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Abstract The Gumbel distribution is one of the most popular widely used distribu-
tions in climate modeling. In this paper, we present exact confidence intervals (CI)
and joint confidence regions (JCR) for the parameters of Gumbel distribution based on
record data. Exact CI and JCR for the parameters of inverse Weibull distribution are
also discussed. Three numerical examples with climate data are presented to illustrate
the proposed methods. A simulation study is conducted to study the performance of
the proposed CI and region.
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1 Introduction

There are several situations pertaining to meteorology, hydrology, largest insurance
claims, seismology, and athletic events in which only observations that exceed or
only those that fall below the current extreme value are recorded and the complete
data are not available. For example, an electronic component ceases to function in an
environment of too high temperature, a battery dies under the stress of time, and a
wooden beam breaks when sufficient perpendicular force is applied to it. Moreover,
in some reliability experiments, the units that are experimented on are destroyed. If
units are expensive, the cost of the experiment is mainly the cost of the destroyed
units. In such cases, it is possible to set up the experiment in such a way that only units
whose life lengths are (lower) record values are destroyed (see [1]). Hence, in such
experiments, measurements may be made sequentially and only the record values are
observed. Data of this type are called record data or records. The statistical study of
record values started with [9] and has now spread in different directions. For more
details on records and its applications, see [4,18], and [7].

A random variable X is said to have Gumbel distribution, if its cumulative distrib-
ution function (cdf) is

F(x;μ, σ) = e−e− x−μ
σ

, x ∈ R, μ ∈ R, σ > 0, (1.1)

where μ and σ are the location and scale parameters, respectively. The Gumbel prob-
ability density function (pdf) has the form:

f (x;μ, σ) = 1

σ
e− x−μ

σ
−e− x−μ

σ
. (1.2)

The Gumbel distribution was introduced by [12] and since then it received a con-
siderable attention in the literature. It is frequently used in engineering and climate
modeling. The book by [15], which describes the Gumbel distribution, presents some
of its application areas in engineering including flood frequency analysis, network
engineering, nuclear engineering, offshore engineering, space engineering, software
reliability engineering, structural engineering, andwind engineering. See also [16,19],
and [10] for some generalizations of the Gumbel distribution.

Many authors have studied statistical inference based on record data from the Gum-
bel distribution. Balakrishnan et al. [8] derived some recurrence relations for the single
and productmoments of record values fromGumbel distribution.Nagaraja [17] proved
that some inference procedures based on asymptotic theory of extreme order statistics
are equivalent to those based on record values from the Gumbel distribution. Based on
record data, [2,3] derived the maximum likelihood, best linear invariant and minimum
variance unbiased estimators of the Gumbel location, and scale parameters μ and σ .
Also, he presented two types of predictors of the sth record value based on the first m
(m < s) record values. Ali Mousa et al. [6] considered Bayesian estimation, predic-
tion, and characterization for Gumbel distribution based on record data. Recently, [5]
have studied the characterizations of Rayleigh distribution based on order statistics
and record values.
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The purpose of this paper is to construct the interval estimation for the parameters
of the Gumbel distribution based on lower record values. The rest of this paper is
organized as follows. Sect. 2 provides some preliminaries. In Sect. 3, we present an
exact confidence interval (CI) for parameter σ and an exact joint confidence region
(JCR) for the parameters μ and σ . In Sect. 4, the exact CI and JCR for the parameters
of inverse Weibull distribution are discussed. Section 5 discusses three numerical
examples with climate data for illustration. In Sect. 6, a Monte Carlo simulation is
conducted to study the performance of the proposed confidence interval and region.

2 Preliminaries

Let X1, X2, ... be a sequence of independent and identically distributed (iid) contin-
uous random variables with cdf F(x) and pdf f (x). An observation X j is called an
upper (lower) record value of this sequence if its value exceeds (is lower than) that of
all previous observations. Generally, let us define T1 = 1, U1 = X1, and for n ≥ 2

Tn = min
{
j > Tn−1 : X j > XTn−1

}
, Un = XTn .

Then the sequence {Un}({Tn}) is known as upper record statistics (upper record times).
Similarly, the lower record times Sn and the lower record values Ln are defined as fol-
lows: S1 = 1, L1 = X1, and for n ≥ 2, Sn = min{ j > Sn−1 : X j < XSn−1}, Ln =
XSn . The following lemmas are useful in this paper.

Lemma 2.1 Let L1 > L2 > · · · > Lm be the first m observed lower record values
from a population with cdf F(.). Define

Ui = − ln[F(Li )], i = 1, 2, . . . ,m.

Then U1 < U2 < · · · < Um are the first m upper record values from a standard
exponential distribution.

Proof From the joint pdf of L1, L2, ..., Lm and using a simple Jacobian argument, we
can easily obtain the joint pdf of U1,U2, ...,Um as

fU1,U2,...,Um (u1, u2, ..., um) = e−um , 0 < u1 < u2 < · · · < um,

which is the joint pdf of the first m upper record values from a standard exponential
distribution (see [7]). The proof is thus obtained. ��

Lemma 2.2 If U1 < U2 < · · · < Um are the first m upper record values from a
standard exponential distribution. Then the spacings U1,U2 − U1, . . . ,Um − Um−1
are iid random variables from a standard exponential distribution.

Proof The proof can be found in [7]. ��
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260 A. Asgharzadeh et al.

3 Confidence Interval and Joint Confidence Region

Let L1 > L2 > · · · > Lm be the first m observed lower record values from the
Gumbel distribution. In this section, a 100(1 − α)% CI for scale parameter σ and a
100(1 − α)% JCR for (μ, σ ) are constructed based on the observed lower records
L = (L1, L2, . . . , Lm). A 100(1− α)% joint confidence region (or set) for (μ, σ ) is
a random set C(L) such that

P
[
(μ, σ ) ∈ C(L)

] = 1 − α.

One of the applications of the JCR of the parameters is to find confidence bounds for
the functions of the two parameters μ and σ .

The most popular approach in obtaining CI and JCR is to use pivotal quantities
(functions of data and of unknown parameters whose distributions are known and
parameter free). Another useful approach is to use the approximate normality of max-
imum likelihood estimates (MLEs) and obtain the large sample CI and JCR. Since the
asymptotic theory of the MLEs of the parameters is not practical in case of records
data [see [7], P. 24)], we shall use here the first approach to obtain CI and JCR.

Let us define

Yi = exp

(
− Li − μ

σ

)
, i = 1, 2, . . . ,m. (3.1)

Then, by Lemma 2.1, Y1 < Y2 < · · · < Ym are the first m upper record values from
a standard exponential distribution. Moreover, by Lemma 2.2, we can observe that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1 = Y1
Z2 = Y2 − Y1
...

Zm = Ym − Ym−1

(3.2)

are iid random variables from a standard exponential distribution. Hence

V = 2Z1 = 2Y1

has a chi-square distribution with 2 degrees of freedom and

U = 2
m∑

i=2

Zi = 2 (Ym − Y1)

has a chi-square distribution with 2m − 2 degrees of freedom. We can also find that
U and V are independent random variables. Let

P1 = U/2(m − 1)

V/2
= U

(m − 1)V
= 1

m − 1

(
Ym − Y1

Y1

)
, (3.3)
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Interval estimation for Gumbel Distribution Using Climate… 261

and
P2 = U + V = 2Ym . (3.4)

It is easy to show that P1 has an F distribution with 2m − 2 and 2 degrees of freedom
and P2 has a chi-square distribution with 2m degrees of freedom. Furthermore, P1 and
P2 are independent, see [13, p. 350].

Let Fα(υ1, υ2) be the percentile of F distribution with right-tail probability α and
υ1 and υ2 degrees of freedom. Next theorem gives an exact CI for the scale parameter
σ based on lower record values.

Theorem 3.1 Suppose that L1 > L2 > · · · > Lm be the first m observed lower
record values from the Gumbel distribution in (1.1). Then, for any 0 < α < 1,

L1 − Lm

ln
[
1 + (m − 1)Fα

2
(2m − 2, 2)

] < σ <
L1 − Lm

ln
[
1 + (m − 1)F1− α

2
(2m − 2, 2)

]

is a 100(1 − α)% CI for σ .

Proof From (3.3), we know that the pivot

P1(σ ) = 1

m − 1

[
e− Lm−μ

σ − e− L1−μ

σ

e− L1−μ

σ

]

= 1

m − 1

[
e

L1−Lm
σ − 1

]
,

has an F distribution with 2m − 2 and 2 degrees of freedom. Hence, for 0 < α < 1,
we obtain

P
(
F1− α

2
(2m − 2, 2) < P1 < Fα

2
(2m − 2, 2)

)
= 1 − α,

which is equivalent to

P

(
L1 − Lm

ln
[
1 + (m − 1)Fα

2
(2m − 2, 2)

]

< σ <
L1 − Lm

ln
[
1 + (m − 1)F1− α

2
(2m − 2, 2)

]

)

= 1 − α.

This completes the proof. ��
It should be mentioned here that we can also use P1(σ ) to test null hypothesis

H0 : σ = σ0.
Let χ2

α(υ) denote the percentile of χ2 distribution with right-tail probability α and
υ degrees of freedom. Next theorem gives an exact JCR for the parameters μ and σ .

Theorem 3.2 Suppose that L1 > L2 > · · · > Lm be the first m observed lower
record values from Gumbel distribution. Then, the following inequalities determine
100(1 − α)% JCR for μ and σ :
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L1−Lm

ln

[
1+(m−1)F1−√

1−α
2

(2m−2,2)

] < σ < L1−Lm

ln

[
1+(m−1)F1+√

1−α
2

(2m−2,2)

] ,

Lm + σ ln

⎛

⎝
χ2
1+√

1−α
2

(2m)

2

⎞

⎠ < μ < Lm + σ ln

⎛

⎝
χ2
1−√

1−α
2

(2m)

2

⎞

⎠ .

Proof From (3.4), we know that

P2(μ, σ ) = 2 e− Lm−μ
σ

has a χ2 distribution with 2m degrees of freedom, and it is independent of P1. Hence,
for 0 < α < 1, we have

P

[
F1+√

1−α
2

(2m − 2, 2) < P1 < F1−√
1−α
2

(2m − 2, 2)

]
= √

1 − α,

and

P

[
χ2

1+√
1−α
2

(2m) < P2 < χ2
1−√

1−α
2

(2m)

]
= √

1 − α.

From these relationships, we conclude that

P

[

F1+√
1−α
2

(2m − 2, 2) <
e

L1−Lm
σ − 1

m − 1
< F1−√

1−α
2

(2m − 2, 2),

χ2
1+√

1−α
2

(2m) < 2 e− Lm−μ
σ < χ2

1−√
1−α
2

(2m)

]

= 1 − α,

or equivalently

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L1−Lm

ln

[
1+(m−1)F1−√

1−α
2

(2m−2,2)

] < σ < L1−Lm

ln

[
1+(m−1)F1+√

1−α
2

(2m−2,2)

] ,

Lm + σ ln

⎛

⎝
χ2
1+√

1−α
2

(2m)

2

⎞

⎠ < μ < Lm + σ ln

⎛

⎝
χ2
1−√

1−α
2

(2m)

2

⎞

⎠ .

As an application, Theorem 3.2 can be used to obtain a lower confidence bound for
the expected value and reliability function of a Gumbel distribution. Here, we only
obtain a lower confidence bound for the expected value. The expected value of the
Gumbel distribution is E(X) = μ + γ σ , where γ = 0.57722 is the Euler’s constant.
The following corollary will be used to obtain the lower confidence bound for E(X).
The proof is easy and omitted.
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Corollary 3.3 Suppose that L1 > L2 > · · · > Lm be the first m observed lower
record values from Gumbel distribution. Then, the following inequalities determine
100(1 − α)% JCR for the parameters μ and σ :
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1−Lm

ln
[
1+(m−1)F1−√

1−α
2

(2m−2, 2)
] < σ <

L1−Lm

ln
[
1+(m−1)F1+√

1−α
2

(2m − 2, 2)
] ,

μ > Lm + σ ln

(
χ2√

1−α
(2m)

2

)

where 0 < α < 1.

Theorem 3.4 Suppose that L1 > L2 > · · · > Lm be the first m observed lower
record values from Gumbel distribution. Then for any 0 < α < 1,

inf
σ

{

Lm + σ

[

ln

(
χ2√

1−α
(2m)

2

)

+ γ

]}

is a (1 − α)100% lower confidence bound for the expected value E(X), where the
infimum is taken over the interval

⎧
⎨

⎩
σ : L1 − Lm

ln[1 + (m − 1)F1−√
1−α
2

(2m − 2, 2)] < σ <
L1 − Lm

ln[1 + (m − 1)F1+√
1−α
2

(2m − 2, 2)]

⎫
⎬

⎭
.

Proof For fixed t and σ , E(X) = μ + γ σ is increasing in μ, then

P

[

E(X) > inf
σ

[

Lm + σ

[

ln

(
χ2√

1−α
(2m)

2

)

+ γ

]]

:

L1 − Lm

ln
[
1 + (m − 1)F1−√

1−α
2

(2m − 2, 2)
] < σ <

L1 − Lm

ln
[
1 + (m − 1)F1+√

1−α
2

(2m − 2, 2)
]

⎤

⎥
⎦

= P

[

E(X) > inf
σ

[μ + γ σ ] : μ = Lm + σ ln

(
χ2√

1−α
(2m)

2

)

,

L1 − Lm

ln
[
1 + (m − 1)F1−√

1−α
2

(2m − 2, 2)
] < σ <

L1 − Lm

ln
[
1 + (m − 1)F1+√

1−α
2

(2m − 2, 2)
]

⎤

⎥
⎦

= P

[

E(X) > inf
σ

[μ + γ σ ] : μ > Lm + σ ln

(
χ2√

1−α
(2m)

2

)

,

L1 − Lm

ln
[
1 + (m − 1)F1−√

1−α
2

(2m − 2, 2)
] < σ <

L1 − Lm

ln
[
1 + (m − 1)F1+√

1−α
2

(2m − 2, 2)
]

⎤

⎥
⎦
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= P

[

μ > Lm + σ ln

(
χ2√

1−α
(2m)

2

)

,

L1 − Lm

ln
[
1 + (m − 1)F1−√

1−α
2

(2m − 2, 2)
] < σ <

L1 − Lm

ln
[
1 + (m − 1)F1+√

1−α
2

(2m − 2, 2)
]

⎤

⎥
⎦

= 1 − α.

The proof is thus completed. ��

4 Results for Inverse Weibull distribution

The results in Theorems 3.1 and 3.2 can be used for constructing exact CI and JCR for
the parameters of inverse Weibull distribution. It is known that, if the random variable
X has a Gumbel distribution in (1.1), then Z = exp(X) has the inverse Weibull
distribution with cdf as

G(z) = e−λz−β

,

where β = 1/σ and λ = exp(βμ).
In the next theorem, an exact CI for β and an exact JCR for the parameters β and

λ are given. The proof is easy and omitted.

Theorem 4.1 Suppose that Z1 > Z2 > · · · > Zm be the first m observed lower
record values from inverse Weibull distribution. Then, a 100(1 − α)% CI for β is

ln
[
1 + (m − 1)F1− α

2
(2m − 2, 2)

]

ln Z1 − ln Zm
< β <

ln
[
1 + (m − 1)Fα

2
(2m − 2, 2)

]

ln Z1 − ln Zm
,

and a 100(1 − α)% JCR for parameters β and λ is determined by the following
inequalities

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln

[
1+(m−1)F1+√

1−α
2

(2m−2,2)

]

ln Z1−ln Zm
< β <

ln

[
1+(m−1)F1−√

1−α
2

(2m−2,2)

]

ln Z1−ln Zm
,

χ2
1+√

1−α
2

(2m)

2 eβ ln Zm < λ <

χ2
1−√

1−α
2

(2m)

2 eβ ln Zm .

5 Applications

In this section, three examples with climate record data are given to illustrate the
proposed CI and JCR.
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Table 1 Expected value of the first Gumbel lower record values

i 1 2 3 4 5 6

E(Li ) 15.2206 8.9549 5.8221 3.7335 2.1671 0.9140

5.1 Example 1 (Air Temperature Data )

The following data represent the first six lower records of the average annual mean
monthly air temperatures (in degrees centigrade) at Babolsar city in north of Iran from
1951 to 2000 (see the website: http://www.iranhydrology.com/meteo.asp):

17.4, 16.7, 16.2, 15.9, 15.5, 14.9.

The correlation coefficient of these six lower records and the expected values of the
first Gumbel lower record values in Table 1 is 0.9693. This indicates that the Gumbel
model provides a good fit to these record values.

To find a 95% CI for σ and a JCR for μ and σ , we need the following percentiles:

F0.025(10,2) = 39.39797, F0.975(10,2) = 0.1832712,

F0.0127(10,2) = 78.13913, F0.9873(10,2) = 0.1434067,

and
χ2
0.0127(12) = 25.4812 , χ2

0.9873(12) = 3.765882.

Using the methods described in Sect. 3, we can obtain CI and JCR for the parameters.
By Theorem 3.1, the 95%CI for σ is (0.4728, 3.8436), with confidence length 3.3808.
ByTheorem3.2, the 95% JCR forμ and σ is determined by the following inequalities:

0.4187 < σ < 4.6245

14.9 + σ ln

(
3.7659

2

)
< μ < 14.9 + σ ln

(
25.4812

2

)
,

with area
∫ 4.6245

0.4187

∫ 14.9+σ ln
(
25.4812

2

)

14.9+σ ln
(
3.7659

2

) dμ dσ = 20.27702.

Figure 1 shows the above JCR. Also a 95% lower confidence bound for the expected
value E(X) is

inf
σ

[
14.9 + σ(ln(4.420471/2) + 0.57722)

]
= inf

σ

[
14.9 + 1.370319σ

]
,

where the infimum is taken over 0.4187 < σ < 4.6245. Thus, the 95% lower confi-
dence bound for E(X) is 14.9 + (1.370319)(0.4187) = 15.47378.
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Fig. 1 Joint confidence region for parameters in Example 1

5.2 Example 2 (Rainfall Data)

In this example, we present a data analysis and illustrate application of the results in
Sect. 3 to the seasonal (July 1–June 30) rainfall in inches recorded at Los Angeles
Civic Center from 1962 to 2012 (see the website of Los Angeles Almanac: http://
www.laalmanac.com/weather/we13.htm). The data are as follows:

08.38, 07.93, 13.68, 20.44, 22.00, 16.58, 27.47, 07.74,
12.32, 07.17, 21.26, 14.92, 14.35, 07.21, 12.30, 33.44,
19.67, 26.98, 08.96, 10.71, 31.28, 10.43, 12.82, 17.86,
07.66, 12.48, 08.08, 07.35, 11.99, 21.00, 27.36, 08.11,
24.35, 12.44, 12.40, 31.01, 09.09, 11.57, 17.94, 04.42,
16.42, 09.25, 37.96, 13.19, 03.21, 13.53, 09.08, 16.36,
20.20, 08.69.

Here,we checked the validity of theGumbel based on the parameters μ̂ = 11.604, σ̂ =
6.2657, using theKolmogorov–Smirnov (K–S) test. It is observed that theK–Sdistance
is K–S = 0.09227 with a corresponding p value = 0.76863. So, the Gumbel model
provides a good fit to the above data.

If only the lower record values of the seasonal rainfall have been observed, these
are

8.38, 7.93, 7.74, 7.17, 4.42, 3.21.

By Theorem 3.1, the 95% CI for σ is (0.9776454, 7.948644 ), with confidence length
6.970999. By Theorem 3.2, the 95% JCR for μ and σ is determined by the following
inequalities:
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Fig. 2 Joint confidence region for parameters in Example 2

0.8659263 < σ < 9.56348,

3.21 + σ ln

(
3.7659

2

)
< μ < 3.21 + σ ln

(
25.4812

2

)

with area 86.71719. Figure 2 shows the above joint confidence region. In this example,
a 95% lower confidence bound for the expected value E(X) is

inf
σ

[
3.21 + σ(ln(4.420471/2) + 0.57722)

]
= inf

σ

[
3.21 + 1.370319σ

]
,

where the infimum is taken over 0.8659263 < σ < 9.56348. Thus, we obtain the 95%
lower confidence bound for E(X) as 3.21 + (1.370319)(0.8659263) = 4.396657.

5.3 Example 3 (Floods Data)

Consider the data given by [11] represent the maximum flood levels (in millions of
cubic feet per second) of the Susquehenna River at Harrisburg, Pennsylvenia, over 20
4-year periods (1890–1969) as:

0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423,
0.379, 0.324, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416,
0.338, 0.392, 0.484, 0.265.
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Fig. 3 Joint confidence region for parameters in Example 3

Maswadah [14] showed that the inverse Weibull distribution with cdf and pdf

G(y, β, λ) = e−λy−β

, y > 0, λ > 0, β > 0,

g(y, β, λ) = λβy−β−1e−λy−β

provides a very good fit to the given data set. Using the method described in Sect. 4,
we can obtain CI and JCR for the parameters β and λ.

Now, the lower records of the maximum flood level are as follows:

0.654, 0.613, 0.315, 0.297, 0.269, 0.265.

By Theorem 4.1, the 95%CI for β is (0.7200, 5.8548), with confidence length 5.1338,
and the 95% JCR for β and λ is determined by the following inequalities:

0.5984 < β < 6.6091,
3.7659

2
eβ ln 0.265 < λ <

25.4812

2
eβ ln 0.265,

with area 3.6918. Figure 3 shows the above JCR.

6 Simulation Study

In this section, a Monte Carlo simulation is conducted to study the performance of
the proposed CI and region. In this simulation, we randomly generate lower record
sample L1, L2, . . . , Lm from the Gumbel distribution with the value of parameters
(μ = 0, σ = 1) and then computed 95% confidence intervals and regions using
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Table 2 The simulated average
confidence length (CL),
confidence area (CA), and 95%
coverage probabilities (CP) for
the parameters

m CL (σ ) CA (μ, σ ) CP (σ ) CP (μ, σ )

5 3.6551 35.3372 0.950 0.950

6 3.0851 21.7041 0.950 0.949

7 2.6974 14.9888 0.949 0.949

8 2.4411 11.1992 0.954 0.953

9 2.2645 9.0827 0.945 0.948

10 2.1241 7.4849 0.950 0.952

11 1.9912 6.2638 0.953 0.952

12 1.9044 5.5080 0.946 0.945

13 1.8283 4.8641 0.950 0.948

14 1.7568 4.3232 0.952 0.950

15 1.7027 3.9377 0.949 0.953

16 1.6574 3.6466 0.949 0.948

17 1.6153 3.3499 0.954 0.948

18 1.5747 3.1204 0.948 0.946

19 1.5404 2.9116 0.950 0.947

20 1.5085 2.7228 0.954 0.951

21 1.4816 2.5802 0.948 0.947

22 1.4608 2.4582 0.956 0.951

23 1.4337 2.3255 0.950 0.948

24 1.4170 2.2309 0.948 0.945

25 1.3830 2.0835 0.952 0.952

30 1.3031 1.7288 0.945 0.946

the results presented in Sect. 3. We then replicated the process 10,000 times. We
presented, the simulated average confidence length for parameter σ , confidence area
for the parameters (μ, σ ), and the 95% coverage probabilities of the proposed CI and
regions in Table 2.

From Table 2, we observe that whenm increases, the average confidence length for
σ and the average confidence area for (μ, σ ) are decreased.

The simulation results show that the coverage probabilities of the exact CI for
parameter σ and joint confidence regions for parameters (μ, σ ) are close to the desired
level of 0.95 for different sample sizes. Hence, our proposed methods for constructing
exact CI and JCR can be used reliably.
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