BULLETIN of the

Bull. Malays. Math. Sci. Soc. (2016) 39:1005-1041 MALAYSIAN MATHEMATICAL @ CrossMark

SCIENCES SOCIETY

DOI 10.1007/540840-015-0206-1 E——

Sournali 40840

Stepanov-Like Weighted Pseudo Almost Automorphic
Functions Via Measure Theory

Yong-Kui Chang! - G. M. N’Guérékata? -
Rui Zhang?

Received: 28 September 2013 / Revised: 2 January 2014 / Published online: 7 August 2015
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract In this article, we introduce and study the concept of p-Stepanov-like
pseudo almost automorphic function using the measure theory. We present new results
on completeness and composition theorems for the space of such functions. To illus-
trate our main results, we provide some applications to a nonautonomous semilinear
evolution equation.

Keywords Measure theory - ©-Pseudo almost automorphic function - p-Stepanov-
like pseudo almost automorphic function - Fixed point theorem

Mathematics Subject Classification 34K14 - 60H10 - 35B15 - 34F05

Communicated by Shangjiang Guo.

B Yong-Kui Chang
Izchangyk @163.com

G. M. N’Guérékata
gaston.n’guerekata@morgan.edu

Rui Zhang

zhangrui_2008aoyun@ 163.com

School of Mathematics and Statistics, Xidian University, Xi’an 710071,
People’s Republic of China

Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane,
Baltimore, MD 21251, USA

Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070,
People’s Republic of China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0206-1&domain=pdf

1006 Y.-K. Chang et al.

1 Introduction

The concept of almost automorphy was first introduced in the literature by Bochner
in 1960s, and it is a natural generalization of almost periodicity [1,2]; for more details
about this topic, we refer to [3—6]. N’Guérékata and Pankov introduced the concept of
Stepanov-like almost automorphy and applied this concept to study the existence
and uniqueness of an almost automorphic solution to the autonomous semilinear
equation in [6]. Moreover, Blot introduced the notion of weighted pseudo almost
automorphic functions with values in a Banach space in [7], and Mophou studied
the existence and uniqueness of a weighted pseudo almost automorphic mild solu-
tion to a semilinear fractional equation in [8]. Xia and Fan presented the notation of
Stepanov-like weighted pseudo almost automorphic function in [9]. Zhang, Chang,
and N’Guérékata investigated some properties and new composition theorems of
Stepanov-like weighted pseudo almost automorphic functions in [10,11] and then
used these results to study the existence of weighted pseudo almost automorphic solu-
tions for some differential equations in [12,13] and integral equations in [14].

Recently, Blot et al. in [15] applied the measure theory to define an ergodic func-
tion and investigated many interesting properties of p-pseudo almost automorphic
functions. To the best of our knowledge, there is no work reported in the literature on
S?P-weighted pseudo almost automorphic functions in the light of the measure theory.
To close this gap, motivated by the above-mentioned works, the purpose of this work
is to present the concept of u-S”-pseudo almost automorphic functions and establish
completeness and composition theorems for the space of such functions. And then, we
apply our main results to investigate the existence of p-pseudo almost automorphic
mild solutions with p-S?-pseudo almost automorphic coefficients to the following
nonautonomous semilinear evolution equation:

u'(t) = Au(t) + f(t,u(t)), teR, (1.1)

where {A(7)};cRr satisfies the Acquistapace—Terreni condition in [16], U (t, s) gener-
ated by A(¢) is exponentially stable, and f € PAAP(R, X, )N C(R, X) for p > 1
will be specified later.

The rest of this paper is organized as follows. In Sect. 2, we present some basic
definitions, lemmas, and preliminary results which will be used throughout this paper.
In Sect. 3, we establish some composition theorems of -S”-pseudo almost automor-
phic functions. In Sect. 4, we prove the existence of p-pseudo almost automorphic
mild solutions to the nonautonomous semilinear evolution Eq. (1.1).

2 Preliminaries and u-S?-Pseudo Almost Automorphic Functions

In this section, we define new notion of the u-ergodic functions and the p-Stepanov-
like pseudo almost automorphic functions and then give some fundamental properties
of these functions that we use in differential equations. Recall that the notion of -
Stepanov-like pseudo almost automorphy will be a generalization of the Stepanov-like
weighted pseudo almost automorphy.
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Stepanov-Like Weighted Pseudo Almost Automorphic... 1007

Let X, || - 1), (Y, || - ly), be two Banach spaces and BC (R, X) denote the Banach
space of bounded continuous functions from R to X, equipped with the supremum
norm || flleo = sup;cr Il f (¢)|l. Throughout this work, we denote by ‘B the Lebesgue
o-field of R and by 21 the set of all positive measures p on ‘B satisfying u(R) = 400
and u([a, b]) < +o0, foralla,b € R(a < b).

Definition 2.1 [4] A continuous function f : R — Xis said to be almost automorphic
if for every sequence of real numbers {s, },cn, there exists a subsequence {s},eN
such that

g() = lim f(t+s5,)

is well defined for each r € R, and
lim gt —s,) = f(t)
n—0o0

for each t € R. The collection of all such functions will be denoted by AA(X).

Definition 2.2 [5] A continuous function f(z,s) : R x R — X is called bi-almost
automorphic if for every sequence of real numbers {s; },,cn. there exists a subsequence
{sn}nen such that

gt,s) = nlggo f@+sn, 5 +sn)

is well defined for each ¢, s € R, and
lim g(t —s,,5 —sp) = f(t,5)
n—o0

for each ¢, s € R. The collection of all such functions will be denoted by bAA(R x
R, X).

Definition 2.3 [4,17] A continuous function f : R x X — X is said to be almost
automorphic if f (¢, x) is almost automorphic for each r € R uniformly for all x € B,
where B is any bounded subset of X. The collection of all such functions will be
denoted by AA(R x X, X).

Let U denote the set of all functions p : R — (0, 00), which are locally integrable

over R such that p > 0 almost everywhere. For a given r > 0 and for each p € U, we
r

set m(r, p) := / p(t)dr.
—r
Thus the space of weights Uy, is defined by

Uy := {,oe[U: lim m(r,,o):oo}.
r—o00
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1008 Y.-K. Chang et al.

Now for p € Uy, we define

PAAYK, p) = [f € BC(R,X) : lim ' I £l p(t)dt = 0] ;

r>oom(r, p) J—r

PAA)Y,X, p) = {f e C(RxY,X): f(-,y) is bounded for each y € Y and
r

lim

oo m(r, p) ),

| £(t, ¥)|p@)dt = 0 uniformly in y € Y}.

Remark 2.1 When p(t) = 1 for each ¢ € R, one retrieves the so-called ergodic space
r
that is, AAo(X) and AAN(X) = if € BC(R,X) : lim,_ o 217/ If@®)|dt = 0].
—r
Note that the spaces PAAy(X, p) are richer than AAy(X).

Definition 2.4 [7] Let p € Uy. A function f € BC(R, X) [respectively, f €
BCR x Y, X)] is called weighted pseudo almost automorphic if it can be expressed
as f = g+ ¢, where g € AA(X) [respectively, AA(R x Y,X)] and ¢ €
PAA)(X, p) [respectively, PAAo (Y, X, p)]. We denote by W P A A(X) [respectively,
WPAA(R x Y, X)] the set of all such functions.

Definition 2.5 [15] Let u € 9. A bounded continuous function f : R — X is said
to be u-ergodic if

. 1
r_lillloo wdrr) /[”J I f @I du@) =0.

We denote the space of all such functions by (R, X, ).

Definition 2.6 [15] Let & € 991. A continuous function f : R — X is said to be
u-pseudo almost automorphic if f is written in the form:

f=g+0¢,

where g € AA(R, X) and ¢ € ¢(R, X, n). We denote the space of all such functions
by PAAR, X, ).

Thus, we have
AAR,X) c PAARR, X, u) C BC(R, X).

Lemma 2.1 [15] Let u € M. Then (¢(R, X, ), || - lloo) is a Banach space.

For u € M and v € R, we denote u, the positive measure on (R, 98) defined by
u(A)=pu{a+rt:a€A}) for Aec’B. 2.1

From p € 901, we list the following hypothesis.
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Stepanov-Like Weighted Pseudo Almost Automorphic... 1009

(HO) For all T € R, there exist 8 > 0 and a bounded interval / such that

ur(A) = Bu(A),

when A € B satisfies AN I = 0.

Lemma 2.2 [15] Let u € I satisfy (HO). Then ¢(R, X, ) is translation invariant,
and therefore PAAR, X, ) is also translation invariant.

Lemma 2.3 [15] Let n € 9. Assume that PAA(R, X, u) is translation invariant.
Then the decomposition of a u-pseudo almost automorphic function in the form f =
g+ ¢, where g € AAR,X) and ¢ € e(R, X, ), is unique.

Lemma 2.4 [15] Let n € 9. Assume that PAA(R, X, u) is translation invariant.
Then (PAAR, X, u), || - lloo) is a Banach space.

Definition 2.7 [6,18] The Bochner transform fb(t, s),t € R, s € [0, 1], of afunction
f : R — Xis defined by

o, s) = ft+s).

Remark 2.2 [18] (i) A function ¢(¢, s),t € R, s € [0, 1], is the Bochner transform of
a certain function f, ¢(r,s) = f2(z, s), if and only if p(t + 7,5 — ©) = ¢(s, 1) for
allt e R,s €[0,1]and t € [s — 1, s].

(ii) Note that if f = h + ¢, then f? = h? + ¢P. Moreover, (\ f)? = ) f? for each
scalar .

Definition 2.8 [18] The Bochner transform fb(t, s,u),t e R,s €[0,1],u e Xofa
function f : R x X — X is defined by

o, s,u) ;== f(t +s,u) foreach u e X.

Definition 2.9 [6,18] Let p € [1, 00). The space BS?(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f : R — X such
that f2 € L (R, L?(0, 1; X)). This is a Banach space with the norm

1
t+1 >
||f||s»=||f”||Loo<R,Lp>=sup(/ IIf(r)II”dr) .
t

teR

Definition 2.10 [6,19] The space AS?(X) of Stepanov-like almost automorphic (or
SP-almost automorphic) functions consists of all f € BSP(X) such that f* €
AA (LP(0, 1; X)). In other words, a function f € Lﬁ)c(R, X) is said to be S”-almost
automorphic if its Bochner transform f? : R — L?(0, 1; X) is almost automorphic in
the sense that for every sequence of real numbers {s),},cN, there exist a subsequence

{sn}nen and a function g € LZPOC(R, X) such that
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1010 Y.-K. Chang et al.

+1 >
hm(/ |um+&»—unWM) =0 and
n—>oo t

1

+1 5
hm(/ nawwm—ﬂmwm) —0
t

n—o00

pointwise on R.

Definition 2.11 [6,19] A function f : R x Y — X, (t,u) — f(t,u) with f(-,u) €
Ll’; (R, X) for each u € Y is said to be §”-almost automorphic in ¢ € R uniformly in
ueYift — f(t,u)is SP-almost automorphic for each # € Y. That means, for every
sequence of real numbers {s;,}, <N, there exist a subsequence {s,},cn and a function

g(,u) € LT (R, X) such that

loc

<=

t+1
lirréo(/ ||f(s+sn,u)—g(s,u)||pds) =0
n— t

and |
t+1 »
lim (/ IIg(S—sn,u)—f(s,u)llpdS) =0
n—0o0 t

pointwise on R and for each u € Y. We denote by AS?(R x Y, X) the set of all such
functions.

Definition 2.12 [20] A function f € BSP(X) is said to be Stepanov-like pseudo
almost automorphic if it can be decomposed as f = g + ¢ where g € AS?(X) and
@? € AA((LP(0, 1; X)). Denote by PAAP(X) the set of all such functions.

Definition 2.13 [20] A function F : R x Y — X, (¢, u) — F(t,u) with F(-,u) €
Lﬁc (R, X) foreachu € Y issaid to be Stepanov-like pseudo almost automorphicint €
R, if it can be decomposed as F(t,u) = G(t,u) + H(t,u) withG € ASP(R x Y, X)
and H? € AAy(Y, L?(0, 1; X)). Denote by PAAP(R x Y, X) the set of all such

functions.

Definition 2.14 [11]Let p € Uy. A function f € BSP(X) is said to be Stepanov-like
weighted pseudo almost automorphic (or S”-weighted pseudo almost automor-
phic) if it can be expressed as f = g + h, where g € ASP(X) and h*? <
PAAy(LP(0, 1; X), p). In other words, a function f € Lﬁ]C(R, X) is said to be
Stepanov-like weighted pseudo almost automorphic relatively to the weight p € Uy,
if its Bochner transform f b R L?(0, 1; X) is weighted pseudo almost automor-
phic in the sense that there exist two functions g, 2 : R — X such that f = g + A,
where g € ASP(X) and h® € PAA( (LP(0, 1; X), p). We denote by WPAASP(X)
the set of all such functions.

Definition 2.15 [11] Let p € Uy. A function f : Rx Y — X, (f,u) —
f(@t,u) with f(-,u) € Lﬁw(R, X) for each u € Y is said to be Stepanov-like
weighted pseudo almost automorphic (or SP-weighted pseudo almost automorphic)
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Stepanov-Like Weighted Pseudo Almost Automorphic... 1011

if it can be expressed as f = g + h, where g € ASP(R x Y,X) and h’ €
PAAy (Y, LP(0, 1; X), p). We denote by WPAASP(R x Y, X) the set of all such
functions.

Definition 2.16 Let 1 € 91. A function f € BSP(X) is said to be p-Stepanov-
like pseudo almost automorphic (or u-S?-pseudo almost automorphic) if it can be
expressed as f = g + ¢, where g € ASP(X) and ¢’ € (L7 (0, 1; X), ). In other
words, a function f € Ll’:w (R, X) is said to be u-Stepanov-like pseudo almost auto-
morphic relatively to the measure u, if its Bochner transform f bR — LP(0, 1;X)is
u-pseudo almost automorphic in the sense that there exist two functions g, ¢ : R — X
such that f = g + ¢, where g € ASP(X) and ¢® € &(LP(0,1;X), ), that is
¢? € BC(LP(0, 1; X)) and

1 t+1 %
lim —/ (/ b)) ds) dju(t) = 0.
r=o0 w([—r,r]) Ji—rr \Us

We denote by PAA? (R, X, n) the set of all such functions.

Definition 2.17 Let © € 9. A function f : R x Y — X, (t,u) — f(¢,u) with
fG,u) € Ll’;C(R, X) for each u € Y is said to be p-Stepanov-like pseudo almost
automorphic (or u-SP-pseudo almost automorphic) if it can be expressed as f =
g+ ¢, where g € ASP(R x Y, X) and ¢? € (Y, LP(0, 1; X), u). We denote by

PAAP(R x Y, X, ) the set of all such functions.

[15] One can observe that an S”-weighted pseudo almost automorphic function is
u-SP-pseudo almost automorphic, where the measure u is absolutely continuous with
respect to the Lebesgue measure and its Radon—Nikodym derivative is p : % =
p(t). Moreover, a S”-pseudo almost automorphic function is an u-S?-pseudo almost
automorphic function in the particular case where the measure u is the Lebesgue

measure.

Remark 2.3 [15] From p € 91 and the fact that u([—r, r]) = u([—r, 7]\ I) + n(l)
for r sufficiently large, we deduce that lim,_, 1 o ([—7, 7]\ I) = 4o00.

Theorem 2.1 Let u € 9 and I be a bounded interval (eventually I = §). Assume
that f(-) € BSP(R, X). Then the following assertions are equivalent:

(i) fo() ee(LP(0,1;X), w).
Ly e 1 t+1 %
@) limyyoo ———— f[_r’r]\l ( NP ds) du(t) =0.

w(=r,rI\ 1) ]
m ([le[—r, VA ( L F@NP ds)E >e})
—0.
u([=r,rI\ D

Proof To prove the theorem, we refer to [15, Theorem 2.14], and first we prove
1

(i) Forany € >0, lim;_ 400

t+1 v
(i) < (ii). Denote by A = u(/) and B = / (/ ||f(s)||”ds) du(t). Since
1 \Jt

the interval [ is bounded and the function f € BS?(X), then A and B are finite. Let
r > 0besuchthat I C [—r,r] and w([—r, 7]\ I) > 0. Then we have
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1012 Y.-K. Chang et al.

1 t+1 %
= h /[ N ( / IIf(s)II”ds) auo)
’ —rr t

1 1+1 >
w(—rr) —A /[ | (/ IIf(s)II”ds) du(t) — B
’ —r,r t

1
_ p=rr]) 1 t+1 7
T u(-rrh)—A (M([—r, D S (/t IfHNP ds) du(r)

- (2.2)
M([_rv r])) .

From the equality (2.2) and the fact that «(R) = +o00, we deduce that (ii) is equivalent
to

1

1 t+1 -
o , )
i D S (/ ol ds) dpu(t) = 0,

that is (i).
(iii)==-(ii) Denote by AL (f) and By (f) the following sets:

141 H
As(f) = IE[—’”»r]\IZ(/ ||f(s)||pds) > €
t

and

r+1 H
Bi(f) = ZG[—V,V]\Ii(/ ||f(S)||pdS) <et.
t

Assume that (iii) holds, that is

M) 23)
r=oo u([—r, rI\ 1)

From the following equality

t+1 % t+1 %
/ (/ IIf(s)II”ds) du(r) = / (/ ||f(s)||”ds) ()
[—r,r]\I t AS(f) t

t+1 %
+/ (/ IIf(S)II”dS) du(r),
BE(f) \Jit
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we deduce for r large enough that

1 1+1 »
m/{ N (/ ||f(S)||pdS) du(t)
’ —r,r 1

(A5 (f))
< ||f||51’m + €,

then for all ¢ > 0,

1

1 t+1 ) 5
l a(—r AN D d d <e,
,Ti‘;f w(=r, 7 IND Ji—ra (/t ILf )l S) u(t) <e

so (ii) holds.
(il)= (iii) Assume that (ii) holds. From the following inequality

1 1+1 h
m——m/[ M (/ I <s>"”ds) dpa (o)
’ —rr t

1 t+1 » %
- - d d
2 T (/t o) s) ()

RS
€E—————,
= =\ D

for r sufficiently large, we obtain (2.3), that is (iii). This completes the proof. O

Definition 2.18 [15] Let ;1 and up € 9. w1 is said to be equivalent to o (i) ~ w2)
if there exist constants & and 8 > 0 and a bounded interval I (eventually I = () such
that

api(A) < pn2(A) = puri(A),
for A € ‘B satisfying AN I = 0.

Theorem 2.2 Let ju1, oy € M. If 1 and o are equivalent, then
e(LP(0, 15 X), u1) = e(LP(0, 15 X), pu2)
and
PAAP(R, X, u1) = PAAP(R, X, up).

Proof Letus show that e(L” (0, 1; X), u1) = e(L?(0, 1; X), u2). Since 1 ~ wuo and
‘B is the Lebesgue o-field, we obtain for r sufficiently large
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t+1 %
i [ {erel=rrNI: (/ ||f(s)||”dS) > €
o t
B w1 ((=r I\ 1)

t+1 %
ma | yrel=rri\I: (/ ||f(S)|I”dS) > €
1

<
N m2([—r, rI\ 1)
+1 »
M1 IG[—F,V]\IZ(/ ||f(S)||pdS) > €
t
B
T mr([=r, rI\ )

Using Theorem 2.1, we deduce that e(L”(0, 1;X), 1) = &(LP(0, 1; X), wo).
From the definition of a p-SP-pseudo almost automorphic function, we deduce that
PAAP(R, X, u1) = PAAP(R, X, ua). o

We give sufficient conditions for the translation invariance of the spaces of u-S”-
pseudo almost automorphic functions.

[15] Hypothesis (HO) holds if and only if, for all T € R, there exist a constant
B > 0 and a bounded interval / such that

p(t+71)<pPp) ae onR\I.

Lemma 2.5 [15] Let u € 9. Then w satisfies (HO) if and only if the measures (1 and
W are equivalent for all T € R.

Lemma 2.6 [15] Hypothesis (HO) implies for all o > 0,

: p(l—=r —o,r+ol
lim sup < 4o00.
r——+00 u(=r,rD

Theorem 2.3 Let € M satisfy (HO). Then e(L? (0, 1; X), ) is translation invari-
ant, and therefore PAAP (R, X, ) is also translation invariant.

Proof The proof of this theorem is similar to that of [15, Theorem 3.5]. First,
it is clear that AS?(X) is translation invariant, and it remains to prove that if
f € eLP0, 1;X),n) then f; € e(LP(0,1;X),n) for all T € R. Let f €
e(L?(0,1;X), ) and T € R. Since u(R) = +o0, there exists ryp > 0 such that
w([—r —|t|,r +||]) > Oforall r > rg. In this proof, we assume that » > ry. Let us
denote by

t+1 7
K. (r) = —1 / (/ N7 ds) du.(t) for r>0andt € R,
me([=r,r]) [—rr] \Jt 2.4)
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where 1 is the positive measure defined by (2.1). Using Lemma 2.5, it follows that
u. and p are equivalent, then by using Theorem 2.2 we have e(L? (0, 1; X), u;) =
e(LP(0, 1; X), u), therefore f € e(L?(0, 1; X), u;), thatis

lim K.;(r) =0, forallt eR. 2.5)
r—-+00

For all A € ‘B, we denote by x4 the characteristic function of A. Using definition of
the measure (t;, we obtain that f[_r  Xadpc(t) = f[_rH r o) XAt =T)dp(t) for

1

all A € 98, and since 1 ( f“ ||f(s)||Pds) " is the pointwise limit of an increasing

sequence of linear combinations of characteristic functions [Theorem 1.17], we deduce
that

t+1 7 +1 3
/ (/ |ummpw) due () =/’ (/ nfm—rm”m)
[—rr] t [—r+T,r+1] t
xdu(t). (2.6)

From (2.1), (2.4), and (2.6), we obtain

1 t+1 %
K: = _ p .
" pl=r +7,r +71) Ji—rtrr+1] (/r 176 =0l ds) o

If we denote by T := max(t, 0) and 7~ := max(—r, 0), we have || + 7 = 277
and |[t| —7 =2t ;andthen [—r +7 — |t|,r + 7+ |t|] = [-r — 2t 7, r +277].
Therefore, we obtain

Ko (r + 7))

1

P

1 t+1 )
- w(—=r —=2t=,r +2t%)) Ji—p—or— ri204] (/t I f(s =)l dS)
xdp(). 2.7

From (2.7) and the following inequality

1 1+1 H
I Y — rd d
w(—r,rl) /[—r,r] (/z It =l s) wo)

1 t+1 %
s——————/' (/ nf@—rwpw) du (o).
w(l=r,rD) Ji—r—2c= r420+1 \Us

we get
1
1 1+1 b w(—r =277, r+2t1])
L —oPds) d
W=D Fﬁﬂ(xj 176 =0l s) ) = (=, D
Ko (r + 7)),
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which implies

1

| 1 , w(l—r — 2[el.r + 21zl
L —oIPds) d
(=D /[_m (/ A s) o = (=, 1D

x K. (r + |7). 2.8)

From (2.5) and (2.8) and by using Lemma 2.6, we deduce that

1 1+1 H
. _ B » B
VLHEOO w([=r,r]) [—r,r] (/t CASY ds) du(®) =0,

thatis f_; € e(L?(0, 1; X), u) for all T € R. Then e(L? (0, 1; X), ) is translation
invariant. This ends the proof. O

Theorem 2.4 Let uw € M satisfy (HO). If f € PAAR,X,u), then f €
PAAPR,X, n) for each 1 < p < oo. In other words, PAAR, X, u) C
PAAP(R, X, p).

Proof In the proof of this theorem, we follow the same reasoning as in the proof of
[11, Lemma 2.4]. Let f = g + h where g € AA(X) and & € ¢(R, X, i). From [6,
Remark 2.3], we know that the function g € AA(X) C ASP(X).

Next, let us show that h® € ¢ (L?(0, 1; X), w). For r > 0, we see that

1
1 1 7
h(t+ )7 d. d
W=D Jirn (/0 el S) o
1

1 ! g
< — / sup ||h(t + )P ds ) du(r)
w(=r.rD) Ji=r.r1 Vo sefo.1

1
1 P
( sup ||h(t+s)||p) du(t).
[=rr]

E J—
w([—=r,r]) s€l0,1]

Let so € [0, 1] such that sups[o 17 12( + ) || = [|A(z + so) [|. Then, we deduce

1 1 s
T h rq d
u([=r,rD /[—r,r] (/0 1+l S) A

1

1 P
< — sup [|h+ )7 ) du)
w([=r,r]D Ji=rr1 \sel0.1]

S Rt + 50)17)7 d
SM([_r’r]) [_r’r](ll (t +50)17) 7 dp(r)

1
= h d .
2D o, WG+ 0l du)
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Using the fact that ¢(R, X, 1) is translation invariant, it follows that lim, _, o, m

f[_r,r] At + s0)|| die(r) = 0. Hence, h® € & (LP(0, 1; X), ). The proof is then
completed. O

Theorem 2.5 Let u € Mand f € PAAP (R, X, u) be such that f = g + h, where
g € ASP(X) and ht e e(LP(0, 1; X), ). If PAAP (R, X, w) is translation invariant,
then

{g(t) :t e R} C{f(t):t € R}, (the closure of range f).

Proof The proof is an adaptation of [15, Theorem 4.1]. Suppose that the above claim
is not true, then there exist constants 7y € R such that g(#p) ¢ {f(¢) : t € R}. Since
the space AS? (X) and e(L? (0, 1; X), ) are translation invariant, we can assume that
to = 0, then there exists a constant € > 0 such that

lg©) — f(®)ll, > 2¢, forallr € R,

where || - || , denotes the normin L” (0, 1; X). Since g’ € AA(LP(0, 1; X)), fore > 0,
let

Ce={teR:1g®) —gO), <e}.

By [8, Lemma 2.12], there exist constants sy, ..., S, € R such that U;"zl(si +Ce) =
R. From the fact that f = g + & and the Minkowski inequality, for all # € C¢, we
have

IOy =117 @) — gDl = 11800) = fFDIlp — Ig@) — g0, > €.
Then it follows that
|h(t —s)llp, >€ foralli=1,...,mandtes; + C..
Let H(r) :== > /., [lh(t — 5;) || ,. From the previous inequalities, we have the fact that
H(t) > €, forallt € R. 2.9)

In view of e(L?(0, 1; X), ) is translation invariant, then [t —— h(t — s;)] €
e(LP(0,1;X), u) foralli € {1,...,m}. Hence H € ¢(L? (0, 1; X), 1), which con-
tradicts the relation (2.9). This finishes the proof. O

Theorem 2.6 Let 1 € M. Assume that PAAP (R, X, w) is translation invariant. Then
(PAAPR, X, w), || - llsp) is a Banach space.

Proof Let (fy)neny € PAAP (R, X, n) be a Cauchy sequence for the norm || - || g».
By definition, we can write f,, = g, + hy, where (g,),en C ASP(X) and (hZ)nEN -
e(L?(0, 1; X), ). From Theorem 2.5, we obtain that

{gn() 11 € R} C{fu(®) : 1 € R}
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1018 Y.-K. Chang et al.

Hence, we easily deduce that (g,),cN is also a Cauchy sequence for the norm || - [|sr.
Thus there exists a function g € AS?(X) such that ||g, — g|ls» — Oasn — oo. Using
the previous fact, it follows that i, = f, — g, is a Cauchy sequence with respect to
the norm || - ||sr. So there exists a function 2 € BSP(X) such that ||k, — h|lsp — O
asn — o0o.

Now for r > 0,

1 t+1 %
_ h rd d
(. 1) /[_r,r] (/t 1l S) Ho
1 t+1 %
< —/ (/ 1hn(s) —h(S)||pdS) du ()
u([=r,r] [—rr] t

1 t+1 , %
_— hy d d
b /[] (/t 1 (s)] s) (1)

1 t+1 %
< Ilhn —hllsr + ——— (/ Ilhn(S)Il”dS) du(t).
wl=r,r]) Ji—r.r \Us
It follows that
1 t+1 %
lim sup —— (/ lh(sH|1P ds) du(t) < ||hy, — h|sp forall neN.
rooo p([=r,r]) [—rr] t

Since lim,,— 0 ||k, — h|lsp = 0, we deduce that

1 t+1 %
lim ———— / ( / 1h(s)11? ds) du(t) = 0,
=00 M([—V, r]) [—r,r] t

thatis, f = g+h € PAAP(R, X, u). So PAAP (R, X, u, || - |lsr) is a Banach space.
O

From Theorem 2.5 and the proofs of [15, Theorem 4.7], we have the following
result.

Theorem 2.7 Let n € M. Assume that PAAP (R, X, u) is translation invariant.
Then the decomposition of a u-SP-pseudo almost automorphic function in the form
f =g+ h, where g € ASP(X) and hb e e(LP(0, 1; X), w), is unique.

Lemma 2.7 [11] Assume that f € ASP (R x X, X) and f(t,x) is uniformly con-
tinuous on each bounded subset K' C X uniformly fort € R. Ifu € ASP(X) and
K = {u(t) : t € R} is compact. Then f (-,u(-)) € ASP(X).

(H1) There exists a constant L. > 0 such that for all u, v € Xand r € R,

If (@ u) = f@ o)l < Liu—vl.
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Lemma 2.8 [21] Suppose that f € ASP (R x X, X) and the following condition
holds.
(H2) There exists a constant L > 0 such that for allu,v € X andt € R,

141 v
(/ IIf(t,u)—f(f,v)llpdS) < Llju — vl
t

Ifu e ASP(X) and K1 = {u(t) : t € R} is compact. Then f(-,u(-)) € ASP(X).

Lemma 2.9 [21] Suppose that f = g+ h € PAA? (R x X, X) with g € ASP(X),
ht € AAG(LP(0, 1;X) and f satisfies condition (HI), then the function g satisfies
condition (H2).

Now, we recall a useful compactness criterion.
Let 7 : R — R be a continuous function such that #(¢) > 1 for all t € R and
h(t) — oo as [t| — oo. We consider the space

_ Cm O _
Cr(X) = [u e CR,X): lt‘h_r)noo ok 0

ol
[ON

Endowed with the norm |||, = sup,cg “Z it is a Banach space (see [22]).
Lemma 2.10 [22] A subset R € C,(X) is a relatively compact set if it verifies the

following conditions:

(c-1) The set R(t) = {u(t) : u € R} is relatively compact in X for each t € R.

(c-2) The set R is equicontinuous.

(c-3) Foreach € > O there exists L > 0 such that |u(t)|| < €h(t) forallu € R and
all |t| > L.

Lemma 2.11 [23] (Leray—Schauder alternative theorem) Let D be a closed convex
subset of a Banach space X such that 0 € D. Let F : D — D be a completely
continuous map. Then the set {x € D : x = \F(x),0 <\ < 1} is unbounded or the
map F has a fixed point in D.

3 Composition Theorems of j-S?-Pseudo Almost Automorphic
Functions

In this section, we prove some composition theorems for p-Stepanov-like pseudo
almost automorphic functions under suitable conditions.

Theorem 3.1 Let i € M. Suppose that f = g+ h € PAAP(R x X, X, n) with
g € ASP(R x X, X), h? € (X, LP(0, 1; X), u) and (HI) holds. If p = a + B €
PAAP(R, X, u) witha € ASP(X), % € e (LP(0, 1; X), u) and K1 = {a(1); t € R}
is compact. Then f(-, ¢(-)) € PAAP (R, X, ).
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1020 Y.-K. Chang et al.

Proof Let f(t,u) = g(t,u) + h(t,u), where g € ASP(R x X, X), and e
e (X, L?(0, 1; X), u) . Moreover, let ¢(t) = «a(t) + B(t), where @ € ASP(X), and
BL e e (LP(0,1;X), n).Itis easily verified that

ft o) =g, a@®)+ f @) —gt, al))
=gt a@)+ f @) — f@ a@)+h al)).

Define

G)=g @, a(), F@)=[fEe@)—fEa@), H@) =h(ad).
Firstly, we show that G(r) € AS?(X). In fact, by the same reason of Lemma 2.9,
we have that the function g satisfies condition (H2). Note that g € AS? (R x X, X),
a € ASP(X) and K| = {a(t) : t € R} is compact. Thus, by Lemma 2.8, we obtain

G(t) € ASP(X).
Secondly, we claim that F?(r) € e (LP(0, 1; X), i) . Actually, by (H1), we have

" L .
(/ ||F<s>||f’ds) _ (/ If (5. 9()) — f (5. ae(s)) ||"ds)
t t
1+1 3
sL(/ ||<p<s>—a(s)||Pds)
t

t+1 7
<L (/ IIﬂ(s)II”ds) ,
t

thus, for r > 0,

1 t+1 » % L
[ — F d d < —
) [r,r,(/f IE@I ) L e

r+1 !
x ( / IIﬂ(s)II”ds) auo).
t

1

) 1 t+1 » ?
Jim e (/ IF(s)] ds) du(t) = 0,

which implies F?(-) € € (L?(0, 1; X), u1) .
Finally, we also claim that HP(-) € ¢ (LP(0, 1; X), w) . In fact, let € > 0. Since g
satisfies condition (H2), there is a § > 0 such that

1+1 H
(/ llg(s, u) — g(s, v)ll”dS) <e
t

Note that 8% € ¢ (L?(0, 1; X), ), we have
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forallt € R, u, v € X with |ju — v|| <§.Putdy = min{e, §}. Then

141 h
(/ lh(s, u) — h(s, v)||pds)
t
1+1 » 1+1 B
< (/ Il f(s,u) — f(s, U)||pds) +(/ llg(s, u) — g(s, U)||pds)
' '

< (L+ e 3.1
forallt € R, u, v € Xwith ||u — v|| < dp.
Since K1 = {«(t) :t € R} is compact, there are finite open balls Uy(k =
1,2, ..., m) with center x; € K| and radius §p (small enough) such that

{a) :t e R} C | Uk
k=1

Define and choose Dj such that

m
Dy ={s eR:al(s) € Uy}, R:UDk,

k=1
and let
k—1
J1 = Dy, Jk:Dk\UDj 2 <k <m).
j=1
Then

JinJj =0, when i#j, 1<ij<m.

Define the step functionx : R — X by x(s) = x¢, s € Jk, k =1,2..., m. Itis easy
to see that ||a(s) — X (s)|| < §o for all s € R. It follows from (3.1) that

1 t+1 p %
_— H d d
wr D) Jion (/t 1Al s) )

1 1+1 >
=N h(s, rq d
u([=r,r]) /[—r,r] (/t Ih(s, ) S) o)
1

t+1
< ( / Ih(s, as)) — h(s,f(s))ll”dS)
w(=r.rD Ji—rn t

t+1 H
+ (/ A (s, X(s)II” dS) du(t)
t

p
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m

1 v
<L+De+ —0- / hs. ry s
( 8 w(l=rr]) Ji-rr (l; [t 1+11NJk 1, 2l S) o)

— L + I € + E 1 t+ 1
[ 7 P
- d
) ( ) k=1 M( 5 1 ]) - rr] (‘/t ” (S’ xk)” ds) “(t)

Using the arbitrariness of € and hb ce (X, LP(0, 1; X), i) , we obtain that

1 t+1 1%
lim — (/ ||H(s)||pds) du(t) =0.
r—oo pu([—r,r]) [—r.r] t

That is, H”(o) € ¢ (LP(0, 1; X), u) . This completes the proof. O

Lemma 3.1 Let u € 9. Assume that x(t) € ASP(X), K = {x(#):t€R}isa
compact subset of X, and f* € e (X, L?(0, 1; X), p) satisfying that Ve > 0,38 > 0
and L(-) € BSP(R) with p > 1 such that

1
141 »
(/ If (s, x) — f(S,y)IlpdS) < L()e, (3.2)
t

forall x,y € Ky with || x — y|| < 8. Then

1

1 t+1 )
lim —— ( / TN ds) du() = 0
r—oo pu([—r, r]) [—r.r] t

whenever |
lim —— L(t)du(t) < oo. 3.3)
r=o0 pu([—r, r]) [—r,r]

Proof For Ve > 0, let § and L(¢) be as in the assumptions and §o = min{e, 8} since
K> is compact, there are finite open balls Ox(k = 1,2, ..., m) with center x; and
radius §q such that

x@):teRC | Ok
k=1

Define and choose By, such that
By ={teR:|xt)—x¢|| <}, k=1,2,...,m.

Then R = UZI=1 By, and let Ey = By, Er = By \ (Uf;llBi) (2 < k < m). Then
R = Ul Exand E;(\E; = ,i # j, 1 <i,j < m. Define the step function
X : R —- X, byx(t) = x¢p fort € E,k = 1,2,...,m. It is easy to see that
lx() —x()|| < 8o, for all + € R. By the definition of & (L?(0, 1; X), u), for the
above € > 0, there is constant ryg > O such that forallr > rpand 1 < k < m,
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1

1 t+1 ? €
—/ (/ ||f(S,xk)||pdS) du(t) < —, (3.4
u(—r,r]) [—rr] t m

Then, by (3.2) we have

t+1 % t+1 »
(/ IIf(s,x(s))II”ds) =< (/ IIf (s, x(s)) — f(s,f(S))II”ds)
t t
141 7
+ (/ IIf(s,)?(S))II”dS)
t
1

< Le+ / IfGs.xpllPds )
(k; Ex Nz, 14+1] 5k S)

Now combining (3.3), (3.4) and the above inequality, we get

1 1+1 h
—/ (/ I1f G, X(S))H‘"dS) du(t)
I'L([_rv }"]) [—r,r] t

€
_ L(t)d
= u(=r,r] /[—r,r] (©)dute)

m

1 P
+— ’ py J
pl=r.rD /[r‘r] ;(/Ek Nlr.r+1] 17wl S) o

€
_ L(t)d
= u(l=r,r] /[—r,r] (D0
1

c 1 t+1 1
+ - ’ py J
]; w(=r,rD Ji=r.1 (/t LS Cs, i)l s) w(t)
€ m ¢
=r D L()d =
Sy /[m O)dp(t) + g —

€
_ L(t)d
= u(l=r,rD /[—r,r] (Odyult) ¢

1
_ L(t)d 1)e.
= (M([_r’ r] /[—r,r] (o) + ) ¢

For all r > rg, we have

1

1

1 t+1 ?
lim —/ (/ ||f(S,X(S))||pdS) du(r) = 0.
r=o0 u([—r, r]) [—r,r] \Jt

O
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Theorem 3.2 Let n € Mandlet f = g+ h € PAAP R x X, X, n) with g €
ASP R x X, X), h? € ¢ (X, LP(0, 1; X), ). Assume that the following conditions
are satisfied:
(1) There exists a nonnegative function L(-) € BSP(R) satisfying (3.3) with p > 1
such that for allu,v € X andt € R,
1

t+1 ?
(/ If(s,u) = fs, v)II”dS) < L@®)|lu — vl
t

(ii) g(z, x) is uniformly continuous in any bounded subset K "cX uniformly for t €
R.Ifu =ui1+uy; € PAAP(R, X, w),withu; € AS? (X), ug ee(LP(0,1;X), 1)
and Ky = {u1(t) : t € R}iscompact, then f (-, u(-)) belongsto PAAP (R, X, ).

Proof Since f € PAAP (R x X, X, ) and u(r) € PAAP(R, X, n), we have by

definition that f = g + h and u = u; + up where g € AS? (R x X, X), h’ e

e (X, L?(0, 1;X), n), u; € ASP(X), and ug € e (LP(0, 1; X), u). Now, the function

f can be decomposed as

f @ u@®) =g @ ui@®)+ f, u@) — g, ui @)
=g ur() + ft,u@®) — f @t ur @) +h u@)).

Define
Gt)y=g@,ui()), F@O)=f@u@®)—fu @), H@=h(u@).

Then f (¢, u(t)) = G(t) + F(t) + H(t). Since the function g satisfies condition (ii)
and K» = {u1(¢) : t € R} is compact, it follows from Lemma 2.7 that the function
g (G, u1(-) € ASP(X). To show that f (-, u(:)) € PAAP(R, X, ), it is sufficient to
show that F?+H? € ¢ (L?(0, 1; X), ). First, we prove that F? e e(LP(0, 1;X), p).
It is easy to see that F(-) € BS?(X). Assume that || F(¢)||s» < M for ¢t € R. For any
€ > 0,by (i) and I = , we have

1 t+1 %
—_ F(s)|Pd d
ul=r.rD) Ji-rn (/t 1l s) Ho

1

1 t+1 » P
= F d d
w (=7, 1) Agn>([m 17l s) o

1
R

(A5 (u2)) 1 (/z+1 )1‘7
M L ds) d
= w([—=r,r]) + w(=r, D Je Q) t lua(s)1Pds w(t)

pAw) 1
w(=rr) " w=rr) S

1

t+1 >
(/ Ilf (s, u(s)) — f (s, ui(s)) ||Pds) du(t)
Be(uz) \Ji

L(t)du(1),
where I, AS(u2), Bf (u2) are given in Theorem 2.1.
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On the other hand, it follows from Theorem 2.1 that
WAL ()
r—o00 u([—r,r])
So we get

1

1 t+1 ?
lim ———— (/ I F(s)|P ds) du(r) = 0.
r—>oo u([—=r,r]) Ji—r.r1 \Us

Therefore, F? € & (LP(0, 1; X), i) . Next we prove that HY € &(LP(0, 1;X), p).
K> = {uy(t) : t € R} is compact in X, and g(t, x) is uniformly continuous in any
bounded subset K C X uniformly for # € R. Thus for any € > 0, there is a constant
6 € (0, €) such that

t+1 P
(/ llg(s, u) — g(s, v)ll”dS) <€,
t

t €R, u,v e K, with |ju — v|| <4. By (i), we have

t+1 ,17 t+1 %
(/ h(s, u) — hs, v)II”dS) < (/ I f(s,u) — fs, v)II”dS)
t t
t+1 >
+(/ lg(s, u) — g(s, v)II”dS)
t

< (L()+ De.

Forallt € Rand u, v € K, with ||lu — v|| < . Noting that (L(z) + 1) € BS?(R), we
know from Lemma 3.1 that

1

" :
lim ———— ( / 1A (5. 01 (s)) ||1’ds) du() = 0,
r=00 w([=r,r]) Ji—rq \Us

which means that H? € ¢ (L?(0, 1; X), w). This completes the proof. O

Theorem 3.3 Let w € Mand let { = g+ ¢ € PAAP (R x X, X, u) with
g € AS? R x X, X), and ¢>b € ¢ (X, LP(0,1;X), u). Assume that the following
conditions are satisfied:

(1) f(t,x) is uniformly continuous in any bounded subset K "cX uniformly for
teR.

(2) g(t, x) is uniformly continuous in any bounded subset K ‘X uniformly for
teR

(3) For every bounded subset K c XAf(G,x):x € K/} is bounded in PAAP (R x
XX, w).
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Ifx = a+p € PAAPR, X, n) N BR,X), with « € ASP(X), p’ €
e(LP(0,1;X),u) and Q = {x(t) : t € R}, Q1 = {a(t) : t € R} are compact, then
f (-, x(-)) belongs to PAAP (R, X, ).

Proof Since f € PAAP(R x X, X, u) and x € PAAP (R, X, 1), we have by defini-
tion that f = g + ¢ where g € AS?” (R x X, X) and ¢* € ¢ (X, L?(0, 1; X), u). So,
the function f can be written in the form:

fax@®) =g, a@)+ f x@) — gt all))
=gt,a®) + ft,x(t)— ft, a®)+¢ @ a)).

Define
Gt)y=gt,a@t)), HO=[fEx@®)— fta®), A1) =¢( a()).

Then f (¢, x(t)) = G(t) + H(¢t) + A(¢). Since the function g satisfies condition (2)
and Q1 = {«(¢) : t € R} is compact, it follows from Lemma 2.7 that the function
g (,a() € ASP(X). To show that f (-,x(-)) € PAAP(R, X, ), it is enough to
show that H? + A? € & (LP(0, 1; X), n).

First, we prove that H c¢ (L?(0, 1; X), ). Since x(-) and «(-) are bounded, we
can choose a bounded subset K~ C X, such that x(R), ¢(R) € K ". Under assumption
(3) that H(-) € BS?(X), from (1) we can see that f is uniformly continuous on the
bounded subset K’ C Xuniformly for r € R. So given € > 0, there exists § > 0, such
that u,v € K and lu —v|| < 8 imply that | f(t,u) — f(t,v)]] < e forallt € R.

Then we have ]
1+1 1
(/ 1L sy u) = £, v)||”ds) <e
t

Hence, foreach t € R, ||B(s)|lsr < §,s € [t,t + 1] implies that for all r € R,

1+1 B 141 »
(/ ||H(S)||pds) = (/ ILf (s, x(s)) — f (s, a(s)) ||pdS) <e.
t t

Therefore, the following inequality holds:

u [r € lorrls (14 1£ox(60) = Fs.aloIPds) > e}
p(l=r.r])
u [r e Lot (S 1O 85)” > 6]
7D |

=<

Since B is p-ergodic, Theorem 2.1 yields that for the above-mentioned § we have

1
z {t el=rrl: (S 1B ds)” > a]
lim

oo w(=r.rD)

=0,
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and then we obtain

1
L [r e l=rrl: ([ 1fGox) = s, a@)Pds)” > e]
lim

=0. 35
S w(r.r) G2

With the help of Theorem 2.1, (3.5) shows thatt — H bis u-ergodic.

Now to complete the proof, it is enough to prove that A? is u-ergodic. Since f, g
satisfy conditions (1) and (2), then for any € > 0, there exists § > 0, such that
u,v € Q1 imply that

1

t+1 7 €
(/ ||f(s,u)—f(s,v)llpd3) <— teR,
t 16

and

41 b
/ lg(s,u) —g(s,v)|Pds) <-— teR.
t 16

Now, we put §o = min(e, §), then

1

r+1 !
(/ lp (s, u) — (s, v)||”ds)
t

IA

t+1 1
(/ | f(s,u) — f(s, v)||”ds)
t
t+1 %
+ (/ llg(s, u) — g(s, v)|I” ds)
t

€
< _
-8
forallz € R, and u, v € Q1 with |lu — v|| < d.
Since Q1 = {a(t):t € R} is compact, we find finite open balls Ox(k =
1,2,...,m)withcenteru; € Q1 andradius dp given above, suchthat{«(?) : t € R} C

UL | Ok. Define and choose B such that By = {r € R : [|a(?) — uxll < o}, k =
1,2,...,m, R =U" DB, and set & = By, & = By \ (u’;;}%j) (2 <k <m).
Then R = UZLIQEk and &; ﬂij =0,i # j, 1 <i,j < m. Define a function
u:R—> Xbyu() =uyfort € &, k=1,2,...m. Then ||a(r) — u(?)|| < &o for
all r € R, it is easy to get from

(Z / I (s, (s)) — B s, Mk)”pds)
=1 €& Nlt.t+1]

1+1 v
= (/ ¢ (s, a(s)) — & (s, uls)) IIPdS)
13

oo m
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Since d)b € e (X, LP(0,1; X), n), there exists a constant ro > 0, such that

1 t+1 , % .
M/[_”] (/t lg (s, ur)ll ds) du(t) < o

forallr > rpand 1 <k < m.
Now combing these estimates, we deduce that for all r > rg

1 d t+1 » %
_ A ds d
el (/ 1AW s) (1)

1 m ) F
- a(s) =@, ol ds)) a
T (Z( /@mwm 16 (5. () b s, i)+ (5. )| s)) ()

k=1
1 m
< — 27 L) — ¢ (s, )P d
(T [”][ k§:l( /G s 16D = B0 ds

1

14
+ / (s wi)]|” ds)} (o)
E Nz,t+1]

1

2”% 1+1 >
== (/ llp (s, a(s)) — @ (s, u(sHI? dS) du(r)
M([_r: I‘]) [—r,r] t
21+% m P
+ s, P ds du(t
w(l=r.rD) Ji=rn (; /esk Alr.r+1] s, w0l Y) w(o
1 1
4 € " 4dmr 1+1 P
— sdu@®+ D) ———— / s, pdA)dt
< 7D Sy 8O g Ty . ( oG unl”ds ) du@)
< 5 + m% o < €,
which implies that Ab e g (LP(0,1;X), u). This completes the proof. O

4 Existence of u-Pseudo Almost Automorphic Solutions

In this section, we consider the existence of j-pseudo almost automorphic mild solu-
tions for the problem (1.1) under some suitable conditions.

Definition 4.1 A continuous function u is called a -pseudo almost automorphic mild
solution of Eq. (I1.1) on Rifu € PAA(R, X, i) and u(r) satisfies

'
u(t) = U, a)u(a) +/ U(t,s)f(s,u(s))ds

fort > a.

First, we list the following basic assumptions:
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In this paper, we assume that {A(¢)},cr satisfies the Acquistapace—Terreni condi-
tions introduced in [16,24], that is,

(A1) there exist constants ho > 0,6 € (§,7), £, K > 0,and a, B € (0, 1] with
o + B > 1 such that

g U{0} C p(A(1) = o), [IRCh, A() —ho)ll <

1+ |\l

and
ICA@) — M) RO, A1) — 20)[R (o, A1) — R(Onos AG)IIN < L1t — s|%0 7P

fort,s e R, n € 3 :={n € C\ {0} : |]arg)r| < 6}.

Remark 4.1 [16,25] If the condition (A1) holds, then there exists a unique evolution
family {U (¢, )} —co<s<r<oo On X, which satisfies the homogeneous equation u'(t) =
Au(t),t e R.

We further suppose that

(A2) the evolution family U (¢, s) generated by A(t) is exponentially stable, that is,
there are constants K, @ > 0 such that ||U (¢, s)| < K e @t=%) forall t > s.
And the function R x R — X, (¢, s) — U (¢, s)x € bAAR x R, X) uniformly
for all x in any bounded subset of X.

(A3) There exists a constant £ ¢ > 0, such that

If @ x) = f&. I = Lrllx =yl

forall r € Rand each x, y € X.
(A4) There exists a nonnegative function L ¢(-) € BS?(R) with p > 1 such that

If@ x)=faE I<Lr®lx=yl, rl_i)rgoﬁ/[_r,r]qu(l)du(t)<oo

forall r € R and each x, y € X.
(AS5) The function f : R x X — X satisfies the following conditions:
(I) There exists L > 0 such that

1

t+1 » L
My= sup (/ ||f(s,u(S))||”dS) <
t

teR, ul <L T AK,q, o)’

where A(K, g, w) = K q/%;lz;jil e n,

D Let {x,} ¢ PAAR, X, ) be uniformly bounded in R and uniformly
convergent in each compact subset of R. Then {f (-, x,,(-))} is relatively
compact in BS?(X).
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(A6) The function f = g+ h € PAA? (R x X, X, u) where g € AS?” (R x X, X)
is uniformly continuous in any bounded subset M C X uniformly in # € R and
h? e e (X, LP(0,1;X), p).

(A7) fe PAA? (R x X, X, u) and f (¢, x) is uniformly continuous in any bounded
subset M C X uniformly for # € R and for every bounded subset M C X,
{f(,x):x € M}isbounded in PAA? (R x X, X, ).

Consider the following abstract differential equation in the Banach space (X, || - ||)
W' () =AMu@) + f(), teR, 4.1)

where {A(t)},cRr satisfies the condition (Al)and f € PAAP (R, X, u) NC(R, X) for
p > 1. Throughout this paper, we set ql =1- % Note thatg # 0, as p # 1.

Lemma 4.1 Let u € M. Assume that (AI)—(A2) hold. Then the Eq. (4.1) admits a
unique |-pseudo almost automorphic mild solution given by

t
u(t) = / U(t,o) f(o)do. “4.2)

Proof The proof of uniqueness has been given in [13]. Now let us investigate
the existence. Since f € PAAP(R,X, u), there exist g € ASP(X) and h’ €
e (LP(0, 1; X), u) such that f = g + h. So

t t t
u(t) =/ U(t,o)f(o)do :/ U(t,o)g(o)do +/ U(t,o)h(o)do

—00

=)+ V1),

t t
where & (1) =/ U(t,o)g(o)do,and ¥ (r) =/ U(t,o0)h(o)do. We just need
—0o0 —0oQ
to verify ®(r) € AAX) and W (¢) € ¢ (R, X, w). First we prove that (1) € AA(X).
It follows from [5, Lemma 11.2] that & (¢) is almost automorphic. Next, we prove that
V() ee R, X, ).
For this, we consider

t—n+1
W, (1) = / U(t,o)h(o)do,
t—n

foreacht € Randn = 1,2, 3.... From assumption (A2) and Holder’s inequality, it
follows that

t—n+1
1w, ()] < K / e | h(o)| do

t—n
1

t—n+1 ql t—n+1 i
<K (/ g"q0—0) da) (/ Ih(o)||? do)
t—n t—n
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no o % t—n+1 %
K / e 1% g / Ih(o)||? do
n—1 t—n

1
1

K —qw(n—1) —qon'\ 4 ot p ’
(e —e ) Ih(o)|? do
Yqw t—n

1

Ke—on 1 t—n+1 7
Jao (! — 17 (/ IIh(U)II”dG)
t—n

Ke—wn

N 1 t—n+1 %
! (/ ||h<o>||f’do)
t—n

Then for » > 0, we see that

1
_— v, d
(D) /[_r’r] W (D1 dpa(2)

Ke—wn

1 t—n+1 %
qw+1 s n Pyg d .
vao & TV /[_m (/,_ [2()] “) ui)

Since h? € ¢ (L?(0, 1; X), 1), the above inequality leads to ¥, € ¢ (R, X, ). The
above inequality leads also to

IA

IA

IA

IA

Q=

—wn

1
€+ Dllhllsr.
w

Ke
W @] <

Since the series

@ + 1)1 x Ze_“’"

\/_

is convergent, then we deduce from the Weierstrass test that the series Z —1 Yu(t)is
t

uniformly convergent on R and ¥ (¢) = / U(t,o)h(c)do = Z W, (t). Applying
- n=1

v, € ¢ (R, X, n) and the inequality

1 n
_ v d () — Y d
AT ), IWONaRO = G | @ k; k(O (o)

c 1
I e,
;; w(=r,rD Ji—rn IV (2)] dee(t)

we deduce that the uniform limit W (¢) = z;’,ozl v, (t) € ¢ (R, X, n). Therefore,
u(t) = ®(r) + W(r) is u-pseudo almost automorphic.
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Finally, let us prove that u(¢) is a mild solution of the Eq. (4.1). Indeed, if we let

u(s) = /s U(s,o0)f(o)do “4.3)

—0oQ
and multiply both sides of (4.3) by U (¢, s), then

N

Ul(t, s)u(s) :/ U(t,o) f(o)do.

If t > s, then

N

' '
/ U(t,a)f(o)do:/ U(I,U)f(a)do—/ U(t,o)f(o)do

—0o0 —0o0

=u(t) — U, s)u(s).

It follows that

t
u(t) =U(t, s)u(s) +/ U(t,o)f(o)do.

This completes the proof of the theorem.

Theorem 4.1 Let u € 9. Assume the condition (HO), (A1)—(A3) are satisfied and
the function f = g+ h € PAAP(R x X, X, u) with g € ASP (R x X, X), and
ht e e (X, LP(0,1;X), ). Then Eq. (1.1) has a unique p-pseudo almost automorphic
mild solution on R provided that KTLf < L

Proof LetT' : PAAR, X, u) > PAA(R, X, u) be the nonlinear operator defined
by

t
(Tu)(t) =/ Ut,s)f (s,u(s)) ds, teR.

First, let us prove that ' (PAA(R, X, n)) C PAAR,X, u). For each u €
PAAR, X, ), by using the fact that the range of an almost automorphic func-
tion is relatively compact combined with the above Theorem 2.4 and Theorem 3.1,
one can easily see that f (-,u(-)) € PAAP(R, X, ). Hence, from the proof of
Lemma 4.1, we know that (I"'u)(-) € PAA(R, X, u). Thatis, ' maps PAA(R, X, u)
into PAA(R, X, ).

Now, let us prove that I" has a unique fixed point. To this end, for each t € R,
u,v € PAAR, X, ), we have

t

[(Tu)(2) = (Cv)(@)l 5/ U@, LS (s, us)) — f (s, v(s)]l ds

t
<K / eI £ (s, u(s)) — f (s, v(s)) || ds
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t
<KLy [ e - vl ds
—00

IA

t
Kz:f/ e U dslu — v]l0o
—00

Kﬁf

IA

llu = vlleo.

So|ITu —T'v|le < KTLf |lu — v|lco. Hence by the Banach contraction principle with
KTﬁf < 1, T" has a unique fixed point # in PAA(R, X, ) which is the u-pseudo
almost automorphic solution to Eq. (1.1). O

A different Lipschitz condition is considered in the following result.

Theorem 4.2 Let u € M. Assume that (HO), (Al), (A2), (A4), and (A6) hold, then
Eq. (1.1) admits a unique p-pseudo almost automorphic mild solution whenever

1
1—e @ q
ILslsr < 52 (%) "

Proof Consider the nonlinear operator I' given by

t
(TCu)(t) =/ U(t,s)f (s,u(s)) ds, t €R.

Let u € PAAR, X, i), with Theorem 2.4 and Theorem 3.2, it follows that the
function s — f(s, u(s))isin PAAP (R, X, u). Moreover, from Lemma 4.1, we infer
that T'u € PAA(R, X, u), that is, I maps PAA(R, X, w) into itself. Next, we prove
that the operator I" has a unique fixed pointin PAA(R, X, u). Indeed, foreacht € R,
u,ve PAAR, X, u), we have

ITu(r) = Tv(@)] <

t
/ U, s)Lf (s, u(s)) = f (s, v(s))]ds

—00

t
<K / | £ (s, u(s)) — f(s, v(s)] ds

IA

t
K/ e UL p(s) dsllu — vllo
—00

t—n+1
/ Ke @=L ¢(s)dslu — vl
t

—n

n=1

2

n

1

t—n+1 q
/ qu—w‘“’—“ds) IL fllsellu — vlloo

t—n

K ] —e 9 %
ILrllsrlle — vlicos
wq

IA

=<
1l—e @
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which gives

K [1—e9\7
ICw) @) = V) Ol < 1_eﬂu( - )anfnwnu—zmw.

1

Since |[L¢llsr < 1’1‘{@ (lffc)—’iwq) “ Ihasa unique fixed point u € PAA(R, X, u).
o

We next study the existence of p-pseudo almost automorphic mild solutions of
Eq. (1.1) when the perturbation f is not Lipschitz continuous.

Theorem 4.3 Let i € 9. Assume that the conditions (HO), (A1)—(A2), and (A5)—(A7)
are satisfied, and moreover U (t, s) is compact for t > s. Then the problem (1.1) has
at least one [-pseudo almost automorphic mild solution on R.

Proof Consider the nonlinear operator I' given by

t
(T'x) (@) :/ U,s)f (s,x(s)) ds, t eR.

First, we show that the nonlinear operator I'" is well defined and continuous. From The-
orem 2.4 and Theorem 3.3, we can see that f (s, x(s)) € PAAP (R, X, u). Hence from
Lemma4.1, we can see that (I'x)(-) € PAA(R, X, ), thatis, ' maps PAAR, X, )
into PAAR, X, ).

Now, letus show that I" is continuouson PAA(R, X, u).Let{x,} ¢ PAA(R, X, u)
be a sequence which converges to some x € PAAR, X, ), thatis |[x, — x| = 0
as n — oo. We may find a bounded subset M C X such that x,(¢), x(t) € M for
teR,n=1,2,.... By (A7), for any € > 0, there exists w > 0 such that u,v € M
and ||lu — v|| < w imply that

Lf(t ) — (2,0 < %6 foreach 7 € R,

where w, K are given in (A2). For the above w > 0, there exists N > 0 such that
lx;(t) —x(t)]] < wforalln > N and all ¢ € R. Therefore,

ILf @ xn () — f, x(O)] < % foreachr € R,

for all n > N and all + € R. Then by the dominated convergence theorem, we have

t
[(Tx) (1) — (Px) (@) || = H/ U, s)[f (s, xa(s)) — f(s,x(s))]ds

t
<K [ NS — S ) ds
—00
t
< K/ em@=9 L€ 4 <e€
- K
foralln > N and all ¢+ € R. This implies that I" is continuous.
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For the sake of convenience, we divide the remaining proof into several steps.
Step I Let B = {x € PAAR, X, u) : ||xllco < L}. Then B is a closed convex
subset of PAA(R, X, n). We claim that I'B C B. In fact, for x € B and r e R, we get

t
IO = H / Ut )£ (s, x(s)) ds

t—n+1
Z / U(,s)f(s,x(s))ds
t—n

n=1

<

0 t—n

e U £ (s, x(s)) | ds

t—n+1 é t—n+l 117
( [ ds) ( | irexenre ds)
- f—n t—n
DK F e "My < L,
n=1 a@

which implies that ||[Tx||co < L. Thus I'B C B.
Step 2 We prove that the operator I" is completely continuous on B. It is sufficient
to prove that the following statements are true.

IA IA
iMe iM
= =
—

IA

B1) V() ={(Tx)() : x € B} is relatively compact in X for each t € R.
B2) 'x:xeB C PAAR, X, )} is a family of equicontinuous functions.

First, we show that (B1) holds. Let 0 < € < 1 be given. Foreacht € Rand x € B,
we define

r—e
(Tex) (1) =/ Ut,s)f (s, x(s))ds

1—e
=U(t,t—6)/ U(t—¢€,5)f(s,x(s))ds
=U(t,t —e)[(Tx)(t —e)].

Since U (¢, s)(t > s) is compact, then the set V¢ (¢) : {(T'ex)(¢) : x € B} is relatively
compact in X for each € R. Moreover, for each x € B, we get

t
[Tx) (1) = (Cex)@)| = ‘/ Ult,s)f(s,x(s))ds
t—e

t
<K / 09| £ (s, x(s))] ds
t—e

1
t q t P
fx(/ e—qu—wds) (/ ||f<s,x(s>>||"ds)
t—e r—e

1
/ 1

< KMy (/ e~ qw(—s) ds)q .
t—e
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Letting ¢ — 0, it follows that there is relatively compact set V, (¢) arbitrarily close to
V(¢) and hence V (¢) is also relatively compact in X for each # € R.

Next we prove that (B2) holds. Lete > 0be small enoughand —oco < #] < £, < 00.
Since {U (¢, s)} is exponentially stable and compactforz > s, thereexists§ = §(¢) < €
such that , — #; < & implies that

t t
U(tl,tl — E) — U(tz,ll — 5)
_ wE+n)

qo
WhereZ:(GKéMf)q < 1andy:3Kqu%Z;’ile 2

Indeed, for x € Band 1, — 11 < §, we have

< forall r > O,

€
14

(Tx)(2) — TxX) @Dl

1 —€
/ [U(t2. 5) — Ultr, $)1f (s, x(s)) ds

—0o0

<

+

3]
[ 0 = v s xn ds
n

—€

+

t
/2 U(ta, s)f(s,x(s))ds
1

=

/~ [U(ta,t1 —s) = U(t1,t1 — )1 f(t1 — s, x(t1 —5))ds
t

LK / D e oI £(s, x(s))]] ds
1—¢

%]
K / e~ £(s, x(s))| ds
n

~OO U t2,[1—5 -U l‘],l]—i U l]—i,tl—s f(tl—s,x(tl—s))ds
. 2 2 2

1 1
1 - 5] D
LK ( / [e-0R=9) | e=0li=5)p ds) ’ ( / 1f (s x (DI ds)'
I[*g tl—Z
1 1
t , 7 15} P
VK ( / e-qw“z-“ds) (/ ||f<s,x<s)>||Pds)
11 n

€ o ws 1 1
—K/ e T f (01 — 5, x(ty — )| ds + 2KET M + K87 M
Y 3

=

€ 0 €+n € 974 1
<-K Z/ e T f(t1—s, x(t1—9))|| ds+2K [(7) } M;+KEiMy
Y el €+n—1 6KMf

! 1

o] €+n s 7 cin 1
SKZ(/ e_qT ds) (/ ||f(t1—S,X(t1—s))||”ds) _|_E_|_E
Voo Vel Em—1 376

IA
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IA
\

€ 2(6% - = @tn) €
KMy | —— ~ S A
N o 2 3

€
y 6

n=1
<
-3 3 6

This implies that the set {I"x : x € B} is equicontinuous.

Now we denote the closed convex hull of I'B by coI'B. Since I'B C B and B is
closed convex, col'B C B. Thus, I'(coI'B) C I'B C coI'B. This implies that I" is
a continuous mapping from coI'B to coI'B. It is easy to verify that col'B has the
properties (B1) and (B2). More explicitly, {x(¢) : x € col'B} is relatively compact in
Xforeacht € R, and col'B C BC (R, X) is uniformly bounded and equicontinuous.
By the Ascoli-Arzela theorem, the restriction of coI'B to every compact subset K3
of R, namely {x(¢) : x € coI'B},cks;, is relatively compact in C(K3, X). Thus, by
the conditions (AS5) (II) and that I" is well defined and continuous, we deduce that
I' : coI'B — coI'B is a compact operator. Noting the continuity of I, it follows from
Schauder’s fixed point theorem that there is a fixed point x(-) for I in coI'B. That is,
Eq. (1.1) has at least one p-pseudo almost automorphic mild solution x € B. This
completes the proof. O

The following existence result is based upon nonlinear Leray—Schauder alternative
theorem. For that, we require the following assumption:

(A8) There exists a continuous nondecreasing function W : [0, co) — (0, co) such
that

I £t )| < W(|lx]) forall# € R and x € X.

Theorem 4.4 Let ;1 € M. Assume that the conditions (HO), (Al)—(A2) are satisfied.
Let f : R x X — X be a function that satisfies assumptions (A6)—(AS8), and the
following additional conditions:

(i) Foreachz > 0, the functiont — fioo e =)W (zh(s)) ds belongs to BC(R).
We set

t
B(z) =K H/ e U=W (zh(s)) ds

h

(ii) For each € > 0, there is § > 0 such that for every u,v € Cp(X), lu —v||p <6
implies that

t
/ e U f (s, u(s) = f(s, v(s)lds <,

forallt € R.

(iii) liminfe_, o % > 1.

(iv) Foralla,b € R,a < b, and 7 > 0, the set {f(s,h(s)x) :a <s < b,x €
Ci(X), |xlln < z} is relatively compact in X.

Then Eq. (1.1) has a p-pseudo almost automorphic mild solution.
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Proof We define the nonlinear operator I' : Cp,(X) — Cj,(X) by

t
Tu)(t) = / U(t,s)f(s,u(s))ds, teR.

We will show that I" has a fixed pointin PAA(R, X, ). For the sake of convenience,
we divide the proof into several steps.

(I) For u € C,(X), we have that

t t

ewwmwwmmmsK/ W (lulluh(s) ds.

—00

nwmamgK/

—00

It follows from condition (i) that I" is well defined.
(II) The operator I' is continuous. In fact, for any € > 0, we take § > 0 involved in
condition (ii). If u, v € C,(X) and ||lu — v||, < §, then

t

[(Tu)(r) = (Tv)(@O)]| = K/ e UV f (s, u(s) = f(s,v(s) ds <,

—00

which shows the assertion.

(III) We will show that I' is completely continuous. We set B,(X) for the closed
ball with center at 0 and radius z in the space X. Let V = I'(B,(C;,(X))) and
v = I'(u) for u € B.(Cp(X)). First, we will prove that V(¢) is a relatively
compact subset of X for each t € R. It follows from condition (i) that the
function s — Ke ™ W(zh(t — s)) is integrable on [0, c0). Hence, for € > 0,
we can choose a > 0 such that K faoo e »W(zh(t —s))ds < €. Since

v(t):/a U, t—s)f(t—s,u—s)) ds—i—/OO U(t,t—s)f(t—s,u(t—s))ds
0 a

and

/OOU(t,t—s)f(t—s,u(t—s))ds

o
< K/ e " W(zh(t —s))ds < e,
a

we get v(?) € aco(N) + B (X), where co(N) denotes the convex hull of N and
N={U({t,t—s)fE hE)x):0<s<a,t—a <& <t,|x| < z}. Using the
strong continuity of U (¢, s) and property (iv) of f, we infer that N is a relatively
compact set, and V(t) € aco(N) + B¢ (X), which establishes our assertion.
Second, we show that the set V' is equicontinuous. In fact, we can decompose

v(t+5) —v(t) =/SU(t,t—a)f(t—l—s—a,u(z—l—s—a))da
0
—l—/a[U(z,t—a—s)—U(t,t—a)]f(t—o,u(t—o))da
0

+/OO[U(I,Z—a—s)—U(z,t—o)]f(t—U,u(l—o))do.
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For each € > 0, we can choose ¢ > 0 and §; > 0 such that
N
H/ Ut,t—o)f(t+s—o,ut+s—o))do
0

+/OO[U(t,t—a—s)—U(t,t—a)]f(t—o,u(t—a))da

N
< K/ e “W(zh(t+s5s —o0))do
0

o0
+K / [e @t 4 e W (zh(t — o)) do
a

=

NSRNG)

for s < §1. Moreover, since { f(t —o,u(t —0)) :0 <0 <a,u € B,(C;,(X))}
is a relatively compact set and U (¢, s) is strongly continuous, we can choose
83 > Osuchthat |[[U(t,t —o —s)—U(,t —o)]lf(t —o,ut —o))| < %
for s < §,. Combining these estimates, we get ||[v(t +s) — v(?)|| < € for s small
enough and independent of u € B,(Cj(X)).

Finally, applying condition (i), we can see that

@Il _
h(t) —

K /t —w(t—s)
— e W(zh(s))ds — 0, |t| — oo,
h(t) J -

and this convergence is independent of u € B,(C;(X)). Hence, by Lemma 2.10,
V is a relatively compact set in (Cp, (X)).

(IV) Letus show thatu™(-) is asolution of equationu™ = \I'(u*) forsome 0 < \ < 1.
We can estimate

t
[u*@)| = H/ U(t,s)f(s, u™(s))ds

t
<K / W (i h(s)) ds

—00

< BUlu* k().
Hence, we get

llu 1

" <
Blu™ln) —

and combining with condition (iii), we conclude that the set {u™ : u™ = 3I'(u™),
N € (0, 1)} is bounded.

(V) It follows from Theorem 2.4, (A6)—(A7), and Theorem 3.3 that the function
t — f(t,u(t)) belongs to PAAP(R, X, u), whenever u € PAAR, X, n).
Moreover, from Lemma 4.1 we infer that '(PAA(R, X, n)) C PAAR, X, w),
and noting that PAA(R, X, ) is a closed subspace of Cp,(X), consequently,
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we can consider I' : PAA(R, X, u) - PAA(R, X, u). Using properties (I)-
(IIT), we deduce that this map is completely continuous. Applying Lemma 2.11,
we infer that " has a fixed point u € PAA(R, X, ), which completes the
proof. O

Corollary 4.1 Let © € 9N. Assume that (HO), (Al)—(A2) are satisfied. Let f :
R x X — X be a function that satisfies assumptions (A6)—(A7) and the Hélder type
condition:

If@uw) = f ol =elu—vl* 0<a<l,

forallt € Randu, v € X, where 9 > 0 is a constant. Moreover, assume the following
conditions:

(@ f(@,0)=gq.

(b) sup,cg K fioo e = h(s)*ds = 0y < 0.

(¢c) Forall a,b € R, a < b, and 7z > 0, the set {f(s,h(s)x) :a < s < b,x €
Crn(X), llxlln < z} is relatively compact in X.

Then Eq. (1.1) has a p-pseudo almost automorphic mild solution.

Proof Let oo = |lqll, 01 = 0. We take W (&) = g9 + 01£%. Then condition (A8)
is satisfied. It follows from (b) that function f satisfies (i) in Theorem 4.4. Note
that for each € > 0 there is 0 < §% < < 5 such that for every u,v € Cp(X),
lu — vllp < & implies that K [*__e=@U=9)|| f(s,u(s) — f(s, v(s))||ds < e for all
t € R. The hypothesis (iii) in the statement of Theorem 4.4 can be easily verified using
the definition of W. So by Theorem 4.4 we can prove that Eq. (1.1) has a p-pseudo
almost automorphic mild solution. O
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