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Abstract A proper edge-k-coloring of a graph G is an assignment of k colors
1, 2, . . . , k to the edges of G such that no two adjacent edges receive the same color.
A neighbor sum distinguishing edge-k-coloring of G is a proper edge-k-coloring of
G such that for each edge uv ∈ E(G), the sum of colors taken on the edges incident
with u is different from the sum of colors taken on the edges incident with v. By
ndi∑(G), we denote the smallest value k in such a coloring of G. The maximum
average degree of G is mad(G) = max{2|E(H)|/|V (H)|}, where the maximum is
taken over all the non-empty subgraphs H of G. In this paper, we obtain that if G
is a graph without isolated edges and mad(G) < 8/3, then ndi∑(G) ≤ k where
k = max{�(G) + 1, 6}. It partially confirms the conjecture proposed by Flandrin et
al. (Graphs Comb 29:1329–1336, 2013).

Keywords Proper edge coloring · Neighbor sum distinguishing edge coloring ·
Maximum average degree

1 Introduction

In this paper, all graphs considered are finite, simple, and undirected. The terminology
and notation used but undefined in this paper can be found in [1]. Let G = (V, E)
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be a graph. We use V (G), E(G),�(G), and δ(G) to denote the vertex set, edge set,
maximum degree, and minimum degree of G, respectively. Let dG(v) or simply d(v)

denote the degree of a vertex v in G. A vertex v is called a k-vertex (resp. k−-vertex,
or k+-vertex) if d(v) = k [resp. d(v) ≤ k, or d(v) ≥ k]. A vertex is called a leaf of G
if d(v) = 1. A 2-vertex is called bad if it is adjacent to a 2-vertex, otherwise we call it
good. A 5-vertex is called bad if it is adjacent to four bad 2-vertices, otherwise we call
it good. The girth of a graph G is the length of a smallest cycle in G, and we denote it
by g(G). The maximum average degree of G is mad(G) = max{2|E(H)|/|V (H)|},
where the maximum is taken over all the non-empty subgraphs H of G.

A proper edge-k-coloring of a graph G is an assignment of k colors 1, 2, . . . , k
to the edges of G such that no two adjacent edges receive the same color. Let c be
a proper edge-k-coloring of G. By w(v) [resp. S(v)], we denote the sum (resp. set)
of colors taken on the edges incident with v, i.e., w(v) = ∑

uv∈E(G) c(uv) [resp.
S(v) = {c(uv)|uv ∈ E(G)}]. We call the coloring c such that w(u) �= w(v) [resp.
S(u) �= S(v)] for each edge uv ∈ E(G) a neighbor sum distinguishing (resp. neighbor
distinguishing) edge-k-coloring ofG. For simplicity, we use nsd-k-coloring (resp. nd-
k-coloring) to denote the neighbor sum distinguishing (resp. neighbor distinguishing)
edge-k-coloring of G. By ndi∑(G) [resp. ndi(G)], we denote the smallest value k
such that G has an nsd-k-coloring (resp. nd-k-coloring) of G.

Obviously, a graph G has a neighbor sum distinguishing (neighbor distinguishing)
coloring if and only if G has no isolated edges (we call it normal). Apparently, for any
normal graphG, ndi(G) ≤ ndi∑(G). In 2002, Zhang et al. [2] proposed the following
conjecture.

Conjecture 1.1 [2] If G is a normal graph with at least six vertices, then ndi(G) ≤
�(G) + 2.

Balister et al. [3] proved Conjecture 1.1 for bipartite graphs and for graphs G with
�(G) = 3. If G is bipartite planar with maximum degree �(G) ≥ 12, Conjecture
1.1 was confirmed by Edwards et al. [4]. Hatami [5] showed that if G is a normal
graph and �(G) > 1020, then ndi(G) ≤ �(G) + 300. Akbari et al. [6] proved that
ndi(G) ≤ 3�(G) for any normal graph. Wang et al. [7,8] confirmed Conjecture 1.1
for sparse graphs and K4-minor free graphs. More precisely, in [7] they showed that
if G is a normal graph and mad(G) < 5/2, then ndi(G) ≤ �(G) + 1. Furthermore,
ndi(G) = �(G) + 1 if and only if G has two adjacent maximum degree vertices.
Recently, Hocquard et al. [9] proved that for every normal graph with �(G) ≥ 5 and
mad(G) < 13/5, we have ndi(G) ≤ �(G)+1. Later, in [10] they proved that ifG is a
normal graph with �(G) ≥ 5 andmad(G) < 3−2/�(G), then ndi(G) ≤ �(G)+1.

Recently, Flandrin et al. [11] studied the neighbor sum distinguishing colorings of
cycles, trees, complete graphs, and complete bipartite graphs. Based on these exam-
ples, they proposed the following conjecture.

Conjecture 1.2 [11] If G is a connected graph on at least three vertices and G �= C5,
then ndi∑(G) ≤ �(G) + 2.

Flandrin et al. [11] also proved that for each connected graph G with maximum
degree � ≥ 2, we have ndi∑(G) ≤ �(7� − 4)/2�. Dong et al. [12] considered the
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neighbor sum distinguishing colorings of planar graphs and showed that if G is a
normal planar graph, then ndi∑(G) ≤ max{2�(G) + 1, 25}. In [13], Dong et al.
proved that if G is a normal graph and mad(G) ≤ 5/2, then ndi∑(G) ≤ k where
k = max{�(G) + 1, 6}. Other results on graph coloring problems are referred to
[14–16].

In this paper, we will prove the following results.

Theorem 1.3 Let G be a normal graph. If mad(G) < 8
3 , then ndi∑(G) ≤ k where

k = max{�(G) + 1, 6}.
Corollary 1.4 LetG beanormal graph. If mad(G) < 8

3 ,�(G) ≥ 5, thenndi∑(G) ≤
�(G) + 1.

In [17], the authors obtained thatmad(G) < 2g/(g−2) if G is a planar graph with
girth g. The following corollary is obvious.

Corollary 1.5 Let G be a normal planar graph. If g(G) ≥ 8 and �(G) ≥ 5, then
ndi∑(G) ≤ �(G) + 1.

We note that if G contains two adjacent vertices of maximum degree, then
ndi∑(G) ≥ �(G)+1. So the bound�(G)+1 in Corollary 1.4 is sharp. Furthermore,
Corollary 1.4 implies a result of Hocquard et al. [9] about the neighbor distinguishing
coloring of sparse graphs.

2 Proof of Theorem 1.3

Firstly, we give two lemmas obtained by Dong et al. in [13], all the elements in each
set are integers.

Lemma 2.1 [13] Let S1, S2 be two sets and S3 = {α + β|α ∈ S1, β ∈ S2, α �= β}.
(i) If |S1| = 2 and |S2| = 3, then |S3| ≥ 3.
(ii) If |S1| = 2 and |S2| = 4, then |S3| ≥ 4.
(iii) If |S1| = |S2| = 2 and S1 �= S2, then |S3| ≥ 3.

Lemma 2.2 [13] Let S be a set of size k + 1. If S1 =
{

k∑

i=1
xi |xi ∈ S, xi �= x j if 1 ≤ i

< j ≤ k

}

, then |S1| ≥ k + 1.

Let k = max{�(G) + 1, 6} and [k] = {1, 2, . . . , k}. Suppose to the contrary
that G is a counterexample to Theorem 1.3, such that |E(G)| is minimum. By the
choice of G, it is clear that G is connected and any normal subgraph G ′ has an nsd-
k-coloring c. We use w(v) and S(v) to denote the sum and the set of colors taken on
the edges incident with v in the coloring c of G ′, i.e., w(v) = ∑

v∈e,e∈E(G ′) c(e) and
S(v) = {c(e) | v ∈ e, e ∈ E(G ′)}. In the following, we will extend c to the whole
graph G.

Let H be the graph obtained by removing all the leaves of G. Obviously, H is a
connected graph andmad(H) < 8/3. In the following, we give some properties of H .
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Fig. 1 Illustration of Claim 2.3
(iii)

Fig. 2 Illustration of Claim 2.4

Claim 2.3 H has the following properties:

(i) [13] δ(H) ≥ 2, where δ(H) is the minimum degree of H.
(ii) [13] Let v ∈ V (H) such that dH (v) = 2, then dG(v) = 2.
(iii) Let uvxy be a path in H such that dH (v) = dH (x) = 2, then dG(u) = dH (u)

and dG(y) = dH (y) (Fig. 1).

Proof (iii) Let uvxy be a path in H such that dH (v) = dH (x) = 2. By Claim 2.3
(ii), dG(v) = dG(x) = 2. By contradiction suppose dG(u) �= dH (u) [it follows from
Claim 2.3 (i) and construction of H that dG(u) ≥ 3]. Hence there exists at least one
1-vertex adjacent to u in G, say u1. Consider G ′ = G\{vx}. By the minimality of G,
G ′ admits an nsd-k-coloring c. If c(uv) �= c(xy), thenwe color vx with a color distinct
from c(uv), c(xy), w(u) − w(v),w(y) − w(x), then we obtain an nsd-k-coloring of
G. Otherwise, we permute the colors assigned to uu1 and uv. The obtained coloring
is still an nsd-k-coloring of G ′. We then extend this coloring to G as previously. This
is a contradiction. 	

Claim 2.4 Let u ∈ V (H), dH (u) = l, uui ∈ E(H), i = 1, 2, . . . , l.

(i) [13] If l = 2, then u is adjacent to at most one 2-vertex.
(ii) (a) [13] If l = 3 and dH (u) < dG(u), then u is adjacent to at most one 2-vertex.
(b) If l = 3, then u is not adjacent to any bad 2-vertex. Furthermore, u is adjacent

to at most one good 2-vertex.
(iii) If l = 4, then u is adjacent to at most one bad 2-vertex. Furthermore, if u is

adjacent to one bad 2-vertex, then u is adjacent to at most two good 2-vertices.
(iv) If l ≥ 5 and u is adjacent to (l − 1) bad 2-vertices, then u is adjacent to at most

(l − 1) 2-vertices (Fig. 2).

Proof (ii) (b) Firstly, we prove that u is not adjacent to any bad 2-vertex. Suppose to the
contrary that u1 is a bad 2-vertex. Let x be the other neighbor of u1 with dH (x) = 2,
and xy ∈ E(H), y �= u1. By Claim 2.3 (iii), dG(u) = dH (u) = 3. Consider the
graph G ′ = G\{uu1}, then G ′ admits an nsd-k-coloring c. Color uu1 with a color
α in S = [k]\ ({c(xy)} ⋃{c(uu2), c(uu3)} ⋃{w(u2) − w(u)} ⋃{w(u3) − w(u)}).
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Recolor u1x with a color distinct from α, c(xy), w(y) − c(xy), c(uu2) + c(uu3) and
we obtain an nsd-k-coloring of G, a contradiction.

In the following, we prove that u is adjacent to at most one good 2-vertex. Suppose
to the contrary that dH (u1) = dH (u2) = 2, vi ui ∈ E(H), vi �= u, i = 1, 2.
Case 1 dG(u) > dH (u) = 3. By Claim 2.4 (ii) (a), this Claim holds.
Case 2 dG(u) = dH (u) = 3.
Subcase 2.1 k ≥ 7. Consider the graph G ′ = G\{uu1, uu2}, then G ′ has an nsd-
k-coloring c. Let Si = [k]\ ({c(uivi )} ⋃{c(uu3)} ⋃{w(vi ) − w(ui )} ⋃{w(u3−i )

−c(uu3)}) , i = 1, 2, then |Si | ≥ 3, i = 1, 2. By Lemma 2.1 (ii), we can choose
αi ∈ Si , i = 1, 2 such that α1 �= α2, α1 + α2 + c(uu3) �= w(u3). We obtain an
nsd-k-coloring of G, which is a contradiction.
Subcase 2.2 k = 6. From the above discussion, dG(vi ) ≥ 3, i = 1, 2. If
dG(v1) = 5, then u1 can be distinguished from v1 under an arbitrary proper
edge coloring of G. Consider G ′ = G\{uu1, uu2}, then G ′ has an nsd-6-
coloring c. The colors in

{
c(u1v1)} ⋃{c(uu3)} ⋃{c(u2v2) − c(uu3)

}
are forbid-

den for uu1. Let S1 = [6]\ ({c(u1v1)} ⋃{c(uu3)} ⋃{c(u2v2) − c(uu3)}
)
, S2 =

[6]\ ({c(u2v2)} ⋃{c(uu3)} ⋃{w(v2) − w(u2)} ⋃{c(u1v1) − c(uu3)}
)
, then |S1| ≥

3, |S2| ≥ 2. By Lemma 2.1 (ii), we can choose αi ∈ Si , i = 1, 2 such that α1 �= α2,
α1+α2+c(uu3) �= w(u3).We obtain an nsd-6-coloring ofG, which is a contradiction.
Therefore, dG(v1) �= 5. Similarly, dG(v2) �= 5.

If dG(v1) = 3 and x1, y1 are the other two neighbors of v1. Consider G ′ =
G\{uu1, uu2, u1v1}, then G ′ has an nsd-6-coloring c. Let S1 = [6]\ ({c(v1x1)
+c(v1y1)} ⋃{c(uu3)}

)
, S2 = [6]\ ({c(uu3)} ⋃{c(u2v2)} ⋃{w(v2) − w(u2)}

)
, S3 =

[6]\ ({c(v1x1), c(v1y1)} ⋃{w(x1) − w(v1)} ⋃{w(y1) − w(v1)}
)
, then |S1| ≥ 4,

|S2| ≥ 3, |S3| ≥ 2. We can choose αi ∈ Si , i = 1, 2, 3 such that α1 �= α2, α1 �= α3,
u can be distinguished from u1, u2, u3, and v1 can be distinguished from x1, y1. We
obtain an nsd-6-coloring of G, a contradiction. Therefore, dG(v1) �= 3. Similarly,
dG(v2) �= 3.

Now we assume that dG(v1) = dG(v2) = 4, xi , yi , zi are the other three
neighbors of vi , i = 1, 2. Consider G ′ = G\{uu1, uu2}, then G ′ has an nsd-
6-coloring c. If c(v1x1) + c(v1y1) + c(v1z1) > 6, then u1 and v1 can be
distinguished. Let S1 = [6]\ ({c(uu3)} ⋃{c(u1v1)} ⋃{w(u2) − c(uu3)}

)
, S2 =

[6]\ ({c(uu3)} ⋃{c(u2v2)} ⋃{w(v2) − w(u2)} ⋃{w(u1) − c(uu3)}
)
, then |S1| ≥

3, |S2| ≥ 2. We can choose αi ∈ Si , i = 1, 2 such that α1 �= α2, α1 + α2 + c(uu3) �=
w(u3). We obtain an nsd-6-coloring of G, which is a contradiction. Therefore,
c(v1x1) + c(v1y1) + c(v1z1) = 6. Similarly, c(v2x2) + c(v2y2) + c(v2z2) = 6.
Without loss of generality we assume that c(vi xi ) = 1, c(vi yi ) = 2, c(vi zi ) =
3, i = 1, 2. Suppose that c(u1v1) �= c(u2v2) or c(uu3) = 6, then we can obtain
an nsd-6-coloring of G as previously. Hence, c(u1v1) = c(u2v2), c(uu3) �= 6.
From the above discussion, dG(u3) ≥ 3. If dG(u3) = 3, let x3, y3 be the
neighbors of u3 distinct from u. Consider the graph G ′ = G\{uu1, uu2, uu3},
then G ′ has an nsd-6-coloring c. Let S1 = [5]\{c(u1v1)}, S2 = [5]\{c(u2v2)},
S3 = [6]\ ({c(v3x3), c(v3y3)} ⋃{w(x3) − w(u3)} ⋃{w(y3) − w(u3)}

)
, then |S1| ≥

4, |S2| ≥ 4, |S3| ≥ 2. From the above discussion, we know that S1 = S2 = {1, 2, 3, 4}
or {1, 2, 3, 5}, so we can choose αi ∈ Si , i = 1, 2, 3 such that α1, α2, α3 are pairwise
distinct and u can be distinguished from u1, u2, u3. We obtain an nsd-6-coloring ofG,
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which is a contradiction. Therefore, dG(u3) ≥ 4. If c(uu3) ∈ {1, 2, 3}, color uu1, uu2
properly with {1, 2, 3}\{c(uu3)}. Otherwise, properly color uu1, uu2 with colors in
{1, 2, 3}. In both cases, we obtain an nsd-6-coloring of G, a contradiction.

(iii) Suppose to the contrary that dH (u1) = dH (u2) = 2, uivi ∈ E(H), dH (vi ) =
2, i = 1, 2, xi is the other neighbor of vi , i = 1, 2. By Claim 2.3 (iii), dG(u) =
dH (u) = 4. Consider the graph G ′ = G\{uu1, uu2}, then G ′ has an nsd-k-coloring
c. Let Si = [k]\ ({c(uu3), c(uu4)} ⋃{c(vi xi )}

)
, i = 1, 2, then |Si | ≥ 3. By Lemma

2.1 (i), we can choose αi ∈ Si , i = 1, 2 such that α1 �= α2 and u can be distinguished
from u3, u4. Recolor uivi with a color distinct from αi , c(vi xi ), w(xi )−c(vi xi ), α1+
α2 + c(uu3) + c(uu4) − αi , i = 1, 2, then u can be distinguished from u1, u2. We
obtain an nsd-k-coloring of G, a contradiction.

Now assume that u is adjacent to a bad 2-vertex u1 with u1v1 ∈ E(H), dH (v1) =
2, v1x1 ∈ E(H), x1 �= v1. Suppose to the contrary that dH (ui ) = 2, uivi ∈
E(H), vi �= u, i = 2, 3, 4. By Claim 2.3 (iii), dG(u) = dH (u) = 4. Con-
sider G ′ = G \ {uu1}, then G ′ has an nsd-k-coloring c. Let S = [k] \
({c(uu2), c(uu3), c(uu4)} ⋃{c(v1x1)}). When k ≤ 7, if 1 ∈ S, then color uu1 with
α ∈ S\{1}, otherwise color uu1 with α ∈ S\{2}. In both casesw(u)+α > w(ui ), i =
2, 3, 4. Then recolor u1v1 with a color distinct fromα, c(v1x1), w(u), w(x1)−c(v1x1).
We obtain an nsd-k-coloring of G, a contradiction. When k ≥ 8, |S| ≥ 4, we can
choose α ∈ S such that α + w(u) �= w(ui ), i = 2, 3, 4. Then recolor u1v1 with a
color distinct from α, c(v1x1), w(u), w(x1) − c(v1x1). We obtain an nsd-k-coloring
of G, a contradiction.

(iv) Suppose to the contrary that dH (ui ) = 2, i = 1, 2, . . . , l, uivi ∈
E(H), vi �= u, i = 1, 2, . . . , l and dH (v j ) = 2, v j x j ∈ E(H), x j �= v j , j =
1, 2, . . . , l − 1. By Claim 2.3 (iii), dG(u) = dH (u) = l. Let G ′ = G\{uu1},
then G ′ has an nsd-k-coloring c. If l < � = k − 1, color uu1 with α ∈
[k] \

(

{c(uu2), . . . , c(uul)} ⋃{c(v1x1)} ⋃
{

α +
l−1∑

i=2
c(uui )

})

. Otherwise color uu1

with α ∈ [k] \ ({c(uu2), . . . , c(uul)} ⋃{c(v1x1)}
)
. In both cases, u can be distin-

guished from ul . Properly recolor uivi such that u can be distinguished from ui and
vi can be distinguished from xi , i = 1, 2, . . . , l − 1. We obtain an nsd-k-coloring of
G, a contradiction. 	

Claim 2.5 Let u ∈ V (H), dH (u) = 5, uui ∈ E(H), i = 1, 2, 3, 4, 5.

(i) If �(G) ≥ 6, then u is adjacent to at most two bad 2-vertices. If �(G) = 5
and u is adjacent to three bad 2-vertices, then u is adjacent to at most one good
2-vertex.
Furthermore, if �(G) = 5 and u is a bad 5-vertex, then by Claim 2.3 (iii),
dG(u) = dH (u) = 5. Let dH (ui ) = 2, uivi ∈ E(H), dH (vi ) = 2, xi be the
other neighbor of vi , i = 1, 2, 3, 4, we have

(ii) dH (u5) ≥ 4.
(iii) If dH (u5) = 4, then u5 is adjacent to no bad 2-vertex.
(iv) If dH (u5) = 5, then u5 is adjacent to at most two bad 2-vertices (Fig. 3).

Proof (i) Assume �(G) ≥ 6. Suppose to the contrary that dH (u1) = dH (u2) =
dH (u3) = 2, vi is the other neighbor of ui with dH (vi ) = 2, xi is the other
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Fig. 3 Illustration of Claim 2.5

neighbor of vi , i = 1, 2, 3. By Claim 2.3 (iii), dG(u) = dH (u) = 5. Con-
sider the graph G ′ = G\{uu1, uu2, uu3}, then G ′ has an nsd-k-coloring c. Let
Si = [k]\ ({c(uu4), c(uu5)} ⋃{c(vi xi )}

)
, i = 1, 2, 3, then |Si | ≥ 4, i = 1, 2, 3.

We can choose αi ∈ Si , i = 1, 2, 3 such that α1, α2, α3 are pairwise distinct
and u can be distinguished by u4, u5. Recolor uivi with a color distinct from

αi , c(vi xi ), w(xi ) − c(vi xi ),
3∑

i=1
αi + w(u) − αi , i = 1, 2, 3, then u can be distin-

guished from u1, u2, u3. We obtain an nsd-k-coloring of G, a contradiction.
Assume that �(G) = 5. Suppose to the contrary that dH (ui ) = 2, uivi ∈

E(H), vi �= u, i = 1, 2, . . . , 5 and dH (v j ) = 2, v j x j ∈ E(H), j = 1, 2, 3. By
Claim 2.3 (iii), dG(u) = dH (u) = 5. Consider the graph G ′ = G\{uu1}, then G ′ has
an nsd-6-coloring c. Color uu1 with α ∈ [6]\ ({c(uu2), . . . , c(uu5)} ⋃{c(v1x1)}

)
.

Then recolor u1v1 with a color distinct from α, c(v1x1), w(xi ) − c(v1x1),
5∑

i=2
c(uui ).

It can be seen that w(u) + α > w(ui ), i = 2, . . . , 5, so we obtain an nsd-6-coloring
of G, a contradiction.

(ii) By Claim 2.4 (iv), dH (u5) ≥ 3. Suppose to the contrary that dH (u5) = 3,
v51, v52 are the other twoneighbors of u5. Consider the graphG ′ = G\{uu1, uu2, uu3,
uu4, uu5}, then G ′ has an nsd-6-coloring c. Let Si = [6]\{c(vi xi )}, i = 1, 2, 3, 4,
S5 = [6]\ ({c(u5v51), c(u5v52)} ⋃{w(v51) − w(u5)} ⋃{w(v52) − w(u5)}

)
, then |Si |

≥ 5, i = 1, 2, 3, 4, |S5| ≥ 2. We can choose αi ∈ Si , i = 1, 2, 3, 4, 5 such that
α1, α2, α3, α4, α5 are pairwise distinct and u can be distinguished by u5. Obviously,
u can be distinguished by u1, u2, u3, u4. Recolor uivi with a color distinct from
αi , c(vi xi ), w(xi ) − c(vi xi ), i = 1, 2, 3, 4 and we obtain an nsd-6-coloring of G,
a contradiction.

(iii) Let v51, v52, v53 be the other three neighbors of u5. Suppose to the contrary that
dH (v51) = dH (x51) = 2, v51x51 ∈ E(H), x51y51 ∈ E(H), y51 �= v51. By Claim 2.3
(iii), dG(u5) = dH (u5) = 4. Consider the graph G ′ = G\{uu1, uu2, uu3, uu4}, then
G ′ has an nsd-6-coloring c. Assume that c(uu5) = α5, c(u5v5 j ) = β j , j = 1, 2, 3,
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c(vi xi ) = γi , i = 1, 2, 3, 4, c(x51y51) = η. Let Si = [6]\({γi } ⋃{α5}), i = 1, 2, 3, 4,
then |Si | ≥ 4, i = 1, 2, 3, 4.

If there exists some γi = α5 (i ∈ {1, 2, 3, 4}) or γi �= γ j (i �= j, i, j ∈ {1, 2, 3, 4}),
then we can choose αi ∈ Si , i = 1, 2, 3, 4 such that u can be distinguished by
u5. Recolor uivi with a color distinct from γi , αi , w(xi ) − c(vi xi ), i = 1, 2, 3, 4,
we can obtain an nsd-6-coloring of G, a contradiction. Therefore, we assume that
γ1 = γ2 = γ3 = γ4 = γ, α5 �= γ . Then S1 = S2 = S3 = S4 = [6]\{α5, γ }. Assume
that Si = {α1, α2, α3, α4}, i = 1, 2, 3, 4. Color uui with αi , i = 1, 2, 3, 4.

If |{α1, α2, α3, α4} ⋂{β1, β2, β3}| = 3, then u can be distinguished by u5, recolor
uivi , i = 1, 2, 3, 4 as previously andweobtain annsd-6-coloringofG, a contradiction.
Furthermore,

∣
∣{α1, α2, α3, α4} ⋂{β1, β2, β3}

∣
∣ ≥ 2 because there are six colors in total.

Therefore,
∣
∣{α1, α2, α3, α4} ⋂{β1, β2, β3}

∣
∣ = 2.Without loss of generalitywe assume

that {α1, α2} ⊆ {β1, β2, β3}.
If β1 = γ , then {α1, α2} = {β2, β3}. If α5 �= η, suppose u can not be distinguished

by u5, then γ = α3 + α4. Recolor uu5 with γ and recolor u5v51 with α5, we obtain
an nsd-6-coloring of G, a contradiction. Therefore, α5 = η. Recolor u5v51 with one
of α3, α4, or exchange the colors of uu3 and uu5, or exchange the colors of uu4 and
uu5 such that u5 can be distinguished by u, v52, v53. It is easy to see that u can be
distinguished by u1, u2, u3, u4. Recolor uivi , i = 1, 2, 3, 4, and v51x51 as previously
and we can obtain an nsd-6-coloring of G, a contradiction.

If β1 �= γ . Without loss of generality we assume that β1 = α1, β2 = α2. Recolor
u5v51 with one of α3, α4, or exchange the colors of uu3 and uu5, or exchange the
colors of uu4 and uu5 such that u5 can be distinguished by u, v52, v53. It is easy to see
that u can be distinguished by u1, u2, u3, u4. Recolor uivi , i = 1, 2, 3, 4, and v51x51
as previously and we can obtain an nsd-6-coloring of G, a contradiction.

(iv) Let v51, v52, v53, v54 be the other four neighbors of u5. Suppose to the con-
trary that dH (v5i ) = dH (x5i ) = 2, v5i x5i ∈ E(H), x5i y5i ∈ E(H), y5i �=
v5i , i = 1, 2, 3. By Claim 2.3 (iii), dG(u5) = dH (u5) = 5. Consider the graph
G ′ = G\{uu1, uu2, uu3, uu4}, then G ′ has an nsd-6-coloring c. Assume that
c(uu5) = α5, c(u5v5 j ) = β j , j = 1, 2, 3, 4, c(vi xi ) = γi , i = 1, 2, 3, 4. Let
Si = [6]\ ({γi } ⋃{α5}

)
, i = 1, 2, 3, 4, then |Si | ≥ 4, i = 1, 2, 3, 4.

If there exists some γi = α5 (i ∈ {1, 2, 3, 4}) or γi �= γ j (i �= j, i, j ∈ {1, 2, 3, 4}),
then we can choose αi ∈ Si , i = 1, 2, 3, 4 such that u can be distinguished by u5.
Recolor uivi with a color distinct from αi , γi , w(xi ) − c(vi xi ), i = 1, 2, 3, 4. We
obtain an nsd-6-coloring of G, a contradiction. Therefore, we assume that γ1 = γ2 =
γ3 = γ4 = γ, α5 �= γ . Then S1 = S2 = S3 = S4 = [6]\{α5, γ }. Assume that
Si = {α1, α2, α3, α4}. Color uui with αi and recolor uivi with a color distinct from
γ, αi , w(xi ) − c(vi xi ), i = 1, 2, 3, 4.

If {α1, α2, α3, α4} �= {β1, β2, β3, β4}, then u can be distinguished by u5, it is easy
to see that u can be distinguished from u1, u2, u3, u4. We obtain an nsd-6-coloring
of G, a contradiction. Therefore, {α1, α2, α3, α4} = {β1, β2, β3, β4}. Without loss of
generality we assume that αi = βi , i = 1, 2, 3, 4. If c(x51y51) �= γ , then recolor
u5v51 with γ . We can see that u can be distinguished from u5. If u5 can not be
distinguished from v54, then exchange the colors of uu1 and uu5. Recolor v51x51 with
a color distinct from γ1, c(x51y51), w(y51) − c(x51y51). We obtain an nsd-6-coloring
of G, a contradiction. Similarly, c(x52y52) = c(x53y53) = γ . Recolor uu5 with γ .
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Then recolor u5v51 or recolor u5u52 with α5 such that u5 can be distinguished by v54.
Recolor v5i x5i with a color distinct from γ, α5, αi , w(y5i ) − c(x5i y5i ), i = 1, 2. We
obtain an nsd-6-coloring of G, a contradiction. 	


In order to complete the proof,weuse a discharging procedure. For everyv ∈ V (H),
we define the original charge of v to be ch(v) = dH (v) = l. We then redistribute the
charges according to the rules R1, R2, and R3 (below). To complete the proof, our
aim is to prove that, for every vertex v, the new charge ch∗(v) is at least 8/3.

The discharging rules are defined as follows:

(R1) Every 4+-vertex gives 2
3 to each adjacent bad 2-vertex.

(R2) Every 3+-vertex gives 1
3 to each adjacent good 2-vertex.

(R3) If u is a bad 5-vertex, ui , i = 1, 2, 3, 4, 5, are the neighbors of u, and if
u1, u2, u3, u4 are bad 2-vertices, then u5 gives 1

3 to u.

Case l = 2. Observe that ch(v) = 2. Suppose v is a good 2-vertex. Hence, by (R2),
ch∗(v) ≥ 2 + 2 × 1

3 = 8
3 . Suppose v is bad, By Claim 2.4 (i) and Claim 2.4 (ii), v

is adjacent to at most one 2-vertex and is adjacent to a 4+-vertex. Hence, by (R1),
ch∗(v) = 2 + 1 × 2

3 = 8
3 .

Case l = 3. Observe that ch(v) = 3. By Claim 2.4 (ii), v is adjacent to no bad 2-vertex
and is adjacent to at most one good 2-vertex. By Claim 2.5 (ii), v is adjacent to no bad
5-vertex. By (R2) and (R3), ch∗(v) ≥ 3 − 1 × 1

3 = 8
3 .

Case l = 4. Observe that ch(v) = 4. Suppose v is not adjacent to a bad 2-vertex.
Then, by (R2) and (R3), ch∗(v) ≥ 4 − 4 × 1

3 = 8
3 . Assume now, v is adjacent to

a bad 2-vertex. By Claim 2.4 (iii), v is adjacent to at most two good 2-vertices. By
Claim 2.5 (iii), v is adjacent to no bad 5-vertex. Hence by (R1), (R2), and (R3),
ch∗(v) ≥ 4 − 1 × 2

3 − 2 × 1
3 = 8

3 .
Case l = 5. Observe that ch(v) = 5. Suppose v is adjacent to at most two bad 2-
vertices, then by (R1), (R2), and (R3), ch∗(v) ≥ 5 − 2 × 2

3 − 3 × 1
3 = 8

3 . If v is
adjacent to three bad 2-vertices, then by Claim 2.5 (i) and (iv), v is adjacent to at most
one good 2-vertex and v is adjacent to no bad 5-vertex. Hence by (R1), (R2), and (R3),
ch∗(v) ≥ 5 − 3 × 2

3 − 1 × 1
3 = 8

3 . Assume now, v is a bad 5-vertex. By (R1), (R2),
and (R3), ch∗(v) ≥ 5 − 4 × 2

3 + 1 × 1
3 = 8

3 .
Case l ≥ 6. Observe that ch(v) = l. By Claim 2.5 (i), any 5-vertex in H is good. By
Claim 2.4 (iv), v is adjacent to at most (l−1) bad 2-vertices. Moreover if v is adjacent
to (l−1) bad 2-vertices, then its last neighbor has degree at least 3. It follows by (R1),
ch∗(v) ≥ l − (l − 1) × 2

3 ≥ 8
3 .

This completes the proof of Theorem 1.3.
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