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1 Introduction

The concept of almost automorphy was first introduced in the literature by Bochner
in 1960s, and it is a natural generalization of almost periodicity [1,2]; for more details
about this topic, we refer to [3–6]. N’Guérékata and Pankov introduced the concept of
Stepanov-like almost automorphy and applied this concept to study the existence
and uniqueness of an almost automorphic solution to the autonomous semilinear
equation in [6]. Moreover, Blot introduced the notion of weighted pseudo almost
automorphic functions with values in a Banach space in [7], and Mophou studied
the existence and uniqueness of a weighted pseudo almost automorphic mild solu-
tion to a semilinear fractional equation in [8]. Xia and Fan presented the notation of
Stepanov-like weighted pseudo almost automorphic function in [9]. Zhang, Chang,
and N’Guérékata investigated some properties and new composition theorems of
Stepanov-like weighted pseudo almost automorphic functions in [10,11] and then
used these results to study the existence of weighted pseudo almost automorphic solu-
tions for some differential equations in [12,13] and integral equations in [14].

Recently, Blot et al. in [15] applied the measure theory to define an ergodic func-
tion and investigated many interesting properties of μ-pseudo almost automorphic
functions. To the best of our knowledge, there is no work reported in the literature on
S p-weighted pseudo almost automorphic functions in the light of the measure theory.
To close this gap, motivated by the above-mentioned works, the purpose of this work
is to present the concept of μ-S p-pseudo almost automorphic functions and establish
completeness and composition theorems for the space of such functions. And then, we
apply our main results to investigate the existence of μ-pseudo almost automorphic
mild solutions with μ-S p-pseudo almost automorphic coefficients to the following
nonautonomous semilinear evolution equation:

u′(t) = A(t)u(t) + f (t, u(t)), t ∈ R, (1.1)

where {A(t)}t∈R satisfies the Acquistapace–Terreni condition in [16], U (t, s) gener-
ated by A(t) is exponentially stable, and f ∈ P AAp(R,X, μ)∩ C(R,X) for p > 1
will be specified later.

The rest of this paper is organized as follows. In Sect. 2, we present some basic
definitions, lemmas, and preliminary results which will be used throughout this paper.
In Sect. 3, we establish some composition theorems of μ-S p-pseudo almost automor-
phic functions. In Sect. 4, we prove the existence of μ-pseudo almost automorphic
mild solutions to the nonautonomous semilinear evolution Eq. (1.1).

2 Preliminaries and µ-Sp-Pseudo Almost Automorphic Functions

In this section, we define new notion of the μ-ergodic functions and the μ-Stepanov-
like pseudo almost automorphic functions and then give some fundamental properties
of these functions that we use in differential equations. Recall that the notion of μ-
Stepanov-like pseudo almost automorphy will be a generalization of the Stepanov-like
weighted pseudo almost automorphy.
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Stepanov-Like Weighted Pseudo Almost Automorphic… 1007

Let (X, ‖ · ‖), (Y, ‖ · ‖Y), be two Banach spaces and BC(R,X) denote the Banach
space of bounded continuous functions from R to X, equipped with the supremum
norm ‖ f ‖∞ = supt∈R ‖ f (t)‖. Throughout this work, we denote by B the Lebesgue
σ -field ofR and byM the set of all positive measures μ onB satisfyingμ(R) = +∞
and μ([a, b]) < +∞, for all a, b ∈ R(a < b).

Definition 2.1 [4] A continuous function f : R → X is said to be almost automorphic
if for every sequence of real numbers {s′

n}n∈N, there exists a subsequence {sn}n∈N
such that

g(t) := lim
n→∞ f (t + sn)

is well defined for each t ∈ R, and

lim
n→∞ g(t − sn) = f (t)

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Definition 2.2 [5] A continuous function f (t, s) : R × R → X is called bi-almost
automorphic if for every sequence of real numbers {s′

n}n∈N, there exists a subsequence
{sn}n∈N such that

g(t, s) := lim
n→∞ f (t + sn, s + sn)

is well defined for each t, s ∈ R, and

lim
n→∞ g(t − sn, s − sn) = f (t, s)

for each t, s ∈ R. The collection of all such functions will be denoted by bAA(R ×
R,X).

Definition 2.3 [4,17] A continuous function f : R × X → X is said to be almost
automorphic if f (t, x) is almost automorphic for each t ∈ R uniformly for all x ∈ B,
where B is any bounded subset of X. The collection of all such functions will be
denoted by AA(R × X,X).

Let U denote the set of all functions ρ : R → (0,∞), which are locally integrable
over R such that ρ > 0 almost everywhere. For a given r > 0 and for each ρ ∈ U, we

set m(r, ρ) :=
∫ r

−r
ρ(t)dt .

Thus the space of weights U∞ is defined by

U∞ :=
{
ρ ∈ U : lim

r→∞ m(r, ρ) = ∞
}

.
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1008 Y.-K. Chang et al.

Now for ρ ∈ U∞, we define

P AA0(X, ρ) :=
{

f ∈ BC(R,X) : lim
r→∞

1

m(r, ρ)

∫ r

−r
‖ f (t)‖ρ(t)dt = 0

}
;

P AA0(Y,X, ρ) :=
{

f ∈ C(R × Y,X) : f (·, y) is bounded for each y ∈ Y and

lim
r→∞

1

m(r, ρ)

∫ r

−r
‖ f (t, y)‖ρ(t)dt = 0 uniformly in y ∈ Y

}
.

Remark 2.1 When ρ(t) = 1 for each t ∈ R, one retrieves the so-called ergodic space

that is, AA0(X) and AA0(X) =
{

f ∈ BC(R,X) : limr→∞ 1
2r

∫ r

−r
‖ f (t)‖dt = 0

}
.

Note that the spaces P AA0(X, ρ) are richer than AA0(X).

Definition 2.4 [7] Let ρ ∈ U∞. A function f ∈ BC(R,X) [respectively, f ∈
BC(R × Y,X)] is called weighted pseudo almost automorphic if it can be expressed
as f = g + φ, where g ∈ AA(X) [respectively, AA(R × Y,X)] and φ ∈
P AA0(X, ρ) [respectively, P AA0(Y,X, ρ)].We denote by W P AA(X) [respectively,
W P AA(R × Y,X)] the set of all such functions.

Definition 2.5 [15] Let μ ∈ M. A bounded continuous function f : R → X is said
to be μ-ergodic if

lim
r→+∞

1

μ([−r, r ])
∫

[−r,r ]
‖ f (t)‖ dμ(t) = 0.

We denote the space of all such functions by ε(R,X, μ).

Definition 2.6 [15] Let μ ∈ M. A continuous function f : R → X is said to be
μ-pseudo almost automorphic if f is written in the form:

f = g + φ,

where g ∈ AA(R,X) and φ ∈ ε(R,X, μ). We denote the space of all such functions
by P AA(R,X, μ).

Thus, we have

AA(R,X) ⊂ P AA(R,X, μ) ⊂ BC(R,X).

Lemma 2.1 [15] Let μ ∈ M. Then (ε(R,X, μ), ‖ · ‖∞) is a Banach space.

For μ ∈ M and τ ∈ R, we denote μτ the positive measure on (R,B) defined by

μτ (A) = μ({a + τ : a ∈ A}) f or A ∈ B. (2.1)

From μ ∈ M, we list the following hypothesis.
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(H0) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

μτ (A) ≤ βμ(A),

when A ∈ B satisfies A ∩ I = ∅.

Lemma 2.2 [15] Let μ ∈ M satisfy (H0). Then ε(R,X, μ) is translation invariant,
and therefore P AA(R,X, μ) is also translation invariant.

Lemma 2.3 [15] Let μ ∈ M. Assume that P AA(R,X, μ) is translation invariant.
Then the decomposition of a μ-pseudo almost automorphic function in the form f =
g + φ, where g ∈ AA(R,X) and φ ∈ ε(R,X, μ), is unique.

Lemma 2.4 [15] Let μ ∈ M. Assume that P AA(R,X, μ) is translation invariant.
Then (P AA(R,X, μ), ‖ · ‖∞) is a Banach space.

Definition 2.7 [6,18] TheBochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function
f : R → X is defined by

f b(t, s) := f (t + s).

Remark 2.2 [18] (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of
a certain function f , ϕ(t, s) = f b(t, s), if and only if ϕ(t + τ, s − τ) = ϕ(s, t) for
all t ∈ R, s ∈ [0, 1] and τ ∈ [s − 1, s].

(ii) Note that if f = h + ϕ, then f b = hb + ϕb. Moreover, (λ f )b = λ f b for each
scalar λ.

Definition 2.8 [18] The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a
function f : R × X → X is defined by

f b(t, s, u) := f (t + s, u) for each u ∈ X.

Definition 2.9 [6,18] Let p ∈ [1,∞). The space BS p(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f : R → X such
that f b ∈ L∞ (R, L p(0, 1;X)). This is a Banach space with the norm

‖ f ‖S p = ‖ f b‖L∞(R,L p) = sup
t∈R

(∫ t+1

t
‖ f (τ )‖p dτ

) 1
p

.

Definition 2.10 [6,19] The space AS p(X) of Stepanov-like almost automorphic (or
S p-almost automorphic) functions consists of all f ∈ BS p(X) such that f b ∈
AA (L p(0, 1;X)). In other words, a function f ∈ L p

loc(R,X) is said to be S p-almost
automorphic if its Bochner transform f b : R → L p(0, 1;X) is almost automorphic in
the sense that for every sequence of real numbers {s′

n}n∈N, there exist a subsequence
{sn}n∈N and a function g ∈ L p

loc(R,X) such that
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1010 Y.-K. Chang et al.

lim
n→∞

(∫ t+1

t
‖ f (s + sn) − g(s)‖p ds

) 1
p

= 0 and

lim
n→∞

(∫ t+1

t
‖g(s − sn) − f (s)‖p ds

) 1
p

= 0

pointwise on R.

Definition 2.11 [6,19] A function f : R × Y → X, (t, u) → f (t, u) with f (·, u) ∈
L p

loc(R,X) for each u ∈ Y is said to be S p-almost automorphic in t ∈ R uniformly in
u ∈ Y if t → f (t, u) is S p-almost automorphic for each u ∈ Y. That means, for every
sequence of real numbers {s′

n}n∈N, there exist a subsequence {sn}n∈N and a function
g(·, u) ∈ L p

loc(R,X) such that

lim
n→∞

(∫ t+1

t
‖ f (s + sn, u) − g(s, u)‖pds

) 1
p

= 0

and

lim
n→∞

(∫ t+1

t
‖g(s − sn, u) − f (s, u)‖pds

) 1
p

= 0

pointwise on R and for each u ∈ Y. We denote by AS p(R× Y,X) the set of all such
functions.

Definition 2.12 [20] A function f ∈ BS p(X) is said to be Stepanov-like pseudo
almost automorphic if it can be decomposed as f = g + ϕ where g ∈ AS p(X) and
ϕb ∈ AA0(L p(0, 1;X)). Denote by P AAp(X) the set of all such functions.

Definition 2.13 [20] A function F : R × Y → X, (t, u) → F(t, u) with F(·, u) ∈
L p

loc(R,X) for eachu ∈ Y is said to beStepanov-like pseudo almost automorphic in t ∈
R, if it can be decomposed as F(t, u) = G(t, u)+ H(t, u) with G ∈ AS p(R×Y,X)

and Hb ∈ AA0(Y, L p(0, 1;X)). Denote by P AAp(R × Y,X) the set of all such
functions.

Definition 2.14 [11] Let ρ ∈ U∞. A function f ∈ BS p(X) is said to be Stepanov-like
weighted pseudo almost automorphic (or S p-weighted pseudo almost automor-
phic) if it can be expressed as f = g + h, where g ∈ AS p(X) and hb ∈
P AA0 (L p(0, 1;X), ρ). In other words, a function f ∈ L p

loc(R,X) is said to be
Stepanov-like weighted pseudo almost automorphic relatively to the weight ρ ∈ U∞,
if its Bochner transform f b : R → L p(0, 1;X) is weighted pseudo almost automor-
phic in the sense that there exist two functions g, h : R → X such that f = g + h,
where g ∈ AS p(X) and hb ∈ P AA0 (L p(0, 1;X), ρ). We denote by W P AAS p(X)

the set of all such functions.

Definition 2.15 [11] Let ρ ∈ U∞. A function f : R × Y → X, (t, u) →
f (t, u) with f (·, u) ∈ L p

loc(R,X) for each u ∈ Y is said to be Stepanov-like
weighted pseudo almost automorphic (or S p-weighted pseudo almost automorphic)
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if it can be expressed as f = g + h, where g ∈ AS p(R × Y,X) and hb ∈
P AA0 (Y, L p(0, 1;X), ρ). We denote by W P AAS p(R × Y,X) the set of all such
functions.

Definition 2.16 Let μ ∈ M. A function f ∈ BS p(X) is said to be μ-Stepanov-
like pseudo almost automorphic (or μ-S p-pseudo almost automorphic) if it can be
expressed as f = g + φ, where g ∈ AS p(X) and φb ∈ ε(L p(0, 1;X), μ). In other
words, a function f ∈ L p

loc(R,X) is said to be μ-Stepanov-like pseudo almost auto-
morphic relatively to themeasureμ, if its Bochner transform f b : R → L p(0, 1;X) is
μ-pseudo almost automorphic in the sense that there exist two functions g, φ : R → X

such that f = g + φ, where g ∈ AS p(X) and φb ∈ ε(L p(0, 1;X), μ), that is
φb ∈ BC(L p(0, 1;X)) and

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖φ(s)‖p ds

) 1
p

dμ(t) = 0.

We denote by P AAp(R,X, μ) the set of all such functions.

Definition 2.17 Let μ ∈ M. A function f : R × Y → X, (t, u) → f (t, u) with
f (·, u) ∈ L p

loc(R,X) for each u ∈ Y is said to be μ-Stepanov-like pseudo almost
automorphic (or μ-S p-pseudo almost automorphic) if it can be expressed as f =
g + φ, where g ∈ AS p(R × Y,X) and φb ∈ ε(Y, L p(0, 1;X), μ). We denote by
P AAp(R × Y,X, μ) the set of all such functions.

[15] One can observe that an S p-weighted pseudo almost automorphic function is
μ-S p-pseudo almost automorphic, where the measureμ is absolutely continuous with
respect to the Lebesgue measure and its Radon–Nikodym derivative is ρ : dμ(t)

dt =
ρ(t). Moreover, a S p-pseudo almost automorphic function is an μ-S p-pseudo almost
automorphic function in the particular case where the measure μ is the Lebesgue
measure.

Remark 2.3 [15] From μ ∈ M and the fact that μ([−r, r ]) = μ([−r, r ] \ I ) + μ(I )
for r sufficiently large, we deduce that limr→+∞ μ([−r, r ] \ I ) = +∞.

Theorem 2.1 Let μ ∈ M and I be a bounded interval (eventually I = ∅). Assume
that f (·) ∈ BS p(R,X). Then the following assertions are equivalent:

(i) f b(·) ∈ ε(L p(0, 1;X), μ).

(ii) limr→+∞
1

μ([−r, r ] \ I )

∫
[−r,r ]\I

(∫ t+1
t ‖ f (s)‖p ds

) 1
p
dμ(t) = 0.

(iii) For any ε>0, limr→+∞
μ

({
t ∈[−r, r ]\I :

(∫ t+1
t ‖ f (s)‖p ds

) 1
p
>ε

})

μ([−r, r ] \ I )
=0.

Proof To prove the theorem, we refer to [15, Theorem 2.14], and first we prove

(i) ⇐⇒ (i i). Denote by A = μ(I ) and B =
∫

I

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t). Since

the interval I is bounded and the function f ∈ BS p(X), then A and B are finite. Let
r > 0 be such that I ⊂ [−r, r ] and μ([−r, r ] \ I ) > 0. Then we have
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1012 Y.-K. Chang et al.

1

μ([−r, r ] \ I )

∫
[−r,r ]\I

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t)

= 1

μ([−r, r ]) − A

⎛
⎝
∫

[−r,r ]

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t) − B

⎞
⎠

= μ([−r, r ])
μ([−r, r ]) − A

(
1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t)

− B

μ([−r, r ])
)

. (2.2)

From the equality (2.2) and the fact thatμ(R) = +∞, we deduce that (ii) is equivalent
to

lim
r→+∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t) = 0,

that is (i).
(iii)⇒(ii) Denote by Aε

r ( f ) and Bε
r ( f ) the following sets:

Aε
r ( f ) =

⎧⎨
⎩t ∈ [−r, r ] \ I :

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

> ε

⎫⎬
⎭

and

Bε
r ( f ) =

⎧⎨
⎩t ∈ [−r, r ] \ I :

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

≤ ε

⎫⎬
⎭ .

Assume that (iii) holds, that is

lim
r→+∞

μ(Aε
r ( f ))

μ([−r, r ] \ I )
= 0. (2.3)

From the following equality

∫
[−r,r ]\I

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t) =
∫

Aε
r ( f )

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t)

+
∫

Bε
r ( f )

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t),
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we deduce for r large enough that

1

μ([−r, r ]) \ I

∫
[−r,r ]\I

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t)

≤ ‖ f ‖S p
μ(Aε

r ( f ))

μ([−r, r ] \ I )
+ ε,

then for all ε > 0,

lim sup
r→+∞

1

μ([−r, r ] \ I )

∫
[−r,r ]\I

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t) ≤ ε,

so (ii) holds.
(ii)⇒ (iii) Assume that (ii) holds. From the following inequality

1

μ([−r, r ] \ I )

∫
[−r,r ]\I

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t)

≥ 1

μ([−r, r ] \ I )

∫
Aε

r ( f )

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμ(t)

≥ ε
μ(Aε

r ( f ))

μ([−r, r ] \ I )
,

for r sufficiently large, we obtain (2.3), that is (iii). This completes the proof. ��
Definition 2.18 [15] Let μ1 and μ2 ∈ M. μ1 is said to be equivalent to μ2(μ1 ∼ μ2)

if there exist constants α and β > 0 and a bounded interval I (eventually I = ∅) such
that

αμ1(A) ≤ μ2(A) ≤ βμ1(A),

for A ∈ B satisfying A ∩ I = ∅.

Theorem 2.2 Let μ1, μ2 ∈ M. If μ1 and μ2 are equivalent, then

ε(L p(0, 1;X), μ1) = ε(L p(0, 1;X), μ2)

and

P AAp(R,X, μ1) = P AAp(R,X, μ2).

Proof Let us show that ε(L p(0, 1;X), μ1) = ε(L p(0, 1;X), μ2). Sinceμ1 ∼ μ2 and
B is the Lebesgue σ -field, we obtain for r sufficiently large
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1014 Y.-K. Chang et al.

α

β

μ1

⎛
⎝
⎧⎨
⎩t ∈ [−r, r ] \ I :

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

> ε

⎫⎬
⎭
⎞
⎠

μ1([−r, r ] \ I )

≤
μ2

⎛
⎝
⎧⎨
⎩t ∈ [−r, r ] \ I :

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

> ε

⎫⎬
⎭
⎞
⎠

μ2([−r, r ] \ I )

≤ β

α

μ1

⎛
⎝
⎧⎨
⎩t ∈ [−r, r ] \ I :

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

> ε

⎫⎬
⎭
⎞
⎠

μ1([−r, r ] \ I )
.

Using Theorem 2.1, we deduce that ε(L p(0, 1;X), μ1) = ε(L p(0, 1;X), μ2).

From the definition of a μ-S p-pseudo almost automorphic function, we deduce that
P AAp(R,X, μ1) = P AAp(R,X, μ2). ��

We give sufficient conditions for the translation invariance of the spaces of μ-S p-
pseudo almost automorphic functions.

[15] Hypothesis (H0) holds if and only if, for all τ ∈ R, there exist a constant
β > 0 and a bounded interval I such that

ρ(t + τ) ≤ βρ(t) a.e. on R \ I.

Lemma 2.5 [15] Let μ ∈ M. Then μ satisfies (H0) if and only if the measures μ and
μτ are equivalent for all τ ∈ R.

Lemma 2.6 [15] Hypothesis (H0) implies for all σ > 0,

lim sup
r→+∞

μ([−r − σ, r + σ ])
μ([−r, r ]) < +∞.

Theorem 2.3 Let μ ∈ M satisfy (H0). Then ε(L p(0, 1;X), μ) is translation invari-
ant, and therefore P AAp(R,X, μ) is also translation invariant.

Proof The proof of this theorem is similar to that of [15, Theorem 3.5]. First,
it is clear that AS p(X) is translation invariant, and it remains to prove that if
f ∈ ε(L p(0, 1;X), μ) then fτ ∈ ε(L p(0, 1;X), μ) for all τ ∈ R. Let f ∈
ε(L p(0, 1;X), μ) and τ ∈ R. Since μ(R) = +∞, there exists r0 > 0 such that
μ([−r − |τ |, r + |τ |]) > 0 for all r ≥ r0. In this proof, we assume that r ≥ r0. Let us
denote by

Kτ (r) = 1

μτ ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμτ (t) for r > 0 and τ ∈ R,

(2.4)
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where μτ is the positive measure defined by (2.1). Using Lemma 2.5, it follows that
μτ and μ are equivalent, then by using Theorem 2.2 we have ε(L p(0, 1;X), μτ ) =
ε(L p(0, 1;X), μ), therefore f ∈ ε(L p(0, 1;X), μτ ), that is

lim
r→+∞ Kτ (r) = 0, for all τ ∈ R. (2.5)

For all A ∈ B, we denote by χA the characteristic function of A. Using definition of
the measureμτ ,we obtain that

∫
[−r,r ] χA(t)dμτ (t) = ∫

[−r+τ,r+τ ] χA(t −τ)dμ(t) for

all A ∈ B, and since t �→
(∫ t+1

t ‖ f (s)‖pds
) 1

p
is the pointwise limit of an increasing

sequence of linear combinations of characteristic functions [Theorem1.17],we deduce
that

∫
[−r,r ]

(∫ t+1

t
‖ f (s)‖p ds

) 1
p

dμτ (t) =
∫

[−r+τ,r+τ ]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

×dμ(t). (2.6)

From (2.1), (2.4), and (2.6), we obtain

Kτ (r) = 1

μ([−r + τ, r + τ ])
∫

[−r+τ,r+τ ]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

dμ(t).

If we denote by τ+ := max(τ, 0) and τ− := max(−τ, 0), we have |τ | + τ = 2τ+
and |τ | − τ = 2τ−; and then [−r + τ − |τ |, r + τ + |τ |] = [−r − 2τ−, r + 2τ+].
Therefore, we obtain

Kτ (r + |τ |)

= 1

μ([−r − 2τ−, r + 2τ+])
∫

[−r−2τ−,r+2τ+]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

×dμ(t). (2.7)

From (2.7) and the following inequality

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r−2τ−,r+2τ+]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

dμ(t),

we get

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

dμ(t) ≤ μ([−r − 2τ−, r + 2τ+])
μ([−r, r ])

×Kτ (r + |τ |),
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which implies

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

dμ(t) ≤ μ([−r − 2|τ |, r + 2|τ |])
μ([−r, r ])

×Kτ (r + |τ |). (2.8)

From (2.5) and (2.8) and by using Lemma 2.6, we deduce that

lim
r→+∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s − τ)‖p ds

) 1
p

dμ(t) = 0,

that is f−τ ∈ ε(L p(0, 1;X), μ) for all τ ∈ R. Then ε(L p(0, 1;X), μ) is translation
invariant. This ends the proof. ��
Theorem 2.4 Let μ ∈ M satisfy (H0). If f ∈ P AA(R,X, μ), then f ∈
P AAp(R,X, μ) for each 1 ≤ p < ∞. In other words, P AA(R,X, μ) ⊂
P AAp(R,X, μ).

Proof In the proof of this theorem, we follow the same reasoning as in the proof of
[11, Lemma 2.4]. Let f = g + h where g ∈ AA(X) and h ∈ ε(R,X, μ). From [6,
Remark 2.3], we know that the function g ∈ AA(X) ⊂ AS p(X).

Next, let us show that hb ∈ ε (L p(0, 1;X), μ). For r > 0, we see that

1

μ([−r, r ])
∫

[−r,r ]

(∫ 1

0
‖h(t + s)‖p ds

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]

(∫ 1

0
sup

s∈[0,1]
‖h(t + s)‖p ds

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]

(
sup

s∈[0,1]
‖h(t + s)‖p

) 1
p

dμ(t).

Let s0 ∈ [0, 1] such that sups∈[0,1] ‖h(t + s)‖ = ‖h(t + s0)‖. Then, we deduce

1

μ([−r, r ])
∫

[−r,r ]

(∫ 1

0
‖h(t + s)‖p ds

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]

(
sup

s∈[0,1]
‖h(t + s)‖p

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]
(‖h(t + s0)‖p) 1

p dμ(t)

= 1

μ([−r, r ])
∫

[−r,r ]
‖h(t + s0)‖ dμ(t).
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Using the fact that ε(R,X, μ) is translation invariant, it follows that limr→∞ 1
μ([−r,r ])∫

[−r,r ] ‖h(t + s0)‖ dμ(t) = 0. Hence, hb ∈ ε (L p(0, 1;X), μ). The proof is then
completed. ��
Theorem 2.5 Let μ ∈ M and f ∈ P AAp(R,X, μ) be such that f = g + h, where
g ∈ AS p(X) and hb ∈ ε(L p(0, 1;X), μ). If P AAp(R,X, μ) is translation invariant,
then

{g(t) : t ∈ R} ⊂ { f (t) : t ∈ R}, (the closure of range f ).

Proof The proof is an adaptation of [15, Theorem 4.1]. Suppose that the above claim
is not true, then there exist constants t0 ∈ R such that g(t0) /∈ { f (t) : t ∈ R}. Since
the space AS p(X) and ε(L p(0, 1;X), μ) are translation invariant, we can assume that
t0 = 0, then there exists a constant ε > 0 such that

‖g(0) − f (t)‖p > 2ε, for all t ∈ R,

where ‖·‖p denotes the norm in L p(0, 1;X). Since gb ∈ AA (L p(0, 1;X)), for ε > 0,
let

Cε = {
t ∈ R : ‖g(t) − g(0)‖p < ε

}
.

By [8, Lemma 2.12], there exist constants s1, . . . , sm ∈ R such that
⋃m

i=1(si + Cε) =
R. From the fact that f = g + h and the Minkowski inequality, for all t ∈ Cε , we
have

‖h(t)‖p = ‖ f (t) − g(t)‖p ≥ ‖g(0) − f (t)‖p − ‖g(t) − g(0)‖p > ε.

Then it follows that

‖h(t − si )‖p > ε for all i = 1, . . . , m and t ∈si + Cε .

LetH(t) := ∑m
i=1 ‖h(t − si )‖p. From the previous inequalities, we have the fact that

H(t) > ε, for all t ∈ R. (2.9)

In view of ε(L p(0, 1;X), μ) is translation invariant, then [t �−→ h(t − si )] ∈
ε(L p(0, 1;X), μ) for all i ∈ {1, . . . , m}. Hence H ∈ ε(L p(0, 1;X), μ), which con-
tradicts the relation (2.9). This finishes the proof. ��
Theorem 2.6 Let μ ∈ M. Assume that P AAp(R,X, μ) is translation invariant. Then
(P AAp(R,X, μ), ‖ · ‖S p ) is a Banach space.

Proof Let ( fn)n∈N ⊂ P AAp(R,X, μ) be a Cauchy sequence for the norm ‖ · ‖S p .

By definition, we can write fn = gn + hn, where (gn)n∈N ⊂ AS p(X) and (hb
n)n∈N ⊂

ε(L p(0, 1;X), μ). From Theorem 2.5, we obtain that

{gn(t) : t ∈ R} ⊂ { fn(t) : t ∈ R}.
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Hence, we easily deduce that (gn)n∈N is also a Cauchy sequence for the norm ‖ · ‖S p .

Thus there exists a function g ∈ AS p(X) such that ‖gn −g‖S p → 0 as n → ∞.Using
the previous fact, it follows that hn = fn − gn is a Cauchy sequence with respect to
the norm ‖ · ‖S p . So there exists a function h ∈ BS p(X) such that ‖hn − h‖S p → 0
as n → ∞.

Now for r > 0,

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖h(s)‖p ds

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖hn(s) − h(s)‖p ds

) 1
p

dμ(t)

+ 1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖hn(s)‖p ds

) 1
p

dμ(t)

≤ ‖hn − h‖S p + 1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖hn(s)‖p ds

) 1
p

dμ(t).

It follows that

lim sup
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖h(s)‖p ds

) 1
p

dμ(t) ≤ ‖hn − h‖S p for all n ∈N.

Since limn→∞ ‖hn − h‖S p = 0, we deduce that

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖h(s)‖p ds

) 1
p

dμ(t) = 0,

that is, f = g + h ∈ P AAp(R,X, μ). So P AAp(R,X, μ, ‖ · ‖S p ) is a Banach space.
��

From Theorem 2.5 and the proofs of [15, Theorem 4.7], we have the following
result.

Theorem 2.7 Let μ ∈ M. Assume that P AAp(R,X, μ) is translation invariant.
Then the decomposition of a μ-S p-pseudo almost automorphic function in the form
f = g + h, where g ∈ AS p(X) and hb ∈ ε(L p(0, 1;X), μ), is unique.

Lemma 2.7 [11] Assume that f ∈ AS p (R × X,X) and f (t, x) is uniformly con-
tinuous on each bounded subset K ′ ⊂ X uniformly for t ∈ R. If u ∈ AS p(X) and
K = {u(t) : t ∈ R} is compact. Then f (·, u(·)) ∈ AS p(X).

(H1) There exists a constant L > 0 such that for all u, v ∈ X and t ∈ R,

‖ f (t, u) − f (t, v)‖ ≤ L‖u − v‖.
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Lemma 2.8 [21] Suppose that f ∈ AS p (R × X,X) and the following condition
holds.
(H2) There exists a constant L > 0 such that for all u, v ∈ X and t ∈ R,

(∫ t+1

t
‖ f (t, u) − f (t, v)‖p ds

) 1
p

≤ L‖u − v‖.

If u ∈ AS p(X) and K1 = {u(t) : t ∈ R} is compact. Then f (·, u(·)) ∈ AS p(X).

Lemma 2.9 [21] Suppose that f = g + h ∈ P AAp (R × X,X) with g ∈ AS p(X),
hb ∈ AA0(L p(0, 1;X) and f satisfies condition (H1), then the function g satisfies
condition (H2).

Now, we recall a useful compactness criterion.
Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R and

h(t) → ∞ as |t | → ∞. We consider the space

Ch(X) =
{

u ∈ C(R,X) : lim|t |→∞
u(t)

h(t)
= 0

}
.

Endowed with the norm ‖u‖h = supt∈R
‖u(t)‖

h(t) , it is a Banach space (see [22]).

Lemma 2.10 [22] A subset R ⊆ Ch(X) is a relatively compact set if it verifies the
following conditions:

(c-1) The set R(t) = {u(t) : u ∈ R} is relatively compact in X for each t ∈ R.
(c-2) The set R is equicontinuous.
(c-3) For each ε > 0 there exists L > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ R and

all |t | > L.

Lemma 2.11 [23] (Leray–Schauder alternative theorem) Let D be a closed convex
subset of a Banach space X such that 0 ∈ D. Let F : D → D be a completely
continuous map. Then the set {x ∈ D : x = λF(x), 0 < λ < 1} is unbounded or the
map F has a fixed point in D.

3 Composition Theorems of µ-Sp-Pseudo Almost Automorphic
Functions

In this section, we prove some composition theorems for μ-Stepanov-like pseudo
almost automorphic functions under suitable conditions.

Theorem 3.1 Let μ ∈ M. Suppose that f = g + h ∈ P AAp(R × X,X, μ) with
g ∈ AS p(R × X,X), hb ∈ ε (X, L p(0, 1;X), μ) and (H1) holds. If ϕ = α + β ∈
P AAp(R,X, μ) with α ∈ AS p(X), βb ∈ ε (L p(0, 1;X), μ) and K1 = {α(t); t ∈ R}
is compact. Then f (·, ϕ(·)) ∈ P AAp(R,X, μ).
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Proof Let f (t, u) = g(t, u) + h(t, u), where g ∈ AS p(R × X,X), and hb ∈
ε (X, L p(0, 1;X), μ) . Moreover, let ϕ(t) = α(t) + β(t), where α ∈ AS p(X), and
βb ∈ ε (L p(0, 1;X), μ) . It is easily verified that

f (t, ϕ(t)) = g (t, α(t)) + f (t, ϕ(t)) − g (t, α(t))

= g (t, α(t)) + f (t, ϕ(t)) − f (t, α(t)) + h (t, α(t)) .

Define

G(t) = g (t, α(t)) , F(t) = f (t, ϕ(t)) − f (t, α(t)) , H(t) = h (t, α(t)) .

Firstly, we show that G(t) ∈ AS p(X). In fact, by the same reason of Lemma 2.9,
we have that the function g satisfies condition (H2). Note that g ∈ AS p(R × X,X),

α ∈ AS p(X) and K1 = {α(t) : t ∈ R} is compact. Thus, by Lemma 2.8, we obtain
G(t) ∈ AS p(X).

Secondly, we claim that Fb(t) ∈ ε (L p(0, 1;X), μ) . Actually, by (H1), we have

(∫ t+1

t
‖F(s)‖p ds

) 1
p

=
(∫ t+1

t
‖ f (s, ϕ(s)) − f (s, α(s)) ‖p ds

) 1
p

≤ L

(∫ t+1

t
‖ϕ(s) − α(s)‖p ds

) 1
p

≤ L

(∫ t+1

t
‖β(s)‖p ds

) 1
p

,

thus, for r > 0,

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖F(s)‖p ds

) 1
p

dμ(t) ≤ L

μ([−r, r ])
∫

[−r,r ]

×
(∫ t+1

t
‖β(s)‖pds

) 1
p

dμ(t).

Note that βb ∈ ε (L p(0, 1;X), μ) , we have

lim
r→+∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖F(s)‖p ds

) 1
p

dμ(t) = 0,

which implies Fb(·) ∈ ε (L p(0, 1;X), μ) .

Finally, we also claim that Hb(·) ∈ ε (L p(0, 1;X), μ) . In fact, let ε > 0. Since g
satisfies condition (H2), there is a δ > 0 such that

(∫ t+1

t
‖g(s, u) − g(s, v)‖p ds

) 1
p

≤ ε
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for all t ∈ R, u, v ∈ X with ‖u − v‖ ≤ δ. Put δ0 = min{ε, δ}. Then
(∫ t+1

t
‖h(s, u) − h(s, v)‖p ds

) 1
p

≤
(∫ t+1

t
‖ f (s, u) − f (s, v)‖p ds

) 1
p

+
(∫ t+1

t
‖g(s, u) − g(s, v)‖p ds

) 1
p

≤ (L + 1)ε (3.1)

for all t ∈ R, u, v ∈ X with ‖u − v‖ ≤ δ0.

Since K1 = {α(t) : t ∈ R} is compact, there are finite open balls Uk(k =
1, 2, . . . , m) with center xk ∈ K1 and radius δ0 (small enough) such that

{α(t) : t ∈ R} ⊂
m⋃

k=1

Uk .

Define and choose Dk such that

Dk = {s ∈ R : α(s) ∈ Uk}, R =
m⋃

k=1

Dk,

and let

J1 = D1, Jk = Dk \
k−1⋃
j=1

D j (2 ≤ k ≤ m).

Then

Ji ∩ J j = ∅, when i �= j, 1 ≤ i, j ≤ m.

Define the step function x : R → X by x(s) = xk, s ∈ Jk, k = 1, 2 . . . , m. It is easy
to see that ‖α(s) − x(s)‖ ≤ δ0 for all s ∈ R. It follows from (3.1) that

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖H(s)‖p ds

) 1
p

dμ(t)

= 1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖h(s, α(s))‖p ds

) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]

⎡
⎣
(∫ t+1

t
‖h(s, α(s)) − h(s, x(s))‖p ds

) 1
p

+
(∫ t+1

t
‖h(s, x(s))‖p ds

) 1
p

⎤
⎦ dμ(t)
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≤ (L + 1)ε + 1

μ([−r, r ])
∫

[−r,r ]

(
m∑

k=1

∫
[t,t+1]∩Jk

‖h(s, xk)‖p ds

) 1
p

dμ(t)

≤ (L + 1)ε +
m∑

k=1

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖h(s, xk)‖p ds

) 1
p

dμ(t).

Using the arbitrariness of ε and hb ∈ ε (X, L p(0, 1;X), μ) , we obtain that

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖H(s)‖p ds

) 1
p

dμ(t) = 0.

That is, Hb(·) ∈ ε (L p(0, 1;X), μ) . This completes the proof. ��
Lemma 3.1 Let μ ∈ M. Assume that x(t) ∈ AS p(X), K2 = {x(t) : t ∈ R} is a
compact subset of X, and f b ∈ ε (X, L p(0, 1;X), μ) satisfying that ∀ε > 0, ∃ δ > 0
and L(·) ∈ BS p(R) with p > 1 such that

(∫ t+1

t
‖ f (s, x) − f (s, y)‖p ds

) 1
p

< L(t)ε, (3.2)

for all x, y ∈ K2 with ‖x − y‖ < δ. Then

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s, x(s))‖p ds

) 1
p

dμ(t) = 0

whenever

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]
L(t) dμ(t) < ∞. (3.3)

Proof For ∀ε > 0, let δ and L(t) be as in the assumptions and δ0 = min{ε, δ} since
K2 is compact, there are finite open balls Ok(k = 1, 2, . . . , m) with center xk and
radius δ0 such that

{x(t) : t ∈ R} ⊂
m⋃

k=1

Ok .

Define and choose Bk , such that

Bk = {t ∈ R : ‖x(t) − xk‖ < δ0}, k = 1, 2, . . . , m.

Then R = ⋃m
k=1 Bk , and let E1 = B1, Ek = Bk \ (∪k−1

i=1 Bi ) (2 ≤ k ≤ m). Then
R = ∪m

k=1Ek and Ei
⋂

E j = ∅, i �= j, 1 ≤ i, j ≤ m. Define the step function
x : R → X, by x(t) = xk for t ∈ Ek, k = 1, 2, . . . , m. It is easy to see that
‖x(t) − x(t)‖ < δ0, for all t ∈ R. By the definition of ε (L p(0, 1;X), μ), for the
above ε > 0, there is constant r0 > 0 such that for all r > r0 and 1 ≤ k ≤ m,
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1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s, xk)‖p ds

) 1
p

dμ(t) <
ε

m
, (3.4)

Then, by (3.2) we have

(∫ t+1

t
‖ f (s, x(s))‖p ds

) 1
p

≤
(∫ t+1

t
‖ f (s, x(s)) − f (s, x(s))‖p ds

) 1
p

+
(∫ t+1

t
‖ f (s, x(s))‖p ds

) 1
p

≤ L(t)ε +
(

m∑
k=1

∫
Ek
⋂[t,t+1]

‖ f (s, xk)‖p ds

) 1
p

.

Now combining (3.3), (3.4) and the above inequality, we get

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s, x(s))‖pds

) 1
p

dμ(t)

≤ ε

μ([−r, r ])
∫

[−r,r ]
L(t)dμ(t)

+ 1

μ([−r, r ])
∫

[−r,r ]

m∑
k=1

(∫
Ek
⋂[t,t+1]

‖ f (s, xk)‖pds

) 1
p

dμ(t)

≤ ε

μ([−r, r ])
∫

[−r,r ]
L(t)dμ(t)

+
m∑

k=1

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s, xk)‖pds

) 1
p

dμ(t)

≤ ε

μ([−r, r ])
∫

[−r,r ]
L(t)dμ(t) +

m∑
k=1

ε

m

≤ ε

μ([−r, r ])
∫

[−r,r ]
L(t)dμ(t) + ε

≤
(

1

μ([−r, r ])
∫

[−r,r ]
L(t)dμ(t) + 1

)
ε.

For all r > r0, we have

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖ f (s, x(s))‖p ds

) 1
p

dμ(t) = 0.

��
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Theorem 3.2 Let μ ∈ M and let f = g + h ∈ P AAp (R × X,X, μ) with g ∈
AS p (R × X,X), hb ∈ ε (X, L p(0, 1;X), μ). Assume that the following conditions
are satisfied:

(i) There exists a nonnegative function L(·) ∈ BS p(R) satisfying (3.3) with p > 1
such that for all u, v ∈ X and t ∈ R,

(∫ t+1

t
‖ f (s, u) − f (s, v)‖p ds

) 1
p

< L(t)‖u − v‖.

(ii) g(t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for t ∈

R. If u = u1+u2 ∈ P AAp(R,X, μ),with u1 ∈ AS p(X), ub
2 ∈ ε (L p(0, 1;X), μ)

and K2 = {u1(t) : t ∈ R} is compact, then f (·, u(·)) belongs to P AAp(R,X, μ).

Proof Since f ∈ P AAp (R × X,X, μ) and u(t) ∈ P AAp(R,X, μ), we have by
definition that f = g + h and u = u1 + u2 where g ∈ AS p (R × X,X), hb ∈
ε (X, L p(0, 1;X), μ), u1 ∈ AS p(X), and ub

2 ∈ ε (L p(0, 1;X), μ). Now, the function
f can be decomposed as

f (t, u(t)) = g (t, u1(t)) + f (t, u(t)) − g (t, u1(t))

= g (t, u1(t)) + f (t, u(t)) − f (t, u1(t)) + h (t, u1(t)) .

Define

G(t) = g (t, u1(t)) , F(t) = f (t, u(t)) − f (t, u1(t)) , H(t) = h (t, u1(t)) .

Then f (t, u(t)) = G(t) + F(t) + H(t). Since the function g satisfies condition (ii)
and K2 = {u1(t) : t ∈ R} is compact, it follows from Lemma 2.7 that the function
g (·, u1(·)) ∈ AS p(X). To show that f (·, u(·)) ∈ P AAp(R,X, μ), it is sufficient to
show that Fb+Hb ∈ ε (L p(0, 1;X), μ). First, we prove that Fb ∈ ε (L p(0, 1;X), μ).
It is easy to see that F(·) ∈ BS p(X). Assume that ‖F(t)‖S p ≤ M for t ∈ R. For any
ε > 0, by (i) and I = ∅, we have

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖F(s)‖pds

) 1
p

dμ(t)

= 1

μ([−r, r ])
∫

Aε
r (u2)

(∫ t+1

t
‖F(s)‖pds

) 1
p

dμ(t)

+ 1

μ([−r, r ])
∫

Bε
r (u2)

(∫ t+1

t
‖ f (s, u(s)) − f (s, u1(s)) ‖pds

) 1
p

dμ(t)

≤ M
μ(Aε

r (u2))

μ([−r, r ]) + 1

μ([−r, r ])
∫

Bε
r (u2)

L(t)

(∫ t+1

t
‖u2(s)‖pds

) 1
p

dμ(t)

≤ M
μ(Aε

r (u2))

μ([−r, r ]) + ε · 1

μ([−r, r ])
∫

[−r,r ]
L(t)dμ(t),

where I, Aε
r (u2), Bε

r (u2) are given in Theorem 2.1.
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On the other hand, it follows from Theorem 2.1 that

lim
r→∞

μ(Aε
r (u2))

μ([−r, r ]) = 0.

So we get

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖F(s)‖p ds

) 1
p

dμ(t) = 0.

Therefore, Fb ∈ ε (L p(0, 1;X), μ) . Next we prove that Hb ∈ ε (L p(0, 1;X), μ).
K2 = {u1(t) : t ∈ R} is compact in X, and g(t, x) is uniformly continuous in any
bounded subset K

′ ⊂ X uniformly for t ∈ R. Thus for any ε > 0, there is a constant
δ ∈ (0, ε) such that

(∫ t+1

t
‖g(s, u) − g(s, v)‖pds

) 1
p

< ε,

t ∈ R, u, v ∈ K2 with ‖u − v‖ ≤ δ. By (i), we have

(∫ t+1

t
‖h(s, u) − h(s, v)‖p ds

) 1
p

≤
(∫ t+1

t
‖ f (s, u) − f (s, v)‖p ds

) 1
p

+
(∫ t+1

t
‖g(s, u) − g(s, v)‖p ds

) 1
p

≤ (L(t) + 1)ε.

For all t ∈ R and u, v ∈ K2 with ‖u − v‖ ≤ δ. Noting that (L(t) + 1) ∈ BS p(R), we
know from Lemma 3.1 that

lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖h (s, u1(s)) ‖p ds

) 1
p

dμ(t) = 0,

which means that Hb ∈ ε (L p(0, 1;X), μ). This completes the proof. ��
Theorem 3.3 Let μ ∈ M and let f := g + φ ∈ P AAp (R × X,X, μ) with
g ∈ AS p (R × X,X), and φb ∈ ε (X, L p(0, 1;X), μ). Assume that the following
conditions are satisfied:

(1) f (t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for

t ∈ R.
(2) g(t, x) is uniformly continuous in any bounded subset K

′ ⊂ X uniformly for
t ∈ R.

(3) For every bounded subset K
′ ⊂ X,{ f (·, x) : x ∈ K

′ } is bounded in P AAp(R ×
X,X, μ).

123



1026 Y.-K. Chang et al.

If x = α + β ∈ P AAp(R,X, μ) ∩ B(R,X), with α ∈ AS p(X), βb ∈
ε (L p(0, 1;X), μ) and Q = {x(t) : t ∈ R}, Q1 = {α(t) : t ∈ R} are compact, then
f (·, x(·)) belongs to P AAp(R,X, μ).

Proof Since f ∈ P AAp(R × X,X, μ) and x ∈ P AAp(R,X, μ), we have by defini-
tion that f = g + φ where g ∈ AS p (R × X,X) and φb ∈ ε (X, L p(0, 1;X), μ). So,
the function f can be written in the form:

f (t, x(t)) = g (t, α(t)) + f (t, x(t)) − g (t, α(t))

= g (t, α(t)) + f (t, x(t)) − f (t, α(t)) + φ (t, α(t)) .

Define

G(t) = g (t, α(t)) , H(t) = f (t, x(t)) − f (t, α(t)) , (t) = φ (t, α(t)) .

Then f (t, x(t)) = G(t) + H(t) + (t). Since the function g satisfies condition (2)
and Q1 = {α(t) : t ∈ R} is compact, it follows from Lemma 2.7 that the function
g (·, α(·)) ∈ AS p(X). To show that f (·, x(·)) ∈ P AAp(R,X, μ), it is enough to
show that Hb + b ∈ ε (L p(0, 1;X), μ).

First, we prove that Hb ∈ ε (L p(0, 1;X), μ). Since x(·) and α(·) are bounded, we
can choose a bounded subset K

′ ⊆ X, such that x(R), α(R) ⊆ K
′
. Under assumption

(3) that H(·) ∈ BS p(X), from (1) we can see that f is uniformly continuous on the
bounded subset K

′ ⊆ X uniformly for t ∈ R. So given ε > 0, there exists δ > 0, such
that u, v ∈ K

′
and ‖u − v‖ ≤ δ imply that ‖ f (t, u) − f (t, v)‖ ≤ ε for all t ∈ R.

Then we have (∫ t+1

t
‖ f (s, u) − f (s, v)‖p ds

) 1
p

≤ ε.

Hence, for each t ∈ R, ‖β(s)‖S p < δ, s ∈ [t, t + 1] implies that for all t ∈ R,

(∫ t+1

t
‖H(s)‖p ds

) 1
p

=
(∫ t+1

t
‖ f (s, x(s)) − f (s, α(s)) ‖p ds

) 1
p

≤ ε.

Therefore, the following inequality holds:

μ

{
t ∈ [−r, r ] :

(∫ t+1
t ‖ f (s, x(s)) − f (s, α(s))‖p ds

) 1
p

> ε

}

μ([−r, r ])

≤
μ

{
t ∈ [−r, r ] :

(∫ t+1
t ‖β(s)‖p ds

) 1
p

> δ

}

μ([−r, r ]) .

Since βb is μ-ergodic, Theorem 2.1 yields that for the above-mentioned δ we have

lim
r→+∞

μ

{
t ∈ [−r, r ] :

(∫ t+1
t ‖β(s)‖p ds

) 1
p

> δ

}

μ([−r, r ]) = 0,
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and then we obtain

lim
r→+∞

μ

{
t ∈ [−r, r ] :

(∫ t+1
t ‖ f (s, x(s)) − f (s, α(s))‖p ds

) 1
p

> ε

}

μ([−r, r ]) = 0. (3.5)

With the help of Theorem 2.1, (3.5) shows that t → Hb is μ-ergodic.
Now to complete the proof, it is enough to prove that b is μ-ergodic. Since f, g

satisfy conditions (1) and (2), then for any ε > 0, there exists δ > 0, such that
u, v ∈ Q1 imply that

(∫ t+1

t
‖ f (s, u) − f (s, v)‖p ds

) 1
p

<
ε

16
t ∈ R,

and

(∫ t+1

t
‖g(s, u) − g(s, v)‖p ds

) 1
p

<
ε

16
t ∈ R.

Now, we put δ0 = min(ε, δ), then

(∫ t+1

t
‖φ(s, u) − φ(s, v)‖p ds

) 1
p

≤
(∫ t+1

t
‖ f (s, u) − f (s, v)‖p ds

) 1
p

+
(∫ t+1

t
‖g(s, u) − g(s, v)‖p ds

) 1
p

≤ ε

8

for all t ∈ R, and u, v ∈ Q1 with ‖u − v‖ ≤ δ0.
Since Q1 = {α(t) : t ∈ R} is compact, we find finite open balls Ok(k =

1, 2, . . . , m)with center uk ∈ Q1 and radius δ0 given above, such that {α(t) : t ∈ R} ⊂
∪m

k=1Ok . Define and choose Bk such that Bk = {t ∈ R : ‖α(t) − uk‖ < δ0}, k =
1, 2, . . . , m, R = ∪m

k=1Bk , and set E1 = B1, Ek = Bk \ (∪k−1
j=1B j ) (2 ≤ k ≤ m).

Then R = ∪m
k=1Ek and Ei

⋂
E j = ∅, i �= j, 1 ≤ i, j ≤ m. Define a function

u : R → X by u(t) = uk for t ∈ Ek, k = 1, 2, . . . m. Then ‖α(t) − u(t)‖ < δ0 for
all t ∈ R, it is easy to get from

(
m∑

k=1

∫
Ek
⋂[t,t+1]

‖φ (s, α(s)) − φ(s, uk)‖p ds

) 1
p

=
(∫ t+1

t
‖φ (s, α(s)) − φ (s, u(s)) ‖p ds

) 1
p

<
ε

8
.

123
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Since φb ∈ ε (X, L p(0, 1;X), μ), there exists a constant r0 > 0, such that

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖φ(s, uk)‖p ds

) 1
p

dμ(t) <
ε

8m2

for all r > r0 and 1 ≤ k ≤ m.
Now combing these estimates, we deduce that for all r > r0

1

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖(s)‖p ds

) 1
p

dμ(t)

= 1

μ([−r, r ])
∫

[−r,r ]

(
m∑

k=1

(∫
Ek
⋂[t,t+1]

‖φ (s, α(s))−φ(s, uk)+φ(s, uk)‖p ds

)) 1
p

dμ(t)

≤ 1

μ([−r, r ])
∫

[−r,r ]

[
2p

m∑
k=1

( ∫
Ek
⋂[t,t+1]

‖φ (s, α(s)) − φ(s, uk)‖p ds

+
∫
Ek
⋂[t,t+1]

‖φ(s, uk)‖p ds
)] 1

p

dμ(t)

≤ 21+
1
p

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖φ (s, α(s)) − φ (s, u(s))‖p ds

) 1
p

dμ(t)

+ 21+
1
p

μ([−r, r ])
∫

[−r,r ]

(
m∑

k=1

∫
Ek
⋂[t,t+1]

‖φ(s, uk)‖p ds

) 1
p

dμ(t)

<
4

μ([−r, r ])
∫

[−r,r ]
ε

8
dμ(t) +

m∑
k=1

4m
1
p

μ([−r, r ])
∫

[−r,r ]

(∫ t+1

t
‖φ(s, uk)‖p ds

) 1
p

dμ(t)

<
ε

2
+ m

1
p

ε

2m
< ε,

which implies that b ∈ ε (L p(0, 1;X), μ). This completes the proof. ��

4 Existence of µ-Pseudo Almost Automorphic Solutions

In this section, we consider the existence of μ-pseudo almost automorphic mild solu-
tions for the problem (1.1) under some suitable conditions.

Definition 4.1 Acontinuous function u is called aμ-pseudo almost automorphicmild
solution of Eq. (1.1) on R if u ∈ P AA(R,X, μ) and u(t) satisfies

u(t) = U (t, a)u(a) +
∫ t

a
U (t, s) f (s, u(s)) ds

for t ≥ a.

First, we list the following basic assumptions:
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In this paper, we assume that {A(t)}t∈R satisfies the Acquistapace–Terreni condi-
tions introduced in [16,24], that is,

(A1) there exist constants λ0 ≥ 0, θ ∈ (
π
2 , π

)
, L, K ≥ 0, and α, β ∈ (0, 1] with

α + β > 1 such that

�θ ∪ {0} ⊂ ρ(A(t) − λ0), ‖R(λ, A(t) − λ0)‖ ≤ K
1 + |λ|

and

‖(A(t) − λ0)R(λ, A(t) − λ0)[R(λ0, A(t)) − R(λ0, A(s))]‖ ≤ L|t − s|α|λ|−β

for t, s ∈ R,λ ∈ �θ := {λ ∈ C \ {0} : |argλ| ≤ θ}.
Remark 4.1 [16,25] If the condition (A1) holds, then there exists a unique evolution
family {U (t, s)}−∞<s≤t<∞ on X, which satisfies the homogeneous equation u′(t) =
A(t)u(t), t ∈ R.

We further suppose that

(A2) the evolution family U (t, s) generated by A(t) is exponentially stable, that is,
there are constants K , ω > 0 such that ‖U (t, s)‖ ≤ K e−ω(t−s) for all t ≥ s.
And the function R×R �→ X, (t, s) �→ U (t, s)x ∈ bAA(R×R,X) uniformly
for all x in any bounded subset of X.

(A3) There exists a constant L f > 0, such that

‖ f (t, x) − f (t, y)‖ ≤ L f ‖x − y‖

for all t ∈ R and each x, y ∈ X.

(A4) There exists a nonnegative function L f (·) ∈ BS p(R) with p > 1 such that

‖ f (t, x)− f (t, y)‖≤ L f (t)‖x−y‖, lim
r→∞

1

μ([−r, r ])
∫

[−r,r ]
L f (t) dμ(t)<∞

for all t ∈ R and each x, y ∈ X.

(A5) The function f : R × X → X satisfies the following conditions:
(I) There exists L̃ > 0 such that

M f = sup
t∈R,‖u‖≤L̃

(∫ t+1

t
‖ f (s, u(s))‖p ds

) 1
p

≤ L̃

�(K , q, ω)
,

where �(K , q, ω) = K q
√

eqω−1
qω

�∞
n=1 e

−ωn .

(II) Let {xn} ⊂ P AA(R,X, μ) be uniformly bounded in R and uniformly
convergent in each compact subset of R. Then { f (·, xn(·))} is relatively
compact in BS p(X).
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(A6) The function f = g + h ∈ P AAp (R × X,X, μ) where g ∈ AS p (R × X,X)

is uniformly continuous in any bounded subset M ⊂ X uniformly in t ∈ R and
hb ∈ ε (X, L p(0, 1;X), μ).

(A7) f ∈ P AAp (R × X,X, μ) and f (t, x) is uniformly continuous in any bounded
subset M ⊂ X uniformly for t ∈ R and for every bounded subset M ⊂ X,
{ f (·, x) : x ∈ M} is bounded in P AAp (R × X,X, μ).

Consider the following abstract differential equation in the Banach space (X, ‖ · ‖)

u′(t) = A(t)u(t) + f (t), t ∈ R, (4.1)

where {A(t)}t∈R satisfies the condition (A1) and f ∈ P AAp(R,X, μ) ∩ C(R,X) for
p > 1. Throughout this paper, we set 1

q = 1 − 1
p . Note that q �= 0, as p �= 1.

Lemma 4.1 Let μ ∈ M. Assume that (A1)–(A2) hold. Then the Eq. (4.1) admits a
unique μ-pseudo almost automorphic mild solution given by

u(t) =
∫ t

−∞
U (t, σ ) f (σ ) dσ. (4.2)

Proof The proof of uniqueness has been given in [13]. Now let us investigate
the existence. Since f ∈ P AAp(R,X, μ), there exist g ∈ AS p(X) and hb ∈
ε (L p(0, 1;X), μ) such that f = g + h. So

u(t) =
∫ t

−∞
U (t, σ ) f (σ ) dσ =

∫ t

−∞
U (t, σ )g(σ ) dσ +

∫ t

−∞
U (t, σ )h(σ ) dσ

= �(t) + �(t),

where�(t) =
∫ t

−∞
U (t, σ )g(σ ) dσ , and�(t) =

∫ t

−∞
U (t, σ )h(σ ) dσ . We just need

to verify �(t) ∈ AA(X) and �(t) ∈ ε (R,X, μ). First we prove that �(t) ∈ AA(X).
It follows from [5, Lemma 11.2] that �(t) is almost automorphic. Next, we prove that
�(t) ∈ ε (R,X, μ).

For this, we consider

�n(t) =
∫ t−n+1

t−n
U (t, σ )h(σ ) dσ,

for each t ∈ R and n = 1, 2, 3 . . .. From assumption (A2) and Holder’s inequality, it
follows that

‖�n(t)‖ ≤ K
∫ t−n+1

t−n
e−ω(t−σ)‖h(σ )‖ dσ

≤ K

(∫ t−n+1

t−n
e−qω(t−σ) dσ

) 1
q
(∫ t−n+1

t−n
‖h(σ )‖p dσ

) 1
p
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≤ K

(∫ n

n−1
e−qωσ dσ

) 1
q
(∫ t−n+1

t−n
‖h(σ )‖p dσ

) 1
p

≤ K
q
√

qω

(
e−qω(n−1) − e−qωn

) 1
q
(∫ t−n+1

t−n
‖h(σ )‖p dσ

) 1
p

≤ K e−ωn

q
√

qω
(eqω − 1)

1
q

(∫ t−n+1

t−n
‖h(σ )‖p dσ

) 1
p

≤ K e−ωn

q
√

qω
(eqω + 1)

1
q

(∫ t−n+1

t−n
‖h(σ )‖p dσ

) 1
p

.

Then for r > 0, we see that

1

μ([−r, r ])
∫

[−r,r ]
‖�n(t)‖ dμ(t)

≤ K e−ωn

q
√

qω
(eqω + 1)

1
q

1

μ([−r, r ])
∫

[−r,r ]

(∫ t−n+1

t−n
‖h(σ )‖p dσ

) 1
p

dμ(t).

Since hb ∈ ε (L p(0, 1;X), μ), the above inequality leads to �n ∈ ε (R,X, μ). The
above inequality leads also to

‖�n(t)‖ ≤ K e−ωn

q
√

qω
(eqω + 1)

1
q ‖h‖S p .

Since the series

K
q
√

qω
(eqω + 1)

1
q ×

∞∑
n=1

e−ωn

is convergent, then we deduce from the Weierstrass test that the series
∑∞

n=1 �n(t) is

uniformly convergent onR and�(t) =
∫ t

−∞
U (t, σ )h(σ ) dσ =

∞∑
n=1

�n(t).Applying

�n ∈ ε (R,X, μ) and the inequality

1

μ([−r, r ])
∫

[−r,r ]
‖�(t)‖ dμ(t) ≤ 1

μ([−r, r ])
∫

[−r,r ]
‖�(t) −

n∑
k=1

�k(t)‖ dμ(t)

+
n∑

k=1

1

μ([−r, r ])
∫

[−r,r ]
‖�k(t)‖ dμ(t),

we deduce that the uniform limit �(t) = ∑∞
n=1 �n(t) ∈ ε (R,X, μ). Therefore,

u(t) = �(t) + �(t) is μ-pseudo almost automorphic.
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Finally, let us prove that u(t) is a mild solution of the Eq. (4.1). Indeed, if we let

u(s) =
∫ s

−∞
U (s, σ ) f (σ ) dσ (4.3)

and multiply both sides of (4.3) by U (t, s), then

U (t, s)u(s) =
∫ s

−∞
U (t, σ ) f (σ ) dσ.

If t ≥ s, then

∫ t

s
U (t, σ ) f (σ ) dσ =

∫ t

−∞
U (t, σ ) f (σ ) dσ −

∫ s

−∞
U (t, σ ) f (σ ) dσ

= u(t) − U (t, s)u(s).

It follows that

u(t) = U (t, s)u(s) +
∫ t

s
U (t, σ ) f (σ ) dσ.

��
This completes the proof of the theorem.

Theorem 4.1 Let μ ∈ M. Assume the condition (H0), (A1)–(A3) are satisfied and
the function f = g + h ∈ P AAp(R × X,X, μ) with g ∈ AS p (R × X,X), and
hb ∈ ε (X, L p(0, 1;X), μ). ThenEq. (1.1) has a unique μ-pseudo almost automorphic

mild solution on R provided that
KL f

ω
< 1.

Proof Let � : P AA(R,X, μ) → P AA(R,X, μ) be the nonlinear operator defined
by

(�u)(t) =
∫ t

−∞
U (t, s) f (s, u(s)) ds, t ∈ R.

First, let us prove that � (P AA(R,X, μ)) ⊂ P AA(R,X, μ). For each u ∈
P AA(R,X, μ), by using the fact that the range of an almost automorphic func-
tion is relatively compact combined with the above Theorem 2.4 and Theorem 3.1,
one can easily see that f (·, u(·)) ∈ P AAp(R,X, μ). Hence, from the proof of
Lemma 4.1, we know that (�u)(·) ∈ P AA(R,X, μ). That is, � maps P AA(R,X, μ)

into P AA(R,X, μ).
Now, let us prove that � has a unique fixed point. To this end, for each t ∈ R,
u, v ∈ P AA(R,X, μ), we have

‖(�u)(t) − (�v)(t)‖ ≤
∫ t

−∞
‖U (t, s)[ f (s, u(s)) − f (s, v(s))]‖ ds

≤ K
∫ t

−∞
e−ω(t−s)‖ f (s, u(s)) − f (s, v(s)) ‖ ds
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≤ KL f

∫ t

−∞
e−ω(t−s)‖u(s) − v(s)‖ ds

≤ KL f

∫ t

−∞
e−ω(t−s) ds‖u − v‖∞

≤ KL f

ω
‖u − v‖∞.

So ‖�u − �v‖∞ ≤ KL f
ω

‖u − v‖∞. Hence by the Banach contraction principle with
KL f

ω
< 1, � has a unique fixed point u in P AA(R,X, μ) which is the μ-pseudo

almost automorphic solution to Eq. (1.1). ��

A different Lipschitz condition is considered in the following result.

Theorem 4.2 Let μ ∈ M. Assume that (H0), (A1), (A2), (A4), and (A6) hold, then
Eq. (1.1) admits a unique μ-pseudo almost automorphic mild solution whenever

‖L f ‖S p < 1−e−ω

K

(
ωq

1−e−ωq

) 1
q

.

Proof Consider the nonlinear operator � given by

(�u)(t) =
∫ t

−∞
U (t, s) f (s, u(s)) ds, t ∈ R.

Let u ∈ P AA(R,X, μ), with Theorem 2.4 and Theorem 3.2, it follows that the
function s → f (s, u(s)) is in P AAp(R,X, μ). Moreover, from Lemma 4.1, we infer
that �u ∈ P AA(R,X, μ), that is, � maps P AA(R,X, μ) into itself. Next, we prove
that the operator � has a unique fixed point in P AA(R,X, μ). Indeed, for each t ∈ R,
u, v ∈ P AA(R,X, μ), we have

‖�u(t) − �v(t)‖ ≤
∥∥∥∥
∫ t

−∞
U (t, s)[ f (s, u(s)) − f (s, v(s))] ds

∥∥∥∥
≤ K

∫ t

−∞
e−ω(t−s)‖ f (s, u(s)) − f (s, v(s))‖ ds

≤ K
∫ t

−∞
e−ω(t−s)L f (s) ds‖u − v‖∞

=
∞∑

n=1

∫ t−n+1

t−n
K e−ω(t−s)L f (s) ds‖u − v‖∞

≤
∞∑

n=1

(∫ t−n+1

t−n
K qe−ωq(t−s) ds

) 1
q

‖L f ‖S p‖u − v‖∞

≤ K

1 − e−ω

(
1 − e−qω

ωq

) 1
q

‖L f ‖S p‖u − v‖∞,
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which gives

‖(�u)(t) − (�v)(t)‖∞ ≤ K

1 − e−ω

(
1 − e−qω

ωq

) 1
q

‖L f ‖S p‖u − v‖∞.

Since ‖L f ‖S p < 1−e−ω

K

(
ωq

1−e−ωq

) 1
q
, � has a unique fixed point u ∈ P AA(R,X, μ).

��
We next study the existence of μ-pseudo almost automorphic mild solutions of

Eq. (1.1) when the perturbation f is not Lipschitz continuous.

Theorem 4.3 Let μ ∈ M. Assume that the conditions (H0), (A1)–(A2), and (A5)–(A7)
are satisfied, and moreover U (t, s) is compact for t > s. Then the problem (1.1) has
at least one μ-pseudo almost automorphic mild solution on R.

Proof Consider the nonlinear operator � given by

(�x)(t) =
∫ t

−∞
U (t, s) f (s, x(s)) ds, t ∈ R.

First, we show that the nonlinear operator� is well defined and continuous. FromThe-
orem 2.4 and Theorem 3.3, we can see that f (s, x(s)) ∈ P AAp(R,X, μ).Hence from
Lemma 4.1, we can see that (�x)(·) ∈ P AA(R,X, μ), that is,� maps P AA(R,X, μ)

into P AA(R,X, μ).
Now, let us show that� is continuous on P AA(R,X, μ). Let {xn} ⊂ P AA(R,X, μ)

be a sequence which converges to some x ∈ P AA(R,X, μ), that is ‖xn − x‖ → 0
as n → ∞. We may find a bounded subset M ⊂ X such that xn(t), x(t) ∈ M for
t ∈ R, n = 1, 2, . . . . By (A7), for any ε > 0, there exists ω > 0 such that u, v ∈ M
and ‖u − v‖ < ω imply that

‖ f (t, u) − f (t, v)‖ <
ωε

K
for each t ∈ R,

where ω, K are given in (A2). For the above ω > 0, there exists N > 0 such that
‖xn(t) − x(t)‖ < ω for all n > N and all t ∈ R. Therefore,

‖ f (t, xn(t)) − f (t, x(t))‖ <
ωε

K
for each t ∈ R,

for all n > N and all t ∈ R. Then by the dominated convergence theorem, we have

‖(�xn)(t) − (�x)(t)‖ =
∥∥∥∥
∫ t

−∞
U (t, s)[ f (s, xn(s)) − f (s, x(s))] ds

∥∥∥∥
≤ K

∫ t

−∞
e−ω(t−s)‖ f (s, xn(s)) − f (s, x(s))‖ ds

< K
∫ t

−∞
e−ω(t−s) ωε

K
ds ≤ ε

for all n > N and all t ∈ R. This implies that � is continuous.
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For the sake of convenience, we divide the remaining proof into several steps.
Step 1 Let B = {x ∈ P AA(R,X, μ) : ‖x‖∞ ≤ L̃}. Then B is a closed convex

subset of P AA(R,X, μ). We claim that �B⊂B. In fact, for x ∈B and t ∈R, we get

‖(�x)(t)‖ =
∥∥∥∥
∫ t

−∞
U (t, s) f (s, x(s)) ds

∥∥∥∥
≤

∞∑
n=1

∥∥∥∥
∫ t−n+1

t−n
U (t, s) f (s, x(s)) ds

∥∥∥∥

≤
∞∑

n=1

K
∫ t−n+1

t−n
e−ω(t−s)‖ f (s, x(s))‖ ds

≤
∞∑

n=1

K

(∫ t−n+1

t−n
e−ωq(t−s) ds

) 1
q
(∫ t−n+1

t−n
‖ f (s, x(s))‖p ds

) 1
p

≤
∞∑

n=1

K q

√
eqω − 1

qω
e−ωn M f ≤ L̃,

which implies that ‖�x‖∞ ≤ L̃. Thus �B ⊂ B.

Step 2 We prove that the operator � is completely continuous on B. It is sufficient
to prove that the following statements are true.

(B1) V (t) = {(�x)(t) : x ∈ B} is relatively compact in X for each t ∈ R.

(B2) {�x : x ∈ B ⊂ P AA(R,X, μ)} is a family of equicontinuous functions.

First, we show that (B1) holds. Let 0 < ε < 1 be given. For each t ∈ R and x ∈ B,

we define

(�εx)(t) =
∫ t−ε

−∞
U (t, s) f (s, x(s)) ds

= U (t, t − ε)

∫ t−ε

−∞
U (t − ε, s) f (s, x(s)) ds

= U (t, t − ε)[(�x)(t − ε)].

Since U (t, s)(t > s) is compact, then the set Vε(t) : {(�εx)(t) : x ∈ B} is relatively
compact in X for each t ∈ R. Moreover, for each x ∈ B, we get

‖(�x)(t) − (�εx)(t)‖ =
∥∥∥∥
∫ t

t−ε

U (t, s) f (s, x(s)) ds

∥∥∥∥
≤ K

∫ t

t−ε

e−ω(t−s)‖ f (s, x(s))‖ ds

≤ K

(∫ t

t−ε

e−qω(t−s) ds

) 1
q
(∫ t

t−ε

‖ f (s, x(s))‖p ds

) 1
p

≤ K M f

(∫ t

t−ε

e−qω(t−s) ds

) 1
q

.
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1036 Y.-K. Chang et al.

Letting ε → 0, it follows that there is relatively compact set Vε(t) arbitrarily close to
V (t) and hence V (t) is also relatively compact in X for each t ∈ R.

Nextwe prove that (B2) holds. Let ε > 0 be small enough and−∞ < t1 < t2 < ∞.

Since {U (t, s)} is exponentially stable and compact for t > s, there exists δ = δ(ε) < ε̃

such that t2 − t1 < δ implies that

∥∥∥∥U
(

t1, t1 − t

2

)
− U

(
t2, t1 − t

2

)∥∥∥∥ <
ε

γ
for all t > 0,

where ε̃ = ( ε
6K M f

)q ≤ 1 and γ = 3K M f
q

√
2(e

qω
2 −1)
qω

∑∞
n=1 e

− ω(̃ε+n)
2 .

Indeed, for x ∈ B and t2 − t1 < δ, we have

‖(�x)(t2) − (�x)(t1)‖
≤
∥∥∥∥
∫ t1−ε̃

−∞
[U (t2, s) − U (t1, s)] f (s, x(s)) ds

∥∥∥∥
+
∥∥∥∥
∫ t1

t1−ε̃

[U (t2, s) − U (t1, s)] f (s, x(s)) ds

∥∥∥∥
+
∥∥∥∥
∫ t2

t1
U (t2, s) f (s, x(s)) ds

∥∥∥∥
≤
∥∥∥∥
∫ ∞

ε̃

[U (t2, t1 − s) − U (t1, t1 − s)] f (t1 − s, x(t1 − s)) ds

∥∥∥∥
+ K

∫ t1

t1−ε̃

[e−ω(t2−s) + e−ω(t1−s)]‖ f (s, x(s))‖ ds

+ K
∫ t2

t1
e−ω(t2−s)‖ f (s, x(s))‖ ds

≤
∥∥∥∥
∫ ∞

ε̃

[
U
(

t2, t1− s

2

)
−U

(
t1, t1− s

2

)]
U
(

t1− s

2
, t1−s

)
f (t1−s, x(t1−s)) ds

∥∥∥∥

+K

(∫ t1

t1−ε̃

[e−ω(t2−s) + e−ω(t1−s)]q ds

) 1
q
(∫ t1

t1−ε̃

‖ f (s, x(s))‖p ds

) 1
p

+K

(∫ t2

t1
e−qω(t2−s) ds

) 1
q
(∫ t2

t1
‖ f (s, x(s))‖p ds

) 1
p

≤ ε

γ
K
∫ ∞

ε̃

e− ωs
2 ‖ f (t1 − s, x(t1 − s))‖ ds + 2K ε̃

1
q M f + K δ

1
q M f

≤ ε

γ
K

∞∑
n=1

∫ ε̃+n

ε̃+n−1
e− ωs

2 ‖ f (t1−s, x(t1−s))‖ ds+2K

[(
ε

6K M f

)q] 1
q

M f +K ε̃
1
q M f

≤ ε

γ
K

∞∑
n=1

(∫ ε̃+n

ε̃+n−1
e− qωs

2 ds

) 1
q
(∫ ε̃+n

ε̃+n−1
‖ f (t1−s, x(t1 − s))‖p ds

) 1
p

+ ε

3
+ ε

6
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≤ ε

γ
K M f

q

√
2(e

qω
2 − 1)

qω

∞∑
n=1

e− ω(̃ε+n)
2 + ε

3
+ ε

6

≤ ε

3
+ ε

3
+ ε

6
< ε.

This implies that the set {�x : x ∈ B} is equicontinuous.
Now we denote the closed convex hull of �B by co�B. Since �B ⊂ B and B is

closed convex, co�B ⊂ B. Thus, �(co�B) ⊂ �B ⊂ co�B. This implies that � is
a continuous mapping from co�B to co�B. It is easy to verify that co�B has the
properties (B1) and (B2). More explicitly, {x(t) : x ∈ co�B} is relatively compact in
X for each t ∈ R, and co�B ⊂ BC(R,X) is uniformly bounded and equicontinuous.
By the Ascoli–Arzelà theorem, the restriction of co�B to every compact subset K3
of R, namely {x(t) : x ∈ co�B}x∈K3 , is relatively compact in C(K3,X). Thus, by
the conditions (A5) (II) and that � is well defined and continuous, we deduce that
� : co�B → co�B is a compact operator. Noting the continuity of �, it follows from
Schauder’s fixed point theorem that there is a fixed point x(·) for � in co�B. That is,
Eq. (1.1) has at least one μ-pseudo almost automorphic mild solution x ∈ B. This
completes the proof. ��

The following existence result is based upon nonlinear Leray–Schauder alternative
theorem. For that, we require the following assumption:

(A8) There exists a continuous nondecreasing function W : [0,∞) → (0,∞) such
that

‖ f (t, x)‖ ≤ W (‖x‖) forall t ∈ R and x ∈ X.

Theorem 4.4 Let μ ∈ M. Assume that the conditions (H0), (A1)–(A2) are satisfied.
Let f : R × X → X be a function that satisfies assumptions (A6)–(A8), and the
following additional conditions:

(i) For each z ≥ 0, the function t → ∫ t
−∞ e−ω(t−s)W (zh(s)) ds belongs to BC(R).

We set

β(z) = K

∥∥∥∥
∫ t

−∞
e−ω(t−s)W (zh(s)) ds

∥∥∥∥
h
.

(ii) For each ε > 0, there is δ > 0 such that for every u, v ∈ Ch(X), ‖u − v‖h ≤ δ

implies that

∫ t

−∞
e−ω(t−s)‖ f (s, u(s)) − f (s, v(s))‖ ds ≤ ε,

for all t ∈ R.
(iii) lim infξ→∞ ξ

β(ξ)
> 1.

(iv) For all a, b ∈ R, a < b, and z > 0, the set { f (s, h(s)x) : a ≤ s ≤ b, x ∈
Ch(X), ‖x‖h ≤ z} is relatively compact in X.

Then Eq. (1.1) has a μ-pseudo almost automorphic mild solution.
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Proof We define the nonlinear operator � : Ch(X) → Ch(X) by

(�u)(t) :=
∫ t

−∞
U (t, s) f (s, u(s)) ds, t ∈ R.

We will show that � has a fixed point in P AA(R,X, μ). For the sake of convenience,
we divide the proof into several steps.

(I) For u ∈ Ch(X), we have that

‖(�u)(t)‖≤ K
∫ t

−∞
e−ω(t−s)W (‖u(s)‖) ds ≤ K

∫ t

−∞
e−ω(t−s)W (‖u‖hh(s)) ds.

It follows from condition (i) that � is well defined.
(II) The operator � is continuous. In fact, for any ε > 0, we take δ > 0 involved in

condition (ii). If u, v ∈ Ch(X) and ‖u − v‖h ≤ δ, then

‖(�u)(t) − (�v)(t)‖ ≤ K
∫ t

−∞
e−ω(t−s)‖ f (s, u(s)) − f (s, v(s))‖ ds ≤ ε,

which shows the assertion.
(III) We will show that � is completely continuous. We set Bz(X) for the closed

ball with center at 0 and radius z in the space X. Let V = �(Bz(Ch(X))) and
v = �(u) for u ∈ Bz(Ch(X)). First, we will prove that V (t) is a relatively
compact subset of X for each t ∈ R. It follows from condition (i) that the
function s → K e−ωs W (zh(t − s)) is integrable on [0,∞). Hence, for ε > 0,
we can choose a ≥ 0 such that K

∫∞
a e−ωs W (zh(t − s)) ds ≤ ε. Since

v(t)=
∫ a

0
U (t, t−s) f (t−s, u(t−s)) ds+

∫ ∞

a
U (t, t−s) f (t−s, u(t−s)) ds

and∥∥∥∥
∫ ∞

a
U (t, t − s) f (t − s, u(t − s)) ds

∥∥∥∥ ≤ K
∫ ∞

a
e−ωs W (zh(t − s)) ds ≤ ε,

we get v(t) ∈ ac0(N ) + Bε(X), where c0(N ) denotes the convex hull of N and
N = {U (t, t − s) f (ξ, h(ξ)x) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ‖x‖h ≤ z}. Using the
strong continuity of U (t, s) and property (iv) of f , we infer that N is a relatively
compact set, and V (t) ⊆ ac0(N ) + Bε(X), which establishes our assertion.
Second, we show that the set V is equicontinuous. In fact, we can decompose

v(t + s) − v(t) =
∫ s

0
U (t, t − σ) f (t + s − σ, u(t + s − σ)) dσ

+
∫ a

0
[U (t, t − σ − s) − U (t, t − σ)] f (t − σ, u(t − σ)) dσ

+
∫ ∞

a
[U (t, t − σ − s) − U (t, t − σ)] f (t − σ, u(t − σ)) dσ.
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For each ε > 0, we can choose a > 0 and δ1 > 0 such that

∥∥∥∥
∫ s

0
U (t, t − σ) f (t + s − σ, u(t + s − σ)) dσ

+
∫ ∞

a
[U (t, t − σ − s) − U (t, t − σ)] f (t − σ, u(t − σ)) dσ

∥∥∥∥
≤ K

∫ s

0
e−ωσ W (zh(t + s − σ)) dσ

+K
∫ ∞

a
[e−ω(σ+s) + e−ωσ ]W (zh(t − σ)) dσ

≤ ε

2

for s ≤ δ1. Moreover, since { f (t − σ, u(t − σ)) : 0 ≤ σ ≤ a, u ∈ Bz(Ch(X))}
is a relatively compact set and U (t, s) is strongly continuous, we can choose
δ2 > 0 such that ‖[U (t, t − σ − s) − U (t, t − σ)] f (t − σ, u(t − σ))‖ ≤ ε

2a
for s ≤ δ2. Combining these estimates, we get ‖v(t + s)− v(t)‖ ≤ ε for s small
enough and independent of u ∈ Bz(Ch(X)).

Finally, applying condition (i), we can see that

‖v(t)‖
h(t)

≤ K

h(t)

∫ t

−∞
e−ω(t−s)W (zh(s)) ds → 0, |t | → ∞,

and this convergence is independent of u ∈ Bz(Ch(X)). Hence, by Lemma 2.10,
V is a relatively compact set in (Ch(X)).

(IV) Let us show thatuλ(·) is a solution of equationuλ = λ�(uλ) for some0 < λ < 1.
We can estimate

∥∥uλ(t)
∥∥ = λ

∥∥∥∥
∫ t

−∞
U (t, s) f (s, uλ(s)) ds

∥∥∥∥
≤ K

∫ t

−∞
e−ω(t−s)W (‖uλ‖hh(s)) ds

≤ β(‖uλ‖h)h(t).

Hence, we get

‖uλ‖h

β(‖uλ‖h)
≤ 1

and combiningwith condition (iii), we conclude that the set
{
uλ : uλ = λ�(uλ),

λ ∈ (0, 1)} is bounded.
(V) It follows from Theorem 2.4, (A6)–(A7), and Theorem 3.3 that the function

t → f (t, u(t)) belongs to P AAp(R,X, μ), whenever u ∈ P AA(R,X, μ).
Moreover, from Lemma 4.1 we infer that �(P AA(R,X, μ)) ⊂ P AA(R,X, μ),
and noting that P AA(R,X, μ) is a closed subspace of Ch(X), consequently,
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we can consider � : P AA(R,X, μ) → P AA(R,X, μ). Using properties (I)–
(III), we deduce that this map is completely continuous. Applying Lemma 2.11,
we infer that � has a fixed point u ∈ P AA(R,X, μ), which completes the
proof. ��

Corollary 4.1 Let μ ∈ M. Assume that (H0), (A1)–(A2) are satisfied. Let f :
R × X → X be a function that satisfies assumptions (A6)–(A7) and the Hölder type
condition:

‖ f (t, u) − f (t, v)‖ ≤ �‖u − v‖α, 0 < α < 1,

for all t ∈ R and u, v ∈ X, where � > 0 is a constant. Moreover, assume the following
conditions:

(a) f (t, 0) = q.
(b) supt∈R K

∫ t
−∞ e−ω(t−s)h(s)α ds = �2 < ∞.

(c) For all a, b ∈ R, a < b, and z > 0, the set { f (s, h(s)x) : a ≤ s ≤ b, x ∈
Ch(X), ‖x‖h ≤ z} is relatively compact in X.

Then Eq. (1.1) has a μ-pseudo almost automorphic mild solution.

Proof Let �0 = ‖q‖, �1 = �. We take W (ξ) = �0 + �1ξ
α . Then condition (A8)

is satisfied. It follows from (b) that function f satisfies (i) in Theorem 4.4. Note
that for each ε > 0 there is 0 < δα < ε

�1�2
such that for every u, v ∈ Ch(X),

‖u − v‖h ≤ δ implies that K
∫ t
−∞ e−ω(t−s)‖ f (s, u(s) − f (s, v(s))‖ ds ≤ ε for all

t ∈ R. The hypothesis (iii) in the statement of Theorem 4.4 can be easily verified using
the definition of W. So by Theorem 4.4 we can prove that Eq. (1.1) has a μ-pseudo
almost automorphic mild solution. ��
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