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Abstract Let A be a subgroup of a group G and X a non-empty subset of G. A is
said to be X -s-semipermutable in G if A has a supplement T in G such that A is
X -permutable with every Sylow subgroup of T . In this paper, some new criteria for
a finite group G to be p-nilpotent or supersoluble in terms of X -s-semipermutable
subgroups are obtained. In particular, a characterization of finite groups all of whose
subgroups are G-s-semipermutable is presented.

Keywords Finite groups · X -s-semipermutable subgroups · p-nilpotent groups ·
Supersoluble groups
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1 Introduction

Guo et al. [9–12,14] introduced the following new concepts of generalized permutable
subgroups. Let A and B be subgroups of a group G and X a nonempty subset of G.
Then A is said to be X -permutable with B if there exists some element x in X such
that ABx = Bx A (in particular, if X = G, then, in [10], A is said to be conditionally
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permutable with B); A is said to be X -semipermutable in G if A is X -permutable
with all subgroups of some supplement T of A in G. Based on these generalized
permutable subgroups, one has given a series of new and interesting characterizations
of the structure of finite groups (see [2,6,9–16,24]).

Later on, as a generalization of X -semipermutability, Hao et al. introduced the
concept of X -s-semipermutability in [19]. Let A be a subgroup of a group G and X
a non-empty subset of G. Then A is said to be X -s-semipermutable in G if A is X -
permutable with every Sylow subgroup of some supplement T of A in G. Obviously,
the X -semipermutability and S-permutability imply the X -s-semipermutability. How-
ever, the converse does not hold. For example, let G = [〈a, b〉]〈α〉, where a4 = 1,
a2 = b2 = [a, b] and aα = b, bα = ab. Let A = 〈α〉 and X = 1. Clearly, A is
X -s-semipermutable in G. But A is not X -semipermutable in G. On the other hand,
let G = [C5]C4, where C5 is a group of order 5 and C4 is the automorphism group of
C5 of order 4. Let H be a subgroup of C4 of order 2. Then H is G-s-semipermutable
in G but not S-permutable in G.

Note that Li et al. [28], introduced the concept of SS-quasinormality. A subgroup H
of a groupG is said to be SS-quasinormal inG if H has a supplement T inG such that
H is permutable with every Sylow subgroup of T . Clearly, SS-quasinormality implies
that X -s-semipermutability, where X = 1. But the converse does not hold in general.
The group G = [C5]C4 mentioned in the foregoing paragraph is a counterexample.
Let H be a subgroup of C4 of order 2. Then H is G-s-semipermutable in G, but not
SS-quasinormal in G.

Hao et al. [19,20] investigated the influence of X -s-semipermutable subgroups on
the supersolubility and p-nilpotency of finite groups.Our object in this paper is to study
further this kind of generalized permutable subgroups.Moreover, wewill present some
new characterizations of p-nilpotency and supersolubility of finite groups under the
assumption that some subgroups are X -s-semipermutable. One of our results obtained
in this paper characterizes the structure of groups G all of whose subgroups are all
G-s-semipermutable.

All groups considered in this paper are finite. For notation and terminology not
given in this paper, the reader is referred to [8,18,22] if necessary. For some related
topics, the reader is also referred to [1,5,21,25–27,29,33,35,36].

2 Preliminaries

We begin by stating some elementary facts about the classes of finite groups.
Let F be a class of groups. F is said to be a formation if F is a homomorph and

every group G has a smallest normal subgroup (denoted by GF ) whose quotient is
still in F . A formation F is said to be saturated if G/�(G) ∈ F always implies
G ∈ F . A chief factor H/K of a group G is said to F-central (or F-eccentric) in
G if [H/K ](G/CG(H/K )) ∈ F (or [H/K ](G/CG(H/K )) /∈ F respectively). In
this paper, ZF∞(G) denotes the F-hypercenter of a group G, that is, the product of all
such normal subgroups H of G whose G-chief factors are F-central. We use N and
U to denote the class of all nilpotent groups and the class of all supersoluble groups,
respectively.
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Lemma 2.1 [19, Lemma 2.1] Let A and X be subgroups of a group G and let N be
a normal subgroup of G.

(1) If A is X-s-semipermutable in G, then AN/N is XN/N-s-semipermutable in
G/N.

(2) If A is X-s-semipermutable in G, A ≤ D ≤ G and X ≤ D, then A is X-s-
semipermutable in D.

(3) If A is X-s-semipermutable in G and X ≤ D, then A is D-s-semipermutable in
G.

Lemma 2.2 [23, Lemma 3.3] Let G be a group and X a normal p-soluble subgroup
of G. Then G is p-soluble if and only if a Sylow p-subgroup P of G is X-permutable
with all Sylow q-subgroups of G, where q �= p.

Lemma 2.3 [32, Lemma 2.10] Let G be a group. Suppose that p is the smallest prime
dividing the order of G and P is a non-cyclic Sylow p-subgroup of G. If every maximal
subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Lemma 2.4 [31, Corollary 1] Let A be an S-permutable subgroup of a group G. Then
A is subnormal in G.

Lemma 2.5 [6, Lemma 2.8] Let G be a group, p a prime and (|G|, p− 1) = 1. If M
is a subgroup of G with index p, then M is normal in G.

Lemma 2.6 [17, Lemma 2.6] Let H be a nilpotent normal subgroup of a group G. If
H �= 1 and H ∩ �(G) = 1, then H has a complement in G and H is a direct product
of some minimal normal subgroups of G.

Lemma 2.7 [29, Theorem 1.3] Let p be a prime dividing the order of a group G
and P a Sylow p-subgroup of G. If every maximal subgroup of P has a p-nilpotent
supplement in G, then G is p-nilpotent.

3 Main Results

Theorem 3.1 Let F be a saturated formation containing all supersoluble groups. A
group G ∈ F if and only if G has a normal soluble subgroup E such that G/E ∈ F
and for every non-cyclic Sylow subgroup P of F(E), every cyclic subgroup of P of
order prime or order 4 (if P is a non-abelian 2-group and H � Z∞(G)) not having
a supersoluble supplement in G is G-s-semipermutable in G.

Proof The necessity is clear and we need only to prove the sufficiency.
First, we claim that any chief factor of G below F(E) is of prime order. Assume

that the assertion is not true and let L/K be a counterexample with |K | minimal, that
is, L/K is not of prime order but for every chief factor U/V of G below F(E) with
|V | < |K |, U/V is of prime order. Since E is soluble, we see that L/K is a p-chief
factor for some prime p. Noticing that L/K 	 L ∩ Op(E)/K ∩ Op(E), we obtain
by the choice of L/K that L/K = L ∩ Op(E)/K ∩ Op(E) and so L ⊆ Op(E). Let
P be the Sylow p-subgroup of F(E). If P is cyclic, then L/K is cyclic of order p, a

123



852 J. Li, D. Yu

contradiction. Hence we can assume that P is non-cyclic. Let R/K be a chief factor
of Gp/K , where Gp is a Sylow p-subgroup of G and R ⊆ L . Then R = 〈x〉K for any
x ∈ R\K . Nowwe assume that there is some element x ∈ R\K of order p or 4 (if P is
non-abelian 2-group and 〈x〉 � Z∞(G)) not having a supersoluble supplement inG is
G-s-semipermutable in G and prove that L/K is of order p, reaching a contradiction.
If x ∈ Z∞(G), then xK/K ∈ L/K ∩ Z∞(G/K ) and so L/K ⊆ Z∞(G/K ), which
implies that L/K is of order p, a contradiction. If 〈x〉 has a supersoluble supplement T
in G, then L/K ∩T K/K = 1 or L/K . If L/K ∩T K/K = L/K , then L/K is a chief
factor of G/K = T K/K , which is supersoluble. Therefore, L/K is cyclic of order
p, a contradiction. If L/K ∩ T K/K = 1, then L/K = L/K ∩ (〈x〉K/K )(T K/K ) =
〈x〉K/K (L/K ∩ T K/K ) = 〈x〉K/K , a contradiction again. These contradictions
together with our hypothesis show that 〈x〉 is G-s-semipermutable in G. Therefore,
G has a subgroup T such that 〈x〉 is G-permutable with every Sylow subgroup of T .
Let Tq be a Sylow q-subgroup of T , where q �= p. Then 〈x〉(Tq)g = (Tq)g〈x〉 for
some g ∈ G. Since R/K = 〈x〉K/K is subnormal in G/K , 〈x〉K/K is subnormal in
(〈x〉K/K )((Tq)gK/K ) and so 〈x〉K/K is normalized by (Tq)gK/K . Now one can
see that R/K = 〈x〉K/K is normal in G/K and, therefore, L/K = R/K is cyclic.
This contradiction means that all elements of R \ K of order p or order 4 (if P is a
non-abelian 2-group) are contained in K . Since L/K = (R/K )G/K = RG/K , we
have that all elements of L of order p or 4 (if P is a non-abelian 2-group) are contained
in K .

Let U/V be any chief factor of G below K . Then, by the choice of L/K , U/V
is of order p and so G/CG(U/V ) is abelian of exponent dividing p − 1. Put X =⋂

U⊆K CG(U/V ). Then X is normal in G and G/X is abelian of exponent dividing
p − 1. Let Q be any Sylow q-subgroup of X , where q �= p. Then Q acts trivially
on K by [18, Lemma 3.2.3]. Moreover, since all elements of L of order p or 4 (if P
is a non-abelian 2-group) are contained in K , Q acts trivially on L/K by the well-
known Blackburn’s theorem, fromwhich we conclude that X/CX (L/K ) is a p-group.
It follows that X ⊆ CG(L/K ) as Op(G/CG(L/K )) = 1 by [18, Lemma 1.7.11] and
thereby G/CG(L/K ) is abelian of exponent dividing p − 1. Now, by [34, I, Lemma
1.3], we have that L/K is of order p, which contradicts our assumption for L/K .
Hence our claim holds. Thus F(E) ⊆ ZU∞(G) and thereby F(E) ⊆ ZF∞(G) (see [18,
Theorem 3.1.6]).

Let M/N be any chief factor of G below F(E) and put C = ⋂
CE (M/N ). Then

F(E) ⊆ C since F(G) ⊆ CG(M/N ). We assert that F(E) = C . Suppose that it is not
true and let R/F(E) be a minimal normal subgroup ofG/F(E)with F(E) < R ≤ C .
Then R ⊆ Z∞(R) and R/F(E) is an elementary group as E is soluble. It follows that
R is nilpotent and consequently R ⊆ F(E), a contradiction. Hence F(E) = C . Since
G/CG(M/N ) is abelian by the preceding argument and F is a saturated formation,
G/F(E) = G/C ∈ F . Since F(E) ⊆ ZF∞(G), we obtain that G ∈ F . Thus the proof
is complete. ��

By Theorem 3.1, we have the following corollary.

Corollary 3.2 (Asaad and Csörgö [3]) Let F be a saturated formation containing
all supersoluble groups. Then a group G ∈ F if and only if G has a normal soluble
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subgroup E such that G/E ∈ F and the subgroups of prime order or order 4 of F(E)

are S-permutable in G.

Theorem 3.3 Let G be a group and F a saturated formation containing all super-
soluble groups. Then G ∈ F if and only if G has a normal soluble subgroup E
such that G/E ∈ F and every maximal subgroup of each non-cyclic Sylow sub-
group of the Fitting subgroup F(E) not having a supersoluble supplement in G is
G-s-semipermutable in G.

Proof The necessity part is obvious. We only need to prove the sufficiency part.
Assume that the assertion is false and let G be a counterexample of minimal order.
Then

(1) �(G) ∩ E = 1.
Suppose that�(G)∩E �= 1. Let p be a prime divisor of |�(G)∩E | and P a Sylow
p-subgroup of �(G) ∩ E . Since �(G) ∩ E is a nilpotent normal subgroup of G,
P is normal in G and so P ≤ F(E). Consider the factor group G/P . It is clear
that F(E/P) = F(E)/P (see [18, Lemma 1.8.1]) and (G/P)/(E/P) 	 G/E
is contained in F by the hypothesis. Then by Lemma 2.1(2), we can see that
G/P satisfies the hypothesis. Hence G/P ∈ F by the choice of G. It follows that
G ∈ F as F is a saturated formation, a contradiction.

(2) F(E) = N1 × N2 × · · · × Nt , where Ni is a minimal normal subgroup of G, for
i = 1, 2, . . . , t .
This follows directly from Lemma 2.6 and (1).

(3) Ni is a cyclic group of prime order, for all i ∈ {1, 2, . . . , t}.
Without loss of generality, we may assume that P = N1 × N2 × · · · × Ns is
a Sylow p-subgroup of F(E), where s ≤ t . Let L1 be a maximal subgroup
of N1 such that L1 is normal in some Sylow p-subgroup Gp of G and write
B = N2 × · · · × Ns . Then L = L1B is a maximal subgroup of P . If P is
cyclic, then clearly N1 = P is cyclic of order p. Hence we assume that P is
not cyclic. Now, by the hypothesis, L has a supersoluble supplement in G or is
G-s-semipermutable in G. Suppose that L has a supersoluble supplement T in
G. Then (N1∩ BT )G = (N1∩ BT )L1BT ⊆ N1∩ BT and so N1∩ BT = 1 or N1.
If N1 ∩ BT = 1, then N1 = N1 ∩ L1BT = L1(N1 ∩ BT ) = L1, a contradiction.
If N1 ∩ BT = N1, then G = BT and, therefore, G/B is supersoluble. Since
N1B/B is a chief factor of G/B, N1 	 N1B/B is of order p, as desired. Now
assume that L isG-s-semipermutable inG. ThenG has a subgroup T such that L
is G-permutable with every Sylow subgroup of T . Let Tq be a Sylow q-subgroup
of T , where q �= p. Then, for some element g ofG, L(Tq)g = (Tq)gL . Since L is
subnormal inG, L is subnormal in L(Tq)g and so L is normalized by (Tq)g . Since
L is also normalized by Gp, we conclude that L is normal in G. Consequently
L1 = L1(N1 ∩ B) = N1 ∩ L1B = N1 ∩ L is normal in G, which implies that
N1 is cyclic of order p. Similarly we can prove that Ni is a cyclic group of prime
order for i = 2, . . . , t .

(4) Final contradiction.
By (3), we see that G/CG(Ni ) is abelian, where i = 1, 2, . . . , t . Hence G ′ ≤
CG(Ni ) and so G ′ ≤ CG(F(E)). It follows that G ′ ∩ E ≤ CH (F(E)) = F(E).
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Hence by (2) and (3), every G-chief factor belowG ′ ∩E is cyclic, fromwhich we
have that every chief factor of G below G ′ ∩ E is F-central. On the other hand,
since F is a saturated formation, G/(G ′ ∩ E) ∈ F . This induces that G ∈ F .
The final contradiction completes the proof. ��

The corollaries below follow from Theorem 3.3.

Corollary 3.4 (Ramadan [30]) Assume that G is a soluble group and every maximal
subgroup of the Sylow subgroups of F(G) is normal in G. Then G is supersoluble.

Corollary 3.5 (Asaad et al. [4]) A soluble group G is supersoluble if and only if G
has a normal subgroup E such that G/E is supersoluble and every maximal subgroup
of each Sylow subgroup of F(E) is normal in G.

Corollary 3.6 (Asaad et al. [4])LetG beagroupwith anormal supersoluble subgroup
E such that G/E is supersoluble. If all maximal subgroups of any Sylow subgroup of
F(H) is S-permutable in G, then G is supersoluble.

Corollary 3.7 (Chen and Li [6]) A group G is supersoluble if and only if G has
a normal soluble subgroup E such that G/E is supersoluble and every maximal
subgroup of each Sylow subgroup of F(E) is F(E)-semipermutable in G.

Now, we can characterize the structure of groups G with all subgroups G-s-
semipermutable in the light of the preceding results.

Theorem 3.8 Let G be a group. Every subgroup of G is G-s-semipermutable in G if
and only if

(1) G = [H ]K, where H = GN is a nilpotent Hall subgroup of G with odd order,
and

(2) G = HNG(L) for every subgroup L of H.

Proof We first prove the necessity. Suppose that each subgroup of G is G-s-
semipermutable in G. Then G has a Hall {p, q}-subgroup for different primes p and
q dividing the order of G. By the well-known Arad’s result, we see that G is soluble.
Moreover, by Theorem 3.1, G is supersoluble. It follows that GN is nilpotent. We
claim that GN is of odd order. If not, assume that 2 ∈ π(GN ) and let P be a Sylow
2-subgroup of GN . Then, P is normal in G and every chief factor of G below P is
of order 2. Thus, P ≤ Z∞(G). Let D be a Hall p′-subgroup of GN . Then GN is
contained in D, a contradiction. Hence GN is of odd order.

Let H = GN . We prove H is a Hall subgroup of G by induction. It is trivial
if H = 1 and so we suppose H > 1. Let N be a minimal normal subgroup of G
contained in H and |N | = p, where p is a prime. Assume that G has a minimal
normal subgroup R of prime order q with q �= p. Since the hypothesis holds for
the factor group G/R, (G/R)N =GN R/R=HR/R is a Hall subgroup of G/R by
induction. Then the Sylow p-subgroup of H is also a Sylow p-subgroup of G. If
there exists r ∈ π(H) with r �= p, then, by considering the factor group G/N , we
conclude that the Sylow r -subgroup of H is a Sylow r -subgroup of G. Therefore, H
is a Hall subgroup of G. Hence we can suppose that every minimal normal subgroup
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of G is a p-subgroup. Since G is supersoluble, Op(G) is a Sylow p-subgroup of
G and consequently H ≤ Op(G). If N < H , then, by induction, we see that H
is a Hall subgroup of G. Hence, we now assume that H = N is a minimal normal
subgroup of G. If H = Op(G), then the conclusion is obvious. Thus, we suppose
H is a proper subgroup of Op(G). We assert that � = �(Op(G)) = 1. Assume
this is not true. Then (G/�)N =H�/� is a Sylow p-subgroup of G. Since the class
of all nilpotent groups ia a saturated formation, we have that H is not contained in
�. Therefore, H� is a Sylow p-subgroup of G, which implies that H is a Sylow
p-subgroup of G, a contradiction. Hence � = 1 and so Op(G) is elementary abelian.
Let L be any subgroup of Op(G). We show that L is normal in G. By the hypothesis,
L has a supplement T in G and L is G-permutable with the Sylow subgroups of T .
Let Tq be a Sylow q-subgroup of T , where q �= p. Then, for some x ∈ G, LT x

q is
a subgroup. Since L is subnormal in G, L is normal in LT x

q , which means that T x
q

normalizes L . In addition, since Op(G) is an elementary abelian Sylow p-subgroup,
L is normal in G, as wanted. Let Op(G) = 〈a〉 × 〈a2〉 × · · · × 〈at 〉 and H = 〈a〉,
where |a| = |ai | = p for all i = 2, . . . , t . Set a1 = aa2 . . . at . Then we have that
Op(G) = 〈a1〉 × 〈a2〉 × · · · × 〈at 〉. Since 1 �= H ≤ Op(G), Op(G) is not contained
in Z(G). Hence there exists an index i ∈ {1, 2, . . . , t} such that ai is not contained
in Z(G). Pick a p′-element g ∈ G\CG(ai ). Then y = [ai , g] �= 1. Since G/H is
nilpotent, we know that y = [ai , g] ∈ H . On the other hand, y = [ai , g] ∈ 〈ai 〉 as
〈ai 〉 is normal in G. Hence 〈ai 〉 = H , a contradiction. Therefore, H = GN is a Hall
subgroup of G.

By the well-known Shur-Zassenhaus theorem, we see that H has a complement K
inG. SinceG/H is nilpotent, K is a Hall nilpotent subgroup inG andG = [H ]K , and
therefore (1) holds. Finally, let L be any subgroup of H . By the preceding argument,
NG(L) contains a Hall π -subgroup of G, where π = π(K ). It follows that K x ≤
NG(L) for some element x in G. Thus, G = HK=HK x=HNG(L), completing the
proof of (2).

From now on, we prove the sufficiency. Suppose thatG is a group satisfying (1) and
(2). We will show that every subgroup ofG isG-permutable with all Sylow subgroups
of G and so is G-s-semipermutable in G. Let π = π(H) and π ′ the set of all primes
not in π . Let D be an arbitrary subgroup of G. By the hypothesis, G is soluble and
so D = D1D2, where D1 and D2 are Hall subgroups of D with π(D1) ⊆ π and
π(D2) ⊆ π ′. Let P be any Sylow p-subgroup of G.

Suppose D2 = 1. Then D = D1. If p ∈ π , then P is normal inG by the hypothesis
and, therefore, DP = PD. If p ∈ π ′, then by condition (2), there exists an element
x in G such that Px ≤ NG(D). It follows that DPx = Px D. Hence, in this case, D
is G-permutable with all Sylow subgroups of G. Similarly, one can show that D is
G-permutable with every Sylow subgroup of G provided D = D2.

Hence, we suppose that D1 and D2 are non-trivial. Note that D1 ≤ H by (1).
Since D1 is subnormal in D by condition (1), D1 is normal in D. This means that
D ≤ NG(D1). Since G = HNG(D1) by (2), NG(D1) contains a nilpotent Hall π ′-
subgroup of G by the solubility of G, B say. Without loss of generality, we may
suppose that D2 ≤ B. If p ∈ π , then, clearly, PD = DP as P is normal in G. If
p ∈ π ′, then G has an element x such that Px ≤ B. Since B is nilpotent, Px D2 is a
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subgroup of NG(D1) and consequently Px D2D1 = Px D is a subgroup of G. Thus,
in this case, D is also G-permutable with all Sylow subgroups of G, completing the
proof of the sufficiency. ��
Lemma 3.9 Let p be a prime dividing the order of a group G with (|G|, p − 1) = 1,
P a Sylow p-subgroup of G and X = Op′ p(G). Then G is p-nilpotent if and only
if every maximal subgroup of P not having a p-nilpotent supplement in G is X-s-
semipermutable in G.

Proof The necessity is obvious and we only need to prove the sufficiency. Suppose
that the result is false and let G be a counterexample of minimal order. Then

(1) P is not cyclic.
Assume that P is cyclic. Then NG(P)/CG(P) is a p′-group. Since NG(P)/CG(P)

is isomorphic to a subgroup of Aut(P) and (|G|, p − 1) = 1, we have NG(P) =
CG(P) and, therefore,G is p-nilpotent by [22, IV, Theorem 2.6], a contradiction.

(2) Op′(G) = 1.
Suppose that Op′(G) �= 1. Then, by Lemma 2.1, it is easy to see that G/Op′(G)

satisfies the hypothesis. The minimal choice of G implies that G/Op′(G) is p-
nilpotent and so G is p-nilpotent, a contradiction.

(3) Op(G) �= 1.
If not, then Op(G) = 1 and so X = 1. First, we assume that every maximal
subgroup of P has a p-nilpotent supplement in G. If p = 2, then by Lemma 2.3,
G is p-nilpotent, a contradiction. Hence p is an odd prime and so G is also p-
nilpotent by Lemma 2.7. Therefore, by the hypothesis, some maximal subgroup
R of P is X -s-semipermutable inG. ThenG has a subgroup T such thatG = RT
and R is X -permutable with every Sylow subgroup of T . Indeed, one can easily
see that R is permutable with every Sylow q-subgroup of G, where q �= p. We
claim that R ∩ T is an S-permutable subgroup of T . In fact, let Q be a Sylow
subgroup of T . Then RQ = QR, whence (R ∩ T )Q = Q(R ∩ T ), as claimed.
Thus, by Lemma 2.4, R ∩ P is subnormal in T and so R ∩ T ≤ Op(T ) by [7, A,
Lemma 8.6]. Since |T : R ∩ T | = |RT : R| = |G : R|, |T/Op(T )| ≤ p. Similar
to (1), we have that T/Op(T ) is p-nilpotent. It follows that T is p-soluble. Let K
be a Hall p′-subgroup of T . Then RK = K R since R is permutable with every
Sylow subgroup of T . The fact that |G : RK | = p and (|G|, p − 1) = 1 imply
that RK is normal in G by Lemma 2.5. Since R is permutable with all Sylow
q-subgroups of G, where q �= p, it follows from Lemma 2.2 that RK is p-
soluble, which implies that either Op′(RK ) �= 1 or Op(RK ) �= 1. Consequently
Op(G) �= 1 by (2), a contradiction. Thus (3) holds.

(4) Op(G) is a minimal normal subgroup of G.
It is easy to verify that G/Op(G) satisfies the hypothesis. The minimal choice of
G implies that G/Op(G) is p-nilpotent. It follows that G is p-soluble. Let N be
a minimal normal subgroup of G. Then N is an elementary abelian p-group by
(2). ObviouslyG/N satisfies the hypothesis and soG/N is p-nilpotent. Since the
class of all p-nilpotent groups is a saturated formation, N is the unique minimal
normal subgroup of G and �(G) = 1. Now it is easy to see that Op(G) =
F(G) = CG(N ) = N . Hence Op(G) is a minimal normal subgroup of G.
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Final contradiction.
Since G/Op(G) satisfies the hypothesis, G/Op(G) is p-nilpotent and so G is p-

soluble. By (3) and (4), we have that G = [Op(G)]M for some maximal subgroup
of G. In view of Lemmas 2.3 and 2.7, P has a maximal subgroup R not having a
p-nilpotent supplement in G. By the hypothesis, R is Op(G)-s-semipermutable in G
since X = Op(G) by (1). HenceG has a subgroup T such that R is Op(G)-permutable
with every Sylow subgroup of T . Since R is normalized by Op(G), we can see that
R is permutable with every Sylow subgroup of T . Let K be a Hall p′-subgroup of T .
Then RK is a subgroup of G of index p by the above arguments and so RK is normal
in G by Lemma 2.5. Consequently RK ∩ Op(G) = 1 or Op(G). Note that Op(G) is
not contained in R (if not, R has a p-nilpotent supplement M in G, a contradiction)
and so P = Op(G)R. Now, if Op(G) ∩ RK = Op(G), then Op(G) is contained
in R, a contradiction. Therefore, Op(G) ∩ RK = 1 and so Op(G) is of order p.
Thus Op(G) is contained in Z(G) as G/CG(Op(G)) is isomorphic to a subgroup of
Aut (Op(G)) and (|G|, p − 1) = 1. Since G/Op(G) is p-nilpotent, it follows that G
is p-nilpotent, a final contradiction. ��
Theorem 3.10 Let p be a prime dividing the order of a group G with (|G|, p−1) = 1
andF a saturated formation containing all p-nilpotent groups. ThenG ∈ F if andonly
if G has a normal subgroup E such that G/E ∈ F and E has a Sylow p-subgroup
P with the property that every maximal subgroup of P not having a p-nilpotent
supplement in G is X-s-semipermutable in G, where X = Op′ p(E).

Proof The necessity is clear and it needs only to prove the sufficiency. By Lemma 3.9,
we have that E is p-nilpotent. Let K be a normal p-complement of E . If K �= 1,
then G/K satisfies the hypothesis by Lemma 2.1 and so belongs to F by induction.
Let A/B be a chief factor of G below K . Since K is a p′-group, G/CG(A/B) is
F-central by [18, §3.1, Example 2] and [18, Corollary 3.1.16]. It follows that G ∈ F .
Now assume that K = 1. Then E = P is a normal p-subgroup of G. Let Q be a
Sylow q-subgroup of G, where q �= p. Then PQ is p-nilpotent by the hypothesis
and Lemma 3.9. Therefore, Q ≤ CG(N ). Let L/M be a chief factor of G with
L ≤ E . Then QM/M ≤ CG/M (L/M) by above argument. Let Gp be a Sylow p-
subgroup of G. Then L/M ∩ Z(Gp/M) �= 1 (see [8, II, Theorem 6.4]). Let L1/M
be a subgroup of L/M ∩ Z(Gp/M) of order p. Then G/M ≤ CG/M (L1/M) and so
L1/M ≤ Z(G/M). Consequently, L/M = L1/M ≤ Z(G/M) as L/M is a chief
factor of G, which implies that E ⊆ Z∞(G). Since G/E ∈ F by the hypothesis, we
have that G ∈ F by [18, Theorem 3.1.6] and so the theorem follows. ��

From Theorem 3.10, we have

Corollary 3.11 (Chen and Li [6]) Let p be a prime dividing the order of a group
G with (|G|, p − 1) = 1, P a Sylow p-subgroup of G and X = Op′ p(G). Then G
is p-nilpotent if and only if every maximal subgroup of P not having a p-nilpotent
supplement in G is X-semipermutable in G.
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