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Abstract The problem of free convection flow and heat transfer of a fluid inside a
square cavity having adiabatic obstacle positioned in the center of the cavity has been
investigated numerically using a penalty finite element method. Calculations have
been made for Rayleigh numbers ranging from 102 to 107 for an obstacle of aspect
ratios AR = 0, 0.4, 0.5, 0.6. Nusselt number results are presented for Prandtl number
of 0.71 (assuming the cavity is filled with air). Streamline and isotherm contours are
also presented. The obtained results demonstrate the effects of pertinent parameters
on the fluid flow, thermal fields and heat transfer inside the cavity. The results show
that the heat transfer rates generally increase with the shrink of the obstacle size and
with the increase of Rayleigh number. Excellent agreement is obtained with previous
results in the literature.
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1 Introduction

The buoyancy-driven flow in a square cavity with differentially heated walls is one of
the least pursued areas in finite element methods, although it has been an extensively
explored area in finite difference methods. Physics involved in the buoyancy-driven
flow inside a square domain has relevance to a variety of practical problems such
as nuclear reactor insulation, ventilation of rooms, solar energy collection, crystal
growth in liquids and convective heat transfer associated with boilers and electron-
ics etc. Buoyancy-driven flows have added complexity in form of coupling between
transport properties of the flow and the thermal fields. Internal flow problems like
one being discussed are more complex compared to external flows due to the fact
that unlike the external flows where flow outside the boundary layer can be consid-
ered unaffected by boundary layer, over here the flow outside the boundary layer
forms a core surrounded by boundary layers on the four walls. The confined core and
surrounding boundary layer interact and this interaction causes added complexity espe-
cially at higher Rayleigh numbers (Ra) and larger temperature differences [7,13,19].
Literature review shows various studies have been published on the mechanism of
natural convection in a square cavity containing various fluids with different geomet-
rical parameters and boundary conditions: De Vahl Davis [11] used a false transient
approach based on a stream function–vorticity finite difference method employing
forward difference and second order central difference for time and space deriva-
tives respectively to solve natural convection in a square cavity within the Boussinesq
approximation. Chenoweth and Paolucci [8] investigated the steady state flow in rec-
tangular cavities with large temperature differences between vertical isothermal walls
of rectangular cavities. They used transient form of the flow equations, simplified
for low Mach numbers. Vierendeels et al. [28] solved full Navier–Stokes equations
for low speed compressible flows to simulate buoyancy-driven flow inside a square
domain without resorting to Boussinesq approximation or low Mach number approx-
imation. The low Mach number stiffness was tackled by appropriate discretization
and local preconditioning. Their study employing multigrid method that provides
benchmark solutions for the thermally driven flows in a square cavity. A comprehen-
sive numerical study is performed in [14] to investigate the transient heat transfer
and flow characteristics of the natural convection of three different fluids in a verti-
cal square enclosure within which a centred, square, heat-conducting body generates
heat. Bhoite et al. [6] studied numerically the problem of mixed convection flow
and heat transfer in a shallow enclosure with a series of block-like heat generating
component for a range of Reynolds and Grashof numbers and block-to-fluid thermal
conductivity ratios. They showed that higher Reynolds number tend to create a recir-
culation region of increasing strength at the core region and the effect of buoyancy
became insignificant beyond a Reynolds number of typically 600, and the thermal
conductivity ratio has a negligible effect on the velocity fields. Recently, Rahman et
al. [23] analyzed mixed convection in a rectangular cavity with a heat conducting
horizontal circular cylinder by using finite element method. Das and Reddy [9] stud-
ied natural convection heat transfer inside an inclined square cavity with an internal
conducting block. They concluded that a block with low (high) conductivity enhances
(reduces) the heat transfer and, at low values of the Rayleigh number, the angle of
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inclination has nominal effect on heat transfer for different values of the conductivity.
Bhave et al. [5] investigated numerically the effect of an adiabatic centrally-placed
solid block inside a differentially square cavity on the flow and temperature fields.
Results of the study show that there exists an optimum block size which generates
a heat transfer enhancement over the no-block case. Lee and Ha [15] considered the
problem of natural convection in a square enclosure heated from below and cooled
from above, with a heat-generating conducting square body at the center of the cav-
ity. Results of the study give a detailed analysis for the distribution of streamlines,
isotherms and Nusselt number as a function of different thermal conductivity ratios
of the heating body. Raji et al. [24] investigated numerically the effect of the subdivi-
sion of an obstacle on the natural convection heat transfer in a square cavity. Results
of the study show that the heat transfer and the flow intensity could be significantly
reduced by increasing the number of the blocks and their relative conductivity. It
is also demonstrated that, the results of the saturated porous medium are recovered
when the number of blocks is large enough. Recently, Prasopchingchana et al. [22]
analyzed numerically the natural convection of air in an inclined square enclosure.
They concluded that the angles of the inclination of the enclosure giving the max-
imum average Nusselt numbers are θ ≈ 110◦ for Ra = 103 and θ ≈ 130◦ for
3 × 103 ≤ Ra ≤ 104.

Based on literature reviews, despite a large number of numerical studies on free
convection of various fluids inside square cavities with different boundary conditions,
there is a little studies on free convection in square cavities with an inside adiabatic
body. This problem may be occurred in a number of technical applications such as
solar collectors, heat exchangers, and cooling of electronic equipment. The adiabatic
body can be considered as a model of heat transfer controller or modifier device. In a
heat exchanger an adiabatic block can be a model of baffle which manages the flow
rate and heat transport process. In the present paper the problem of free convection
heat transfer and fluid flow in a square cavity containing air and with an adiabatic
square obstacle located at its center and with a fixed temperature drop between the
vertical walls, is investigated using penalty finite element method based on Galerkin
weighted residuals. The results in the form of streamlines and isotherms plots, average
and local Nusselt number are presented for a wide range of Rayleigh numbers and
size of the adiabatic square obstacle in case of presence and absence of the obstacle.
Comparison of the present results with previous experimental or numerical data will
also be presented.

2 Problem Statement

A schematic view of the square cavity with an adiabatic square obstacle located at
the center is shown in Fig. 1. The height and the width of the cavity are denoted
by H. An adiabatic square obstacle with the length of l is located at the center of
the square cavity. Aspect ratio (dimensionless size of the adiabatic square body) is
defined as AR = l

/
H . The left wall is kept at high temperature Th, while, the

right wall is kept at cold temperature Tc. The horizontal top and bottom walls of
the cavity are kept insulated. The length of the cavity perpendicular to its plane is
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486 M. M. Mousa

Fig. 1 A schematic view of the
considered cavity

assumed to be long enough; hence, the problem is considered two dimensional. The
cavity is filled with air i.e. Prandtl number (Pr) is about 0.71. It is assumed that
the fluid is in thermal equilibrium and there is no slip between the fluid and the
walls.

3 Mathematical Formulation

This study assumes a Newtonian fluid with constant properties except density in body
force term of themomentum equation.We considered steady state incompressible flow
with thermal convection. The Boussinesq-approximation relates the density changes
to the temperature changes and thereby couples temperature-field with the flow-field.
The governing equations for the thermal convection flow using conservation of mass,
momentum and energy can be written as:

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (2)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ gβ (T − Tc) , (3)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
, (4)

with boundary condition:
There is no slip condition on the walls of the cavity and obstacle. T (0, y) =

Th, T (H, y) = Tc, ∂T/∂y = 0 on top and bottom cavity walls and ∂T
/
∂n = 0
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on the adiabatic obstacle walls. Here u and v are the velocity components in x and y
directions, respectively. The density is denoted by ρ, pressure by p and T is the tem-
perature. Symbols ν and α are for the kinematic viscosity and the thermal diffusivity
respectively. β and g are the coefficient of thermal expansion and the gravitational
acceleration, respectively.
Symbol n is the direction normal to the surface of the adiabatic block in Fig. 1. The
Eqs. (1)–(4) were non-dimensionalized as follows:

x ′ = x

H
, y′ = y

H
, u′ = uH

α
, v′ = vH

α
, T ′ = T − Tc

Th − Tc
and p′ = pH2

ρα2 .

where variables with x ′, y′, u′ etc. are the non-dimensionalized variables. With these
non-dimensional variableswe get the following non dimensional formof the governing
equations where ’ has been dropped for the sake of clarity.

∂u

∂x
+ ∂v

∂y
= 0, (5)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ Pr

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (6)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ Pr

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ Ra Pr T, (7)

u
∂T

∂x
+ v

∂T

∂y
= ∂2T

∂x2
+ ∂2T

∂y2
, (8)

and the boundary conditions are:
u = v = 0 on all walls of the cavity and obstacle. T (0, y) = 1, T (1, y) = 0,
∂T/∂y = 0 on top and bottom cavity walls and ∂T

/
∂n = 0 on the adiabatic obstacle

walls. Here Pr and Ra are the dimensionless numbers called Rayleigh and Prandtl

numbers, respectively. These are given as: Pr = ν/α and Ra = gβ(Th−Tc)H3Pr
ν2

,
respectively.

The rate of heat transfer across the walls of the cavity with andwithout the adiabatic
obstacle in placewas quantified using awall surfaceNusselt number (Nu) and averaged
Nusselt number (Nuavg) along the hot wall of the cavity. The Nusselt number is the
ratio of convective to conductive heat transfer across the boundary. It can be proved
that it is equal to the dimensionless temperature gradient at the surface of the wall with
length H as NuH = −H∇T ′. By integrating over the surface, the averaged Nusselt
number can obtained. Due to the non-dimensionalized representation of the problem,
the local and the averaged Nusselt number along the left wall of the cavity can be
easily defined as,

Nu = −∂T ′

∂x
, (9)

Nuavg =
∫ 1

0
Nu dy. (10)
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4 Method of Solution

The numerical technique has been used to solve the dimensionless governing equa-
tions (5)–(8) subject to the given boundary conditions is the finite element method
based on the Galerkin weighted residuals. The applications of the considered method
are well described in [17,18,20,21,26,27]. Based on the finite element method, the
overall domain is discretized into a number of appropriate finite elements as a grid.
Here, the given domain is composed into non-uniform biquadratic elements. The con-
tinuity equation (5) can be used as a constraint due to mass conservation and hence the
pressure distribution can be obtained using this constraint as illustrated in [2,3,25,26].
In order to solve Eqs. (6)–(8), a penalty finite element technique is used. The pressure
p can be eliminated in Eqs. (6) and (7) using the constraint equation,

p = −γ

(
∂u

∂x
+ ∂v

∂y

)
, (11)

where γ is a penalty parameter [2,3,25,26]. The continuity equation (5) is satisfied
for large values of γ . Typical value of γ that give up consistent solution is γ = 107.

With the aid of Eq. (11), the momentum balance Eqs. (6) and (7) reduce to

u
∂u

∂x
+ v

∂u

∂y
= γ

∂

∂x

(
∂u

∂x
+ ∂v

∂y

)
+ Pr

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (12)

u
∂v

∂x
+ v

∂v

∂y
= γ

∂

∂y

(
∂u

∂x
+ ∂v

∂y

)
+ Pr

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ Ra Pr T . (13)

Expanding the velocity components (u, v) and temperature (T ) by using basis set
{φk}Nk=1 as,

u ≈
N∑

k=1

φk (x, y) · uk, v ≈
N∑

k=1

φk (x, y) · vk,

T ≈
N∑

k=1

φk (x, y) · Tk, for 0 ≤ x, y ≤ 1, (14)

where N is the number of nodes for each biquadratic element. Based on the Galerkin
weighted residual finite element method, the weight functions are identical to the
elements shape functions φk and hence the nonlinear residual equations related to
Eqs. (12), (13), and (8), respectively, at the nodes of internal element domain 
e
are:

R(1)
i =

∑N

k=1
uk

∫∫


e

[(∑N

k=1
φk · uk

)
∂φk

∂x
+

(∑N

k=1
φk · vk

)
∂φk

∂y

]
φidx dy

+γ

[∑N

k=1
uk

∫∫


e

∂φi

∂x

∂φk

∂x
dx dy +

∑N

k=1
vk

∫∫


e

∂φi

∂x

∂φk

∂y
dx dy

]
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+Pr
∑N

k=1
uk

∫∫


e

[
∂φi

∂x

∂φk

∂x
+ ∂φi

∂y

∂φk

∂y

]
dx dy = 0, i = 1, 2, . . . , N ,

(15)

R(2)
i =

∑N

k=1
vk

∫∫


e

[(∑N

k=1
φk · uk

)
∂φk

∂x
+

(∑N

k=1
φk · vk

)
∂φk

∂y

]
φidx dy

+γ

[∑N

k=1
uk

∫∫


e

∂φi

∂y

∂φk

∂x
dx dy +

∑N

k=1
vk

∫∫


e

∂φi

∂y

∂φk

∂y
dx dy

]

+Pr
∑N

k=1
vk

∫∫


e

[
∂φi

∂x

∂φk

∂x
+ ∂φi

∂y

∂φk

∂y

]
dx dy

−Ra Pr
∫∫


e

(∑N

k=1
φk · Tk

)
φidx dy = 0, i = 1, 2, . . . , N , (16)

R(3)
i =

N∑

k=1

Tk

∫∫


e

[(
N∑

k=1

φk · uk
)

∂φk

∂x
+

(
N∑

k=1

φk · vk

)
∂φk

∂y

]

φidx dy

+
N∑

k=1

Tk

∫∫


e

[
∂φi

∂x

∂φk

∂x
+ ∂φi

∂y

∂φk

∂y

]
dx dy = 0, i = 1, 2, . . . , N , (17)

Biquadratic shape functions with three point Gaussian quadrature is used to calcu-
late the integrals in the residual equations (15)–(17). In Eqs. (15) and (16), the second
integral containing the penalty parameter γ are evaluated with two point Gaussian
quadrature (reduced integration penalty formulation [2,3,25,26]). It has been found
that lowering the integration order is essential to avoid ill-conditioning of the Jacobian
for large values of γ .

The non-linear residual equations are solved using Newton–Raphson method to
determine the coefficients of the expansions in Eq. (14). The boundary conditions
are incorporated into the assembled global system of nonlinear equations to make it
determinate. L2 norm for the residual vectors is used for the stopping criteria of the
Newton–Raphson iterative process. The process is terminated with the convergence

criterion

√[
∑(

R( j)
i

)2] ≤ 10−6.

Eight node biquadratic elements have been used with each element. Before evaluat-
ingGauss integration, the coordinate x–ymust bemapped into of the natural coordinate
ξ − η due to the irregularity of the element shape. The transformation between (x, y)
and (ξ, η) coordinates can be defined by

x =
8∑

k=1

φk (ξ, η) · xk, y =
8∑

k=1

φk (ξ, η) · yk, (18)

where (xk, yk) are the x, y coordinates of the k nodal points and φk (ξ, η) is the local
basis function in ξ − η domain. The eight basis functions used are the serendipity
type illustrated in [16]. Consequently, the domain integrals in the residual equations
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are approximated using eight node biquadratic basis functions in ξ − η domain using
Eq. (18) and serendipity type basis functions.

5 Stream Function Evaluation

Themotion of the fluid is displayed using the stream functionψ obtained fromvelocity
components u and v. The relationships between stream function and velocity compo-
nents for two dimensional flows are [4]

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (19)

which yield a single equation

∂2ψ

∂x2
+ ∂2ψ

∂y2
= ∂u

∂y
− ∂v

∂x
. (20)

Using the above definition of the stream function, the positive sign of ψ denotes
anticlockwise circulation and the clockwise circulation is represented by the negative
sign of ψ . Expanding the stream function (ψ) using the basis set {φk}Nk=1 as ψ =
∑N

k=1 φk (x, y) ·ψk and the relation for u, v from Eq. (14), the Galerkin finite element
method yield the following residual equations for Eq. (20).

R(s)
i =

∑N

k=1
ψk

∫∫


e

[
∂φi

∂x

∂φk

∂x
+ ∂φi

∂y

∂φk

∂y

]
dx dy

+
∑N

k=1
uk

∫∫


e
φi

∂φk

∂y
dx dy

−
∑N

k=1
vk

∫∫


e
φi

∂φk

∂x
dx dy = 0, i = 1, 2, . . . , N , (21)

The no-slip condition is valid at all boundaries as there is no cross flow, hence
ψ = 0 is used as residual equations at the nodes for the boundaries.

6 Results and Discussion

In this section, results of numerical simulation of free convection fluid flow and heat
transfer of a fluid in square cavities having an inside adiabatic square obstacle are
presented. The study focuses on effects of the Rayleigh number and size of the adi-
abatic square body on the flow, temperature fields and heat transfer. The aspect ratio
AR (dimensionless size) of the adiabatic square obstacle is ranging from 0 to 0.6.
Computations were carried out in the Rayleigh number range of 102 to 107 and value
of Prandtl number, was taken as 0.71 which is the value for air at room temperature.
The results of the calculations are presented in graphical form in Figs. 2, 3, 4, 5 and
6. Isotherms and streamlines are shown in Figs. 2, 3 and 4 for different Ra values and
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AR=0 AR=0.4 AR=0.5 AR=0.6

(a)

AR=0 AR=0.4 AR=0.5 AR=0.6

(b)

AR=0 AR=0.4 AR=0.5 AR=0.6

(c)

AR=0 AR=0.4 AR=0.5 AR=0.6

(d)

AR=0 AR=0.4 AR=0.5 AR=0.6

(e)

Fig. 2 Variation of the streamlines with the aspect ratio at various Rayleigh numbers. a Ra = 103, b
Ra = 104, c Ra = 105,d Ra = 106, e Ra = 107
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(b)
AR=0 AR=0.4 AR=0.5 AR=0.6

(c)
AR=0 AR=0.4 AR=0.5 AR=0.6

(d)
AR=0 AR=0.4 AR=0.5 AR=0.6

(e)

AR=0 AR=0.4 AR=0.5 AR=0.6

(a)
AR=0 AR=0.4 AR=0.5 AR=0.6

AR=0 AR=0.4 AR=0.5 AR=0.6

(f)

Fig. 3 Variation of the isotherms with the aspect ratio at various Rayleigh numbers. a Ra = 102, b
Ra = 103, c Ra = 104,d Ra = 105, e Ra = 106, fRa = 107. (Color figure online)
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Fig. 4 Color bar of the isotherms in Fig. 3. (Color figure online)

AR-values. In case of no obstacle inside the cavity, i.e. AR = 0, the following results
can be summarized. For low values of Ra a central vortex appears as the dominant
characteristic of the flow. As Ra increases, the vortex tends to become elliptic and
finally breaks up into two vortices at Ra = 105. The two vortices move towards the
walls, giving space for a third vortex to develop. This third vortex is very weak in
comparison with the other two and, as discussed in detail by other investigators as
in [10], the rotation is again clockwise owing to a very small positive temperature
gradient at the centre of the cavity.

For even higher values of Ra the velocities at the centre of the cavity are very
small compared with those at the boundaries where the fluid is moving fast, forming
vortices at the lower right and top left corner of the cavity. The vortices become narrow,
improving the stratification of the flow at the centre of the cavity.

The shape of the isotherms shows how the dominant heat transfer mechanism
changes as Ra increases. For low Ra values almost vertical isotherms appear, because
heat is transferred by conduction between hot and cold walls. As the isotherms depart
from the vertical position, the heat transfer mechanism changes from conduction to
convection. Figure 3 shows that the isotherms at the centre of the cavity are horizontal
and become vertical only inside the very thin boundary layers.

For the other 3 cases, i.e. AR = 0.4, 0.5, 0.6, the heated fluid ascends along the hot
wall, then moves horizontally, is cooled and descends at the vicinity of the cold right
wall, hence a primary clockwise vortex is developed inside the cavity, regardless the
aspect ratio of the adiabatic obstacle. Secondary clockwise vortices are developed in
the left and right side of the adiabatic obstacle via movement of the primary vortex
and existence of the obstacle. The corresponding isotherms are nearly located adjacent
to the horizontal isothermal walls. Moreover uniformly distributed parallel horizontal
isotherms are formed in the right and left hand side of the square obstacle.

Effects of Rayleigh number on the flow pattern and temperature distribution inside
the cavity with an inside adiabatic square body with AR = 0.4, 0.5 and 0.6 are
depicted in Figs. 2, 3 and 4. At Ra = 103 and for all values of AR, via domination
of conduction heat transfer, the isotherms are nearly parallel with the vertical walls.
From the streamlines, a single clockwise vortex is observed inside the cavity for all
values of AR. The symmetric vortex demonstrates a low velocity and low intensity
flow at low Rayleigh numbers.

By increase of the buoyant force via increase in the Rayleigh number, the flow
intensity increases and the streamlines closes to the side walls. At Ra = 105 and
for AR = 0.4 and 0.5, two secondary vortices are developed in the lower left and
upper right sides of the adiabatic obstacle. These secondary vortices will be developed
for AR = 0.6 when Ra = 106. At this value of the Rayleigh number and higher,
the streamlines are located close to the isothermal side walls and distinct velocity
boundary layers formed in this region. For all values of AR, inside the cavity, the
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Fig. 5 Variation of the local Nusselt number Nu with the aspect ratio of the adiabatic obstacle at various
Rayleigh numbers. a Ra = 102, b Ra = 103, c Ra = 104, d Ra = 105, e Ra = 106, f Ra = 107. (Color
figure online)
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Fig. 6 a Distribution of u-velocity component at mid-width of cavity for AR = 0, b distribution of
u-velocity component at mid-width obtained in [1] for various Ra values. (Color figure online)

secondary vortices are elongated from down to the top of the side walls of the adiabatic
obstacle.

The isotherms indicate that with increase in the Rayleigh number, the effect of
free convection increases and the isotherms are condensed next to the isothermal
side walls. Moreover, thermal stratification is observed in the left and right sides of
the obstacle. Formation of the thermal boundary layers can be observed from the
isotherms at Ra = 105 and higher. Effects of the increase in the aspect ratio of the
adiabatic square obstacle on the local Nusselt number along the hot wall of the cavity
at various Rayleigh numbers are illustrated in Fig. 5.

At Ra = 102, 103 and for all aspect ratios, maximum local Nusselt number occurs
at the lower end of the hot wall i.e. y = 0. At this region the cold fluid faces the hot
wall and hence maximum temperature gradient occurs at this region. When the fluid
ascends adjacent to the hot wall the fluid temperature increases, then the temperature
gradient decreases and hence the local Nusselt number decreases. For AR = 0.4 and
Ra = 103, minimum local Nusselt number occurs at the upper part of the hot wall
i.e. y = 1. Moreover, a uniform Nusselt number distribution is observed along whole
upper half of the hot wall. At Ra = 103, the local Nusselt number decreases as the
size of the adiabatic obstacle increases. This is due to the fact that when adiabatic
obstacle is located in the center of cavity, the fluid movement is damped and hence
rate of free convection decreases. So, as the size of the adiabatic body increases, the
reduction in the rate of heat transfer is augmented.

For AR = 0.4−0.6 when Ra = 102 and for AR = 0.5, 0.6 when Ra = 103, the
local Nusselt number decreases from down to the middle section of the hot wall and
then increases by moving towards the top of the wall. In these cases, the location at
which the minimum local Nusselt number occurs is about y = 0.5. In general, for
Ra = 102−104, the heat transfer rate decreases with the increase of adiabatic obstacle
size.
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Table 1 Comparison of maximum and averaged Nusselt number with previous works for a square cavity
without obstacle and various Ra values

Ra Nu Present work Barakos et al. [1] De Vahl Davis [11] Fusegi et al. [12]

103 Numax (at y) 1.5063 (0.09) 1.581 (0.099) 1.505 (0.092) 1.420 (0.083)

Nuavg 1.1178 1.114 1.118 1.105

104 Numax (at y) 3.5306 (0.145) 3.539 (0.143) 3.528 (0.143) 3.652 (0.123)

Nuavg 2.2447 2.245 2.243 2.302

105 Numax (at y) 7.7163 (0.085) 7.636 (0.085) 7.717 (0.081) 7.795 (0.083)

Nuavg 4.5209 4.510 4.519 4.646

106 Numax (at y) 17.5001 (0.04) 17.442 (0.0368) 17.925 (0.0378) 17.670 (0.0379)

Nuavg 8.8187 8.806 8.799 9.01

At Ra = 105 and for all aspect ratios, maximum rate of heat transfer occurs at
about y = 0.1 of the hot wall. With the decrease in AR, the maximum local Nusselt
number decreases for y < 0.1. A reverse behaviour is found for the major portion
of the wall. For y > 0.1, the local Nusselt number decreases when the aspect ratio
increases. It is because of the increase in blockage of fluid flow via increase in the
adiabatic obstacle size. At Ra = 106 and 107, the size of the obstacle does not affect
the heat transfer rate significantly. This is due to the increase in the buoyant force
will eliminate the effect of the increase in fluid flow blockage. It is worth mentioning
that the maximum rate of heat transfer occurs at a position y < 0.1, and this position
approaches the lower part of the hot wall as Ra increases.

Figure 6 presents a comparison between (a) the profiles for the u-component for
AR = 0, i.e. without obstacle, and (b) u-component obtained in [1] at themid-width of
the cavity. From Fig. 6, it can be drawn that the present results are coinciding with the
results obtained by Barakos et al. [1] at Ra = 103−107. The figure shows a gradually
decreasing velocity near the centre and the development of narrow boundary layers
along the walls. It is clear that for high Ra, thicker boundary layers are developed.
It is obvious that the velocity profile at the lower half of the vertical walls of the
cavity is negative however at the upper half is positive and hence there are changes
in the velocity direction. These changes correspond to slope changes of the temper-
ature profile and lead to vortex development. Here, the boundary layer separation
occurs at the point (0.5, 0) at which the portion of the boundary layer reverses in flow
direction.

Again to ensure the validity and verify the accuracy of the considered numerical
technique, the obtained results for Nusselt number are compared with the benchmark
solutions [1,11,12] for a fluid of Pr = 0.71 in a square cavitywithout obstacle. Table 1
shows this comparison that describes an excellent agreement between the present
results and the benchmark solution for all values of Ra. The comparison concerns the
averaged Nu along the hot wall and its maximum values and the locations where they
occur.
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7 Conclusion

In the present paper the problem of free convection of air inside differentially heated
square cavity with an adiabatic square obstacle located in its center was investigated
numerically using the a penalty finite element method based on Galerkin weighted
residual method. A parametric study was undertaken and effects of the Rayleigh num-
ber and square obstacle aspect ratio on the fluid flow, temperature field and rate of heat
transfer were investigated and the following results were obtained.

In case of no obstacle inside the cavity, the present results compare favourably with
benchmark solutions and in agreement with similar ones found in the literature, for
example [1,11,12].

In case of low Rayleigh numbers (102−104), the rate of heat transfer decreases
when the aspect ratio of the adiabatic square obstacle increases.

In case of relatively high Rayleigh numbers (105−106), the maximum heat transfer
rate increases when the aspect ratio of the adiabatic square obstacle increases.

In case of high Rayleigh numbers (107), the increase in the size of the inside square
obstacle does not affect the heat transfer rate significantly.
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