nsd-k*-coloring c. Let $S_i = [k] \setminus (\{c(uu_4), c(uu_5)\} \cup \{c(v_ix_i)\}), i = 1, 2, 3$, then $|S_i| \ge 4, i = 1, 2, 3$. We can choose $\alpha_i \in S_i$, i = 1, 2, 3 such that $\alpha_1, \alpha_2, \alpha_3$ are pairwise distinct and u can be distinguished by u_4, u_5 . Recolor $u_i v_i$ with a color distinct from $\alpha_i, c(v_ix_i), w(x_i) - c(v_ix_i), \sum_{i=1}^3 \alpha_i + w(u) - \alpha_i, i = 1, 2, 3$, then u can be distinguished from u_1, u_2, u_3 . We obtain an *nsd-k*-coloring of G, a contradiction.

Assume that $\Delta(G) = 5$. Suppose to the contrary that $d_H(u_i) = 2$, $u_i v_i \in E(H)$, $v_i \neq u, i = 1, 2, ..., 5$ and $d_H(v_j) = 2$, $v_j x_j \in E(H)$, j = 1, 2, 3. By Claim 2.3 (iii), $d_G(u) = d_H(u) = 5$. Consider the graph $G' = G \setminus \{uu_1\}$, then G' has an *nsd*-6-coloring *c*. Color uu_1 with $\alpha \in [6] \setminus \{c(uu_2), ..., c(uu_5)\} \cup \{c(v_1x_1)\}$.

Then recolor u_1v_1 with a color distinct from α , $c(v_1x_1)$, $w(x_i) - c(v_1x_1)$, $\sum_{i=2}^{5} c(uu_i)$. It can be seen that $w(u) + \alpha > w(u_i)$, i = 2, ..., 5, so we obtain an *nsd*-6-coloring of *G*, a contradiction.

(ii) By Claim 2.4 (iv), $d_H(u_5) \ge 3$. Suppose to the contrary that $d_H(u_5) = 3$, v_{51}, v_{52} are the other two neighbors of u_5 . Consider the graph $G' = G \setminus \{uu_1, uu_2, uu_3, uu_4, uu_5\}$, then G' has an *nsd*-6-coloring c. Let $S_i = [6] \setminus \{c(v_i x_i)\}, i = 1, 2, 3, 4, S_5 = [6] \setminus \{c(u_5v_{51}), c(u_5v_{52})\} \cup \{w(v_{51}) - w(u_5)\} \cup \{w(v_{52}) - w(u_5)\}\}$, then $|S_i| \ge 5$, i = 1, 2, 3, 4, $|S_5| \ge 2$. We can choose $\alpha_i \in S_i, i = 1, 2, 3, 4, 5$ such that $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are pairwise distinct and u can be distinguished by u_5 . Obviously, u can be distinguished by u_1, u_2, u_3, u_4 . Recolor $u_i v_i$ with a color distinct from $\alpha_i, c(v_i x_i), w(x_i) - c(v_i x_i), i = 1, 2, 3, 4$ and we obtain an *nsd*-6-coloring of G, a contradiction.

(iii) Let v_{51} , v_{52} , v_{53} be the other three neighbors of u_5 . Suppose to the contrary that $d_H(v_{51}) = d_H(x_{51}) = 2$, $v_{51}x_{51} \in E(H)$, $x_{51}y_{51} \in E(H)$, $y_{51} \neq v_{51}$. By Claim 2.3 (iii), $d_G(u_5) = d_H(u_5) = 4$. Consider the graph $G' = G \setminus \{uu_1, uu_2, uu_3, uu_4\}$, then G' has an *nsd*-6-coloring *c*. Assume that $c(uu_5) = \alpha_5$, $c(u_5v_{5j}) = \beta_j$, j = 1, 2, 3,

 $c(v_i x_i) = \gamma_i, i = 1, 2, 3, 4, c(x_{51}y_{51}) = \eta$. Let $S_i = [6] \setminus (\{\gamma_i\} \bigcup \{\alpha_5\}), i = 1, 2, 3, 4$, then $|S_i| \ge 4, i = 1, 2, 3, 4$.

If there exists some $\gamma_i = \alpha_5$ $(i \in \{1, 2, 3, 4\})$ or $\gamma_i \neq \gamma_j$ $(i \neq j, i, j \in \{1, 2, 3, 4\})$, then we can choose $\alpha_i \in S_i$, i = 1, 2, 3, 4 such that u can be distinguished by u_5 . Recolor $u_i v_i$ with a color distinct from $\gamma_i, \alpha_i, w(x_i) - c(v_i x_i), i = 1, 2, 3, 4$, we can obtain an *nsd*-6-coloring of G, a contradiction. Therefore, we assume that $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \gamma, \alpha_5 \neq \gamma$. Then $S_1 = S_2 = S_3 = S_4 = [6] \setminus \{\alpha_5, \gamma\}$. Assume that $S_i = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}, i = 1, 2, 3, 4$. Color uu_i with $\alpha_i, i = 1, 2, 3, 4$.

If $|\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \cap \{\beta_1, \beta_2, \beta_3\}| = 3$, then *u* can be distinguished by u_5 , recolor $u_i v_i$, i = 1, 2, 3, 4 as previously and we obtain an *nsd*-6-coloring of *G*, a contradiction. Furthermore, $|\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \cap \{\beta_1, \beta_2, \beta_3\}| \ge 2$ because there are six colors in total. Therefore, $|\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \cap \{\beta_1, \beta_2, \beta_3\}| = 2$. Without loss of generality we assume that $\{\alpha_1, \alpha_2\} \subseteq \{\beta_1, \beta_2, \beta_3\}$.

If $\beta_1 = \gamma$, then $\{\alpha_1, \alpha_2\} = \{\beta_2, \beta_3\}$. If $\alpha_5 \neq \eta$, suppose *u* can not be distinguished by u_5 , then $\gamma = \alpha_3 + \alpha_4$. Recolor uu_5 with γ and recolor u_5v_{51} with α_5 , we obtain an *nsd*-6-coloring of *G*, a contradiction. Therefore, $\alpha_5 = \eta$. Recolor u_5v_{51} with one of α_3, α_4 , or exchange the colors of uu_3 and uu_5 , or exchange the colors of uu_4 and uu_5 such that u_5 can be distinguished by u, v_{52}, v_{53} . It is easy to see that u can be distinguished by u_1, u_2, u_3, u_4 . Recolor $u_i v_i, i = 1, 2, 3, 4$, and $v_{51}x_{51}$ as previously and we can obtain an *nsd*-6-coloring of *G*, a contradiction.

If $\beta_1 \neq \gamma$. Without loss of generality we assume that $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2$. Recolor u_5v_{51} with one of α_3 , α_4 , or exchange the colors of uu_3 and uu_5 , or exchange the colors of uu_4 and uu_5 such that u_5 can be distinguished by u, v_{52} , v_{53} . It is easy to see that u can be distinguished by u_1 , u_2 , u_3 , u_4 . Recolor u_iv_i , i = 1, 2, 3, 4, and $v_{51}x_{51}$ as previously and we can obtain an *nsd*-6-coloring of G, a contradiction.

(iv) Let $v_{51}, v_{52}, v_{53}, v_{54}$ be the other four neighbors of u_5 . Suppose to the contrary that $d_H(v_{5i}) = d_H(x_{5i}) = 2, v_{5i}x_{5i} \in E(H), x_{5i}y_{5i} \in E(H), y_{5i} \neq v_{5i}, i = 1, 2, 3$. By Claim 2.3 (iii), $d_G(u_5) = d_H(u_5) = 5$. Consider the graph $G' = G \setminus \{uu_1, uu_2, uu_3, uu_4\}$, then G' has an *nsd*-6-coloring c. Assume that $c(uu_5) = \alpha_5, c(u_5v_{5j}) = \beta_j, j = 1, 2, 3, 4, c(v_ix_i) = \gamma_i, i = 1, 2, 3, 4$. Let $S_i = [6] \setminus \{\{\gamma_i\} \cup \{\alpha_5\}\}, i = 1, 2, 3, 4$, then $|S_i| \ge 4, i = 1, 2, 3, 4$.

If there exists some $\gamma_i = \alpha_5$ ($i \in \{1, 2, 3, 4\}$) or $\gamma_i \neq \gamma_j$ ($i \neq j, i, j \in \{1, 2, 3, 4\}$), then we can choose $\alpha_i \in S_i$, i = 1, 2, 3, 4 such that u can be distinguished by u_5 . Recolor $u_i v_i$ with a color distinct from $\alpha_i, \gamma_i, w(x_i) - c(v_i x_i), i = 1, 2, 3, 4$. We obtain an *nsd*-6-coloring of G, a contradiction. Therefore, we assume that $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \gamma, \alpha_5 \neq \gamma$. Then $S_1 = S_2 = S_3 = S_4 = [6] \setminus \{\alpha_5, \gamma\}$. Assume that $S_i = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$. Color uu_i with α_i and recolor $u_i v_i$ with a color distinct from $\gamma, \alpha_i, w(x_i) - c(v_i x_i), i = 1, 2, 3, 4$.

If $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \neq \{\beta_1, \beta_2, \beta_3, \beta_4\}$, then *u* can be distinguished by u_5 , it is easy to see that *u* can be distinguished from u_1, u_2, u_3, u_4 . We obtain an *nsd*-6-coloring of *G*, a contradiction. Therefore, $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = \{\beta_1, \beta_2, \beta_3, \beta_4\}$. Without loss of generality we assume that $\alpha_i = \beta_i, i = 1, 2, 3, 4$. If $c(x_{51}y_{51}) \neq \gamma$, then recolor u_5v_{51} with γ . We can see that *u* can be distinguished from u_5 . If u_5 can not be distinguished from v_{54} , then exchange the colors of uu_1 and uu_5 . Recolor $v_{51}x_{51}$ with a color distinct from $\gamma_1, c(x_{51}y_{51}), w(y_{51}) - c(x_{51}y_{51})$. We obtain an *nsd*-6-coloring of *G*, a contradiction. Similarly, $c(x_{52}y_{52}) = c(x_{53}y_{53}) = \gamma$. Recolor uu_5 with γ .

Then recolor u_5v_{51} or recolor u_5u_{52} with α_5 such that u_5 can be distinguished by v_{54} . Recolor $v_{5i}x_{5i}$ with a color distinct from γ , α_5 , α_i , $w(y_{5i}) - c(x_{5i}y_{5i})$, i = 1, 2. We obtain an *nsd*-6-coloring of *G*, a contradiction.

In order to complete the proof, we use a discharging procedure. For every $v \in V(H)$, we define the original charge of v to be $ch(v) = d_H(v) = l$. We then redistribute the charges according to the rules R1, R2, and R3 (below). To complete the proof, our aim is to prove that, for every vertex v, the new charge $ch^*(v)$ is at least 8/3.

The discharging rules are defined as follows:

- (R1) Every 4⁺-vertex gives $\frac{2}{3}$ to each adjacent bad 2-vertex.
- (R2) Every 3⁺-vertex gives $\frac{1}{3}$ to each adjacent good 2-vertex.
- (R3) If u is a bad 5-vertex, $u_i, i = 1, 2, 3, 4, 5$, are the neighbors of u, and if u_1, u_2, u_3, u_4 are bad 2-vertices, then u_5 gives $\frac{1}{3}$ to u.

Case l = 2. Observe that ch(v) = 2. Suppose v is a good 2-vertex. Hence, by (R2), $ch^*(v) \ge 2 + 2 \times \frac{1}{3} = \frac{8}{3}$. Suppose v is bad, By Claim 2.4 (i) and Claim 2.4 (ii), v is adjacent to at most one 2-vertex and is adjacent to a 4⁺-vertex. Hence, by (R1), $ch^*(v) = 2 + 1 \times \frac{2}{3} = \frac{8}{3}$.

Case l = 3. Observe that ch(v) = 3. By Claim 2.4 (ii), v is adjacent to no bad 2-vertex and is adjacent to at most one good 2-vertex. By Claim 2.5 (ii), v is adjacent to no bad 5-vertex. By (R2) and (R3), $ch^*(v) \ge 3 - 1 \times \frac{1}{3} = \frac{8}{3}$.

Case l = 4. Observe that ch(v) = 4. Suppose v is not adjacent to a bad 2-vertex. Then, by (R2) and (R3), $ch^*(v) \ge 4 - 4 \times \frac{1}{3} = \frac{8}{3}$. Assume now, v is adjacent to a bad 2-vertex. By Claim 2.4 (iii), v is adjacent to at most two good 2-vertices. By Claim 2.5 (iii), v is adjacent to no bad 5-vertex. Hence by (R1), (R2), and (R3), $ch^*(v) \ge 4 - 1 \times \frac{2}{3} - 2 \times \frac{1}{3} = \frac{8}{3}$.

Case l = 5. Observe that ch(v) = 5. Suppose v is adjacent to at most two bad 2-vertices, then by (R1), (R2), and (R3), $ch^*(v) \ge 5 - 2 \times \frac{2}{3} - 3 \times \frac{1}{3} = \frac{8}{3}$. If v is adjacent to three bad 2-vertices, then by Claim 2.5 (i) and (iv), v is adjacent to at most one good 2-vertex and v is adjacent to no bad 5-vertex. Hence by (R1), (R2), and (R3), $ch^*(v) \ge 5 - 3 \times \frac{2}{3} - 1 \times \frac{1}{3} = \frac{8}{3}$. Assume now, v is a bad 5-vertex. By (R1), (R2), and (R3), $ch^*(v) \ge 5 - 4 \times \frac{2}{3} + 1 \times \frac{1}{3} = \frac{8}{3}$.

Case $l \ge 6$. Observe that ch(v) = l. By Claim 2.5 (i), any 5-vertex in *H* is good. By Claim 2.4 (iv), *v* is adjacent to at most (l-1) bad 2-vertices. Moreover if *v* is adjacent to (l-1) bad 2-vertices, then its last neighbor has degree at least 3. It follows by (R1), $ch^*(v) \ge l - (l-1) \times \frac{2}{3} \ge \frac{8}{3}$.

This completes the proof of Theorem 1.3.

Acknowledgments This work is supported by NSFC (11271006, 11101243, 11471193).

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, New York (1976)
- Zhang, Z.F., Liu, L.Z., Wang, J.F.: Adjacent strong edge coloring of graphs. J. Appl. Math. Lett. 15, 623–626 (2002)
- Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discret. Math. 21, 237–250 (2007)

- Edwards, K., Horňák, M., Woźniak, M.: On the neighbour-distinguishing index of a graph. Graphs Comb. 22, 341–350 (2006)
- 5. Hatami, H.: Δ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. Comb. Theory Ser. B **95**, 246–256 (2005)
- Akbari, S., Bidkhori, H., Nosrati, N.: r-Strong edge colorings of graphs. Discret. Math. 306, 3005–3010 (2006)
- Wang, W.F., Wang, Y.Q.: Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J. Comb. Optim. 19, 471–485 (2010)
- Wang, W.F., Wang, Y.Q.: Adjacent vertex-distinguishing edge colorings of K₄-minor free graphs. Appl. Math. Lett. 24(12), 2034–2037 (2011)
- 9. Hocquard, H., Montassier, M.: Adjacent vertex-distinguishing edge coloring of graphs with maximum degree at least five. Electron. Notes Discret. Math. **38**, 457–462 (2011)
- Hocquard, H., Montassier, M.: Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ. J. Comb. Optim. 26(1), 152–160 (2013). doi:10.1007/s10878-011-9444-9
- Flandrin, E., Marczyk, A., Przybyło, J., Saclé, J.F., Woźniak, M.: Neighbor sum distinguishing index. Graphs Comb. 29(5), 1329–1336 (2013). doi:10.1007/s00373-012-1191-x
- Dong, A.J., Wang, G.H.: Neighbor sum distinguishing colorings of some graphs. Discret. Math. Algorithms Appl. 4(4), 1250047 (2012). doi:10.1142/S1793830912500474
- Dong, A.J., Wang, G.H., Zhang, J.H.: Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree. Discret. Appl. Math. 166, 84–90 (2014). doi:10.1016/j.dam.2013. 10.009
- Chen, H.Y., Tan, X., Wu, J.L.: The linear arboricity of planar graphs without 5-cycles with chords. Bull. Malays. Math. Sci. Soc. (2), accepted
- Wang, B., Wu, J.L., Tian, S.F.: Total colorings of planar graphs with small maximum degree. Bull. Malays. Math. Sci. Soc. (2), accepted
- Xu, R.Y., Wu, J.L., Wang, H.J.: Total coloring of planar graphs without some chordal 6-cycles. Bull. Malays. Math. Sci. Soc. (2), accepted
- Borodin, O.V., Kostochka, A.V., Nešetřil, J., Raspaud, A., Sopena, E.: On the maximum average degree and the oriented chromatic number of a graph. Discret. Math. 206, 77–89 (1999)