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Abstract In this paper, a new form of the homotopy perturbation method has been
adopted for solving nonlinear Duffing’s equations, which yields the Maclaurin series
of the exact solution. The Laplace transformation is applied to the truncatedMaclaurin
series, and then the Padé approximation with fast convergence rate and high accuracy
is used for the solution derived from the Laplace transformation. Illustrative examples
are given to demonstrate the efficiency and the simplicity of the proposed method.
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1 Introduction

In recent years, scientists and engineers have devoted an increasing interest to the ana-
lytical asymptotic techniques for solving nonlinear problems. Many new numerical
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techniques have been widely applied to nonlinear problems. Nonlinear phenom-
ena play a crucial role in various fields of science and engineering. Similarly, the
corresponding nonlinear equations and their analytical or numerical solutions are
fundamentally important. Many physical phenomena are modeled by nonlinear differ-
ential equations in order to have more opportunities to handle the real objects in our
real world. Therefore, solving these equations is in the circle of most scientists’ and
engineers’ priority and requirements. Nonlinear differential equations are generally
difficult to solve and their exact solutions are difficult to obtain; therefore, various
approximate methods have recently been developed to solve these types of equations.

The Duffing equation is a well-known nonlinear equation of applied science which
is used as a powerful tool to discuss some important practical phenomena such as orbit
extraction, nonuniformity caused by an infinite domain, nonlinear mechanical oscil-
lators, etc. Besides, the Duffing equation is applied in the field of disease prediction .
In this paper, we consider the nonlinear Duffing equation of the form

y′′(x) + αy′(x) + βy(x) + γ y3(x) = f (x), (1.1)

y(0) = a, y′(0) = b, (1.2)

where α, β, γ , a, and b are real constants. This equation was first introduced by
Duffing to explain forced vibrations of industrial machinery with linear damping [38].
Duffing’s equation has many catastrophic, diverging, and oscillative behaviors by
several stable and unstable states due to the value of its coefficients. The solutions of
some versions of Duffing’s equation can be seen in [29,33,36,37]. Yusufoglu in [41]
applied the Laplace transform decomposition algorithm to solve Duffing’s equation.
Vahidi et al. in [40] used the restarted Adomian’s decomposition method to solve
Duffing’s equation. Cveticanin [14] applied the HPM to solve nonlinear differential
equations by a cubic nonlinear term, as in Duffing’s equation, and showed that the
method worked extremely well.

Perturbation techniques are widely used in science and engineering to handle non-
linear problems [34]. The HPMwas first proposed by He in [20] and further developed
and improved by him in [21–24]. This method is based on the use of traditional pertur-
bation method and the homotopy technique. By using this method, a rapid convergent
series solution can be obtained in most cases. Usually, a small number of terms of the
series solution can be used for numerical purposes with a high degree of accuracy.
The applications of the HPM in nonlinear problems have been demonstrated by many
researchers, cf. [3,13,16,17,28]. Recently, the HPMwas employed for solving singu-
lar second-order differential equations [10] and nonlinear population dynamicsmodels
[11]. Very recently, the standard HPM was successfully applied to the Klein–Gordon
and sine-Gordon equations [12]. The applicability of the HPM has also been extended
to fractional equations [8,31,32,35]. In general, this method has been successfully
applied to solve many types of linear and nonlinear problems in science and engineer-
ing by many authors [1,4,9,15,39]. Also, correction for the HPM based on the initial
solution is done byHesameddini [26].However, development of theHPMcan be found
in [5,25,30]. Accordingly, it can be said that He’s homotopy perturbation method is
a universal one, and is able to solve various kinds of nonlinear functional equations.
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In this paper, we apply the NHPM to solve nonlinear Duffing’s equation (1.1). This
method was presented in [4] for the Riccati equation and we extend it in order to solve
nonlinear Duffing’s equation (1.1). By this method, we get a truncated series solu-
tion that often coincides with the Maclaurin expansion of the true solution. In order
to improve the accuracy of the series solutions, we apply the Laplace transforma-
tion and then the Padé approximant [6,7] yielding the analytic approximate solution
with fast convergence rate and high accuracy, and finally adopt the inverse Laplace
transformation to get an analytic solution.

2 HPM for Nonlinear Differential Equations

In this section, theHPMis described for the solution of nonlinear differential equations.
Toward this end, suppose that

A(u(x)) = f (r(x)), r(x) ∈ �, (2.1)

with boundary conditions

B
(
u(x), ∂u(x)/∂n

) = 0, r(x) ∈ �, (2.2)

where A is a general differential operator, B is a boundary operator, f (r(x)) is a
known analytic function, and � is the boundary of the domain �. The operator A can
be divided into two parts L and N , where L is a linear operator and N is a nonlinear
one. Therefore, Eq. (2.1) may be expressed as

L(u(x)) + N (u(x)) = f (r(x)). (2.3)

By the homotopy technique, we construct a homotopy v(r(x), p) : � × [0, 1] → R,
which satisfies

H(U (x), p) = (1 − p)
[
L(U (x)) − u0(x)

]

+ p
[
A(U (x)) − f (r(x))

] = 0, p ∈ [0, 1], r(x) ∈ �,
(2.4)

where p ∈ [0, 1] is an embedding parameter and u0(x) is an initial approximation of
the solution of Eq. (2.1). Clearly, from Eq. (2.4) we have

H(U (x), 0) = L(U (x)) − u0(x) = 0, (2.5)

H(U (x), 1) = A(U (x)) − f (r(x)) = 0, (2.6)

and the changing process of p from zero to one is just that of H(U (x), p) from
L(U (x)) − u0(x) to A(U (x)) − f (r(x)). If the embedding parameter p ∈ [0, 1] is
considered as a “small parameter,” applying the classical perturbation technique, we
can naturally assume that the solution of Eqs. (2.5) and (2.6) can be given as a power
series in p, i.e.,
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U (x) = U0(x) + pU1(x) + p2U2(x) + · · · (2.7)

setting p = 1 results in the approximate solution of Eq. (2.1) as

u(x) = lim
p−→1

U (x) = U0(x) +U1(x) +U2(x) + · · · . (2.8)

The series in (2.8) converges in most cases and the rate of convergence depends on
A(u(x)) − f (r(x)) [19].

Note that in the HPM in order to obtain an approximate solution, the components
Ui (x) for i = 0, 1, . . . must be calculated. Specially for i ≥ 3, it needs large and
sometimes complicated computations and, in the case of nonlinearity, the use of He’s
polynomials [18]. To obviate this problem, the NHPM is introduced, in which U0(x)
is calculated in such a way that Ui (x) = 0 for i ≥ 1. So, the number of computations
decreases in comparison with that in the HPM. The NHPM will be discussed in detail
in the following section.

3 Basic Idea of the NHPM

In order to illuminate the solution procedure of theNHPM,we consider the equivalence
convex homotopy (2.4) as

H(U (x), p) = L(U (x)) − u0(x) + pu0(x) + p
[
N (U (x)) − f (r(x))

] = 0, (3.1)

which can be written in the following form

L(U (x)) = u0(x) + p
[
f (r(x)) − u0(x) − N (U (x))

]
. (3.2)

Denoting d2/dx2 byG, we haveG−1 as a two-fold integration from0 to x . By applying
G−1 to both sides of Eq. (3.2), we have

U (x)=T (x) + G−1(u0(x)) + p
[
G−1( f (r(x))) − G−1(u0(x)) − G−1(N (U (x)))

]
,

(3.3)

where T incorporates the constants of integration and satisfies GT = 0. In order to
apply the NHPM, suppose that the initial approximation of Eq. (2.1) has the form

u0(x) =
∞∑

n=0

anFn(x), (3.4)

where a0, a1, a2, . . . are unknown coefficients and F0(x), F1(x), F2(x), . . . are spe-
cific functions depending on the problem. By substituting Eqs. (2.7) and (3.4) into Eq.
(3.3), we obtain
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∞∑

n=0

pnUn(x) = T (x) + G−1
( ∞∑

n=0

anFn(x)

)

+ p

[
G−1( f (r(x))) − G−1

( ∞∑

n=0

anFn(x)

)
− G−1N

( ∞∑

n=0

pnUn(x)

)]
. (3.5)

Comparing coefficients of terms with identical powers of p leads to

p0 : U0(x) = T (x) + G−1

( ∞∑

n=0

anFn(x)

)

,

p1 : U1(x) = G−1( f (r(x))) − G−1

( ∞∑

n=0

anFn(x)) − G−1N (U0(x)

)

,

p2 : U2(x) = −G−1N (U0(x),U1(x)),

...

p j : Uj (x) = −G−1N
(
U0(x),U1(x),U2(x), . . . ,Uj−1(x)

)
,

...

(3.6)

Now, we solve these equations in such a way thatU1(x) = 0, then Eq. (3.6) results
in U2(x) = U3(x) = · · · = 0. Therefore, the exact solution may be obtained as
follows:

u(x) = U0(x) = T (x) + G−1

( ∞∑

n=0

anFn(x)

)

. (3.7)

4 NHPM for Duffing’s Equation

In this section, we consider Duffing’s equation (1.1) and apply the NHPM to solve it.
To this end, by considering the convex homotopy defined in Eq. (2.4), we have

H(Y (x), p) = (1 − p)
(
Y ′′(x) − y0(x)

)

+ p
(
Y ′′(x) + αY ′(x) + βY (x) + γY 3(x) − f (x)

) = 0,
(4.1)

or equivalently

Y ′′(x) = y0(x) − p
[
y0(x) + αY ′(x) + βY (x) + γY 3(x) − f (x)

]
. (4.2)

Denoting d2/dx2 by G, we have G−1 as a two-fold integration. Using the operator G,
Eq. (4.2) becomes

GY (x) = y0(x) − p
[
y0(x) + αY ′(x) + βY (x) + γY 3(x) − f (x)

]
. (4.3)
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Applying the inverse operator G−1 to both sides of Eq. (4.3), we obtain

Y (x) = Y (0) + xY ′(0) +
∫ x

0

∫ x

0
y0(x)dxdx

− p
∫ x

0

∫ x

0

[
y0(x) + αY ′(x) + βY (x) + γY 3(x) − f (x)

]
dxdx .

(4.4)

By considering y0(x) = ∑∞
n=0 anFn(x), where Fn(x) = xn ,Y (0) = a andY ′(0) = b,

Eq. (4.4) is as follows:

Y (x) = a + bx +
∫ x

0

∫ x

0

( ∞∑

n=0

anFn(x)

)

dxdx

−p
∫ x

0

∫ x

0

[ ( ∞∑

n=0

anFn(x)

)

+ αY ′(x) + βY (x) + γY 3(x) − f (x)

]
dxdx .

(4.5)

By substituting Y (x) = ∑∞
i=0 p

iYi (x) into the above equation, we have

∞∑

i=0

piYi (x)= a + bx+
∫ x

0

∫ x

0

( ∞∑

n=0

anFn(x)

)

dxdx − p
∫ x

0

∫ x

0

[ ( ∞∑

n=0

anFn(x)

)

+ α
d

dx

( ∞∑

i=0

piYi (x)

)

+ β

( ∞∑

i=0

piYi (x)

)

+ γ

( ∞∑

i=0

piYi (x)

)3

− f (x)

]
dxdx, (4.6)

where Yi (x) for i = 1, 2, . . . are unknown functions which should be determined. By
equating the terms with identical powers of p, we obtain

p0 : Y0(x) = a + bx +
∫ x

0

∫ x

0

( ∞∑

n=0

anx
n

)

dxdx,

p1 : Y1(x) = −
∫ x

0

∫ x

0

[( ∞∑

n=0

anx
n

)

+ αY ′
0(x)+βY0(x) + γY 3

0 (x) − f (x)

]

dxdx,

p2 : Y2(x) = −
∫ x

0

∫ x

0

[
αY ′

1(x) + βY1(x) + 3γY 2
0 (x)Y1(x)

]
dxdx,

p3 : Y3(x) = −
∫ x

0

∫ x

0

[
αY ′

2(x) + βY2(x) + 3γ (Y0(x)Y
2
1 (x) + Y 2

0 (x)Y2(x))
]
dxdx,

... (4.7)

Since the complicated excitation term f (x) can cause difficult integrations and prolif-
eration of terms, we can express f (x) in the Taylor series at x0 = 0, which is truncated
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for simplification. By replacing f̃ (x) = ∑k
i=0 bi x

i , where bi = f i (0)/ i !, instead of
f (x) into Y1(x), one gets

Y1(x) =1/2(−a0 − αb− βa−γ a3+b0)x
2+1/6(−a1− αa0−βb− 3γ a2b+b1)x

3

+ 1/12(−a2 − 1/2αa1 − 1/2βa0 − 3/2γ a2a0 − 3γ ab2 + b2)x
4

+1/20(−a3−1/3αa2−1/6βa1−1/2γ a2a1−3γ aa0b−γ b3+ b3)x
5 + · · · .

(4.8)

Eliminating Y1(x) lets the coefficients an for n = 1, 2, · · · take the following values:

a0 = −αb − βa − γ a3 + b0,

a1 = −αa0 − βb − 3γ a2b + b1,

a2 = −1/2αa1 − 1/2βa0 − 3/2γ a2a0 − 3γ ab2 + b2,

a3 = −1/3αa2 − 1/6βa1 − 1/2γ a2a1 − 3γ aa0b − γ b3 + b3,

...

(4.9)

Therefore, we gain the solution of Eq. (1.1) as

y(x) = Y0(x) = a + bx + 1/2a0x
2 + 1/6a1x

3 + 1/12a2x
4 + 1/20a3x

5 + · · ·
= a+bx+1/2(−αb−βa−γ a3+b0)x

2+1/6(−αa0−βb−3γ a2b + b1)x
3

+ 1/12(−1/2αa1 − 1/2βa0 − 3/2γ a2a0 − 3γ ab2 + b2)x
4

+ 1/20(−1/3αa2 − 1/6βa1 − 1/2γ a2a1 − 3γ aa0b − γ b3 + b3)x
5 + · · ·
(4.10)

and this, in the limit of infinitely many terms, yields the exact solution of Eq. (1.1).

5 Numerical Implementation

In this section, to give a clear overview of the analysis method presented above, we
choose two test problems.

Example 5.1 Consider Duffing’s equation [27]

y′′(x) + 3y(x) − 2y3(x) = cos x sin 2x (5.1)

with the initial condition y(0) = 0 and y′(0) = 1 and the exact solution y(x) = sin x .
In order to apply the NHPM to Eq. (5.1), consider the convex homotopy (2.4) as

(1 − p)
[
Y ′′(x) − y0(x)

] + p
[
Y ′′(x) + 3Y (x) − 2Y 3(x) − cos x sin 2x

] = 0
(5.2)
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or

Y ′′(x) = y0(x) − p
[
y0(x) + 3Y (x) − 2Y 3(x) − cos x sin 2x

]
. (5.3)

Denoting d2/dx2 by G, we have G−1 as a two-fold integration. Using the operator G,
Eq. (5.3) becomes

GY (x) = y0(x) − p
[
y0(x) + 3Y (x) − 2Y 3(x) − cos x sin 2x

]
. (5.4)

Applying the inverse operator G−1 to both sides of Eq. (5.4) and using the initial
conditions, we obtain

Y (x) = x + G−1(y0(x)) − pG−1[(y0(x) + 3Y (x) − 2Y 3(x) − cos x sin 2x)].
(5.5)

By replacing y0(x) = ∑∞
n=0 anx

n in the above equation, one gets

Y (x) = x + G−1

( ∞∑

n=0

anx
n

)

− pG−1

[( ∞∑

n=0

anx
n + 3Y (x) − 2Y 3(x) − cos x sin 2x

)]

. (5.6)

Substituting Y (x) = ∑∞
i=0 p

iYi (x) into Eq. (5.6), considering the Maclaurin series
of the excitation term

cos x sin 2x � 2x − 7/3x3 + 61/60x5 − 547/2520x7, (5.7)

and equating the terms with identical powers of p give

p0 : Y0(x) = x + G−1

( ∞∑

n=0

anx
n

)

,

p1 : Y1(x) = −G−1

[( ∞∑

n=0

anx
n + 3Y0(x) − 2Y 3

0 (x)

− (2x − 7/3x3 + 61/60x5 − 547/2520x7)

)]

,

p2 : Y2(x) = −G−1[3Y1(x) − 6Y 2
0 (x)Y1(x)

]
,

...

(5.8)

Solving the above equation for Y1(x) leads to the result

Y1(x) = − 1/2a0x
2 − 1/6(1 + a1)x

3 − 1/12(a2 + 3/2a0)x
4

− 1/60(1 + 3/2a1 + 3a3)x
5 + · · · .

(5.9)
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EliminatingY1(x) lets the coefficients an for n = 0, 1, 2, · · · take the following values:

a0 = 0, a1 = −1, a2 = 0, a3 = 1/6, a4 = 0, · · · (5.10)

By substituting the above values into Y0(x), we obtain

y(x) = Y0(x) = x − 1/6x3 + 1/120x5 + · · ·
= x − x3/3! + x5/5! + · · · + (−1)nx2n+1/(2n + 1)!, n ≥ 0,

(5.11)
which is the partial sum of the Taylor series of the exact solution at x = 0. In order
to obtain a more accurate solution, we use the truncated series of Eq. (5.11). Consider
five terms in y(x) as

ϕ(x) = x − x3/3! + x5/5! − x7/7! + x9/9!, (5.12)

By applying the Laplace transformation to both sides of Eq. (5.12), we have

L[ϕ(x)] = 1/s2 − 1/s4 + 1/s6 − 1/s8 + 1/s10. (5.13)

If s = 1/t , then

L[ϕ(x)] = t2 − t4 + t6 − t8 + t10. (5.14)

All of the [L/M]Pade approximants of Eq. (5.14)with L ≥ 2,M ≥ 2 and L+M ≤ 10
yield

[L/M] = t2/(1 + t2). (5.15)

Replacing t = 1/s, we obtain [L/M] in terms of s as

[L/M] = 1/(1 + s2). (5.16)

By using the inverse Laplace transformation in Eq. (5.16), we obtain the exact solution
sin(x).

Example 5.2 Consider Duffing’s equation [2]

y′′(x) + y′(x) + y(x) + y3(x) = cos3 x − sin x (5.17)

with the initial conditions y(0) = 1 and y′(0) = 0 and the exact solution y(x) = cos x .
In order to apply the NHPM to Eq. (5.17), consider the convex homotopy (2.4) as

(1− p)
[
Y ′′(x)−y0(x)

]+ p
[
Y ′′(x)+Y ′(x)+Y (x) + Y 3(x) − cos3 x + sin x

] = 0,
(5.18)
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which is equivalent to

Y ′′(x) = y0(x) − p
[
y0(x) + Y ′(x) + Y (x) + Y 3(x) − cos3 x + sin x

]
. (5.19)

Denoting d2/dx2 by G, we have G−1 as a two-fold integration. Using the operator G,
Eq. (5.19) becomes

GY (x) = y0(x) − p
[
y0(x) + Y ′(x) + Y (x) + Y 3(x) − cos3 x + sin x

]
. (5.20)

Applying the inverse operator G−1 to both sides of Eq. (5.20) and using the initial
conditions, we obtain

Y (x)=1+G−1(y0(x))− pG−1[(y0(x)+Y ′(x)+Y (x)+Y 3(x)−cos3 x+sin x)
]
.

(5.21)

By replacing y0(x) = ∑∞
n=0 anx

n in the above equation, we have

Y (x) = 1 + G−1

( ∞∑

n=0

anx
n

)

−pG−1

[( ∞∑

n=0

anx
n + Y ′(x) + Y (x) + Y 3(x) − cos3 x + sin x

)]

.

(5.22)

Substituting Y (x) = ∑∞
i=0 p

iYi (x) into Eq. (5.21), considering the Maclaurin series
of the excitation term

cos3 x − sinx � 1 − x − 3/2x2 + 1/6x3 + 7/8x4 − 1/120x5, (5.23)

and equating the terms with identical powers of p give

p0 : Y0(x) = 1 + G−1
( ∞∑

n=0

anx
n
)

,

p1 : Y1(x) = −G−1
[ ∞∑

n=0

anx
n + Y ′

0(x) + Y0(x) + Y 3
0 (x)

− (1 − x − 3/2x2 + 1/6x3 + 7/8x4 − 1/120x5)

]
,

p2 : Y2(x) = −G−1[ − Y ′
1(x) + Y1(x) + 3Y 2

0 (x)Y1(x)
]
,

...

(5.24)

Solving the above equation for Y1(x) leads to the result
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Y1(x) = −1/2(1 + a0)x
2 − 1/6(1 + a0 + a1)x

3 − 1/24(3 + 4a0 + a1 + 2a2)x
4

+ 1/120(1 − 4a1 − 2a2 − 6a3)x
5 + · · · . (5.25)

EliminatingY1(x) lets the coefficients an for n = 0, 1, 2, · · · take the following values:

a0 = −1, a1 = 0, a2 = 1/2, a3 = 0, a4 = −1/24, · · · (5.26)

This implies that

y(x) = Y0(x) = 1 − x2/2! + x4/4! + · · · + (−1)nx2n/(2n)!, n ≥ 0, (5.27)

which is the partial sum of the Taylor series of the exact solution at x = 0. In order
to obtain a more accurate solution, we use the truncated series of Eq. (5.27). Consider
four terms in y(x) as

ϕ(x) = 1 − x2/2! + x4/4! − x6/6!, (5.28)

which represents the partial sum of the Taylor series of the solution y(x) at x = 0. By
applying the Laplace transformation to both sides of Eq. (5.28), we have

L[ϕ(x)] = 1/s − 1/s3 + 1/s5 − 1/s7. (5.29)

If s = 1/t , then

L[ϕ(x)] = t − t3 + t5 − t7. (5.30)

All of the [L/M]Pade approximants of Eq. (5.30)with L ≥ 2,M ≥ 2 and L+M ≤ 10
yield

[L/M] = t/(1 + t2). (5.31)

Replacing t = 1/s, we obtain [L/M] in terms of s as

[L/M] = s/(1 + s2). (5.32)

By applying the inverse Laplace transformation to Eq. (5.32), we obtain the exact
solution cos(x).

6 Conclusion

In this paper, we presented the NHPM to solve nonlinear Duffing’s equations, which
yielded the Maclaurin series of the true solution. In order to obtain a more accurate
solution, we applied the Laplace transformation to the truncated Maclaurin series and
then the Padé approximation, as shown in the examples. In this method, there was
no need to calculate He’s polynomials. Therefore, the number of computations in the
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NHPM was less than that in the HMP. The obtained results indicated that the method
was very efficient and simple and led to the exact solution of nonlinear Duffing’s
equations.
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