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Abstract A set S of vertices of a graph G is a dominating set in G if every vertex
outside of S is adjacent to at least one vertex belonging to S. A domination parameter
of G is related to those sets of vertices of a graph satisfying some domination prop-
erty together with other conditions on the vertices of G. Here, we investigate several
domination-related parameters in rooted product graphs.
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1 Introduction

Domination in graphs constitutes a very important area in graph theory [9]. An enor-
mous quantity of researches on domination in graphs have been developed in the
recent years, especially in the last 2 years, for instance: [6,18,23,24] are some of
the most recent ones. Nevertheless, there are still several open problems and incom-
ing researches on that. One interesting question in this area is related to the study of
domination-related parameters in product graphs. For instance, the Vizing’s Conjec-
ture [20,21] is one of the most popular open problems about domination in product
graphs. The Vizing’s Conjecture states that the domination number of Cartesian prod-
uct graphs is greater than or equal to the product of the domination numbers of the
factor graphs. Moreover, several kinds of domination-related parameters have been
studied in the last years. Some of themost remarkable examples are the following ones.
The domination number of direct product graphs was studied in [3,11,15]. The total
domination number of direct product graphs was studied in [5]. The upper domination
number of Cartesian product graphs was studied in [2]. The independence domi-
nation number of Kronecker product graphs was studied in [10]. Some relationships
between some domination parameters of composite graphs were presented in [6]. Sev-
eral domination-related parameters of corona product graphs and the conjunction of
two graphswere studied in [23] and [25], respectively. The Roman domination number
of lexicographic product graphs was studied in [18], and the Roman domination num-
bers of Cartesian product graph and strong product graph have been studied recently
in [22]. According to the major quantity of works devoted to the study of domination-
related parameters in product graphs, it is noted that not only Vizing’s Conjecture is
an interesting topic related to domination in product graphs. In this paper, we make
some contributions to the study of some domination-related parameters for the case
of rooted product graphs.

We begin establishing the principal terminology and notation which we will use
throughout the article. Hereafter, G = (V, E) represents an undirected finite graph
without loops and multiple edges with set of vertices V and set of edges E . The order
of G is |V | = n(G) and the size |E | = m(G) (if there is no ambiguity, we will use
only n andm). We denote two adjacent vertices u, v ∈ V by u ∼ v and in this case, we
say that uv is an edge of G or uv ∈ E . For a nonempty set X ⊆ V and a vertex v ∈ V ,
NX (v) denotes the set of neighbors that v has in X : NX (v) := {u ∈ X : u ∼ v},
and the degree of v in X is denoted by δX (v) = |NX (v)|. In the case X = V , we
will use only N (v), which is also called the open neighborhood of a vertex v ∈ V ,
and δ(v) to denote the degree of v in G. The close neighborhood of a vertex v ∈ V
is N [v] = N (v) ∪ {v}. The minimum and maximum degrees of G are denoted by
δ and �, respectively. The subgraph induced by S ⊂ V is denoted by 〈S〉, and the
complement of the set S in V is denoted by S. The distance between two vertices
u, v ∈ V of G is denoted by dG(u, v) (or d(u, v) if there is no ambiguity). Given a
vertex v of G, G − v denotes the subgraph of G obtained by removing the vertex v

and all the edges incident with v.
The set of vertices D ⊂ V is a dominating set of G if for every vertex v ∈ D it is

satisfied that ND(v) 	= ∅. The minimum cardinality of any dominating set of G is the
domination number of G, and it is denoted by γ (G). A set D is a γ (G)-set if it is a
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Fig. 1 The rooted product
graph P4 ◦ C3

dominating set and |D| = γ (G). Throughout the article, we follow the terminology
and notation of [9].

Given a graph G of order n and a graph H with root vertex v, the rooted product
graph G ◦ H is defined as the graph obtained from G and H by taking one copy of G
and n copies of H and identifying the vertex ui ofG with the vertex v in the i th copy of
H for every 1 ≤ i ≤ n [8]. IfG or H is the singleton graph, thenG◦H is equal to H or
G, respectively. In this sense, to obtain the rooted productG◦H , we will only consider
graphs G and H of orders greater than or equal to two. Figure 1 shows the case of the
rooted product graph P4 ◦C3. Hereafter, we will denote by V = {u1, u2, . . . , un} the
set of vertices of G and by Hi = (Vi , Ei ) the i th copy of H in G ◦ H .

It is clear that the value of every parameter of the rooted product graph depends on
the root of the graph H . In the present article, we give some results related to some
domination parameters in rooted product graphs.

2 Domination Number

We begin with the following remark which will be useful into proving next results.

Lemma 1 Let G be a graph of order n ≥ 2 and let H be any graph with root v

and at least two vertices. If v does not belong to any γ (H)-set or v belongs to every
γ (H)-set, then

γ (G ◦ H) = nγ (H).

Proof If Ai is a dominating set of minimum cardinality in Hi = (Vi , Ei ), i ∈
{1, . . . , n}, then it is clear that⋃n

i=1 Ai is a dominating set inG◦H . Thus, γ (G◦H) ≤
nγ (H). Suppose v does not belong to any γ (H)-set. Let S be a γ (G ◦ H)-set, and let
Si = S ∩ Vi for every i ∈ {1, . . . , n}. Notice that the set Si dominates all the vertices
of Hi except maybe the root vi which could be dominated by other vertex not in Hi .

If v j /∈ S j for some j ∈ {1, . . . , n}, then S j is a dominating set in Hj − v j . So
γ (Hj − v j ) ≤ |S j |. Moreover, since v j does not belong to any γ (Hj )-set, it is sat-
isfied that γ (Hj − v j ) = γ (Hj ). If |S j | < γ (H), then we have that γ (Hj − v j ) ≤
|S j | < γ (Hj ) = γ (Hj − v j ), a contradiction. On the other side, if vl ∈ Sl for
some l ∈ {1, . . . , n}, then Sl is a dominating set in Hl . So γ (Hl) ≤ |Sl |. Therefore,
|Si | ≥ γ (H) for every i ∈ {1, . . . , n}, and we obtain that γ (G ◦ H) = nγ (H).

On the other hand, let us suppose v belongs to every γ (H)-set. Thus, v dominates
at least one vertex in H which is not dominated by any other vertex in every γ (H)-set
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202 D. Kuziak et al.

and, as a consequence, γ (H −v) ≥ γ (H). As noted above, S denotes a γ (G ◦H)-set,
and Si = S ∩ Vi for every i ∈ {1, . . . , n}. If v j /∈ S j for some j ∈ {1, . . . , n}, then
either S j is not a dominating set in Hj or |S j | is not a dominating set of minimum car-
dinality in Hj . Hence, by exchanging in S, the set S j with a γ (Hj )-set (which contains
v j ), we obtain a dominating set S′ of G ◦ H with cardinality less than cardinality of S,
a contradiction. Hence, v j ∈ S j and S j is a dominating set in Hj , which leads to that
|S j | ≥ γ (Hj ). Therefore, we have that |S| = ∑n

i=1 |Si | ≥ ∑n
i=1 γ (Hi ) = nγ (H)

and the proof is complete. ��
Theorem 2 Let G be a graph of order n ≥ 2. Then for any graph H with root v and
at least two vertices,

γ (G ◦ H) ∈ {nγ (H), n(γ (H) − 1) + γ (G)}.

Proof It is clear that γ (G ◦ H) ≤ nγ (H) and also, from Lemma 1, there are rooted
product graphs G ◦ H such that γ (G ◦ H) = nγ (H). Now, let us suppose that
γ (G ◦ H) < nγ (H). Let V be the set of vertices of G and let Vi , i ∈ {1, . . . , n}, be
the set of vertices of the copy Hi of H in G ◦ H . If S is a γ (G ◦ H)-set, then there
exists j ∈ {1, . . . , n} such that |S∩Vj | < γ (H). Notice that the set S∩Vj dominates
all the vertices in Vj excluding v j . If |S∩Vj | < γ (H)−1, then the set (S∩Vj )∪{v j }
is a dominating set in Hj and |(S ∩ Vj ) ∪ {v j }| ≤ |(S ∩ Vj )| + 1 < γ (H), which is a
contradiction. Hence, |S ∩ Vi | ≥ γ (H) − 1 for every i ∈ {1, . . . , n}.

Let x be the number of copies Hj1, Hj2 , . . . , Hjx of H in which the vertex v ji of
G is not dominated by S ∩ Vji (i.e., v ji is dominated by a vertex of G belonging to
other copy Hl , with l /∈ { j1, . . . , jx }). On the contrary, let y = n− x be the number of
copies Hk1 , Hk2 , . . . , Hky of H in which the vertex vki of G is dominated by S ∩ Vki
or vki ∈ S. Note that the y vertices vki of G satisfying the above property form a
dominating set in G and, as a consequence, γ (G) ≤ y. Since n = x + y, we have
that x ≤ n − γ (G). Also, notice that if the vertex vki of G is dominated by S ∩ Vki or
vki ∈ S, then S ∩ Vki is a dominating set in Hki . Hence, γ (H) ≤ |S ∩ Vki | for every
copy Hki in which the vertex vki of G is dominated by S ∩ Vki or vki ∈ S. Thus, we
have the following:

γ (G ◦ H) = |S| =
∣
∣
∣
∣
∣

x⋃

i=1

(S ∩ Vji ) ∪
y⋃

i=1

(S ∩ Vki )

∣
∣
∣
∣
∣

=
x∑

i=1

|S ∩ Vji | +
y∑

i=1

|S ∩ Vki |

≥ x(γ (H) − 1) + yγ (H)

= nγ (H) − x

≥ nγ (H) − n + γ (G)

= n(γ (H) − 1) + γ (G).

On the other side, let A be a γ (G◦H)-set. Since γ (G◦H) < nγ (H), there exists at
least one copy Hk of H such that |A∩Vk | < γ (H), which implies |A∩Vk | ≤ γ (H)−1.
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Since A ∩ Vk dominates all the vertices of Hk except maybe the root vk , we have that
if vk ∈ A∩ Vk , then A∩ Vk is a dominating set in H , which is a contradiction. Hence,
vk /∈ A ∩ Vk . Now, as |A ∩ Vi | ≥ γ (H) − 1 for every i ∈ {1, . . . , n}, we obtain that
|A ∩ Vk | = γ (H) − 1. Hence, A′ = (A ∩ Vk) ∪ {vk} is a γ (H)-set. Let us denote by
A′
i , i ∈ {1, . . . , n}, the set of vertices of A′ − {vi } in each copy Hi of G ◦ H .
Let B be a γ (G)-set and let D = (⋃n

i=1 A
′
i

) ∪ B. Since A′
i dominates the vertices

of Hi − {vi } for every i ∈ {1, . . . , n} and B dominates the vertices of G, we obtain
that D is a dominating set in G ◦ H . Thus,

|D| =
n∑

i=1

|A′
i | + |B| = n(|A′| − 1) + |B| = n(γ (H) − 1) + γ (G).

Therefore, we obtain that γ (G ◦ H) ≤ n(γ (H) − 1) + γ (G) and the result follows.
��

3 Roman Domination Number

Roman domination number was defined by Stewart in [17] and studied further by some
researchers, for instance in [4]. Given a graph G = (V, E), a map f : V → {0, 1, 2}
is a Roman dominating function for G if for every vertex v with f (v) = 0, there exists
a vertex u ∈ N (v) such that f (u) = 2. The weight of a Roman dominating function is
given by f (V ) = ∑

u∈V f (u). The minimumweight of a Roman dominating function
on G is called the Roman domination number of G and it is denoted by γR(G). A
function f is a γR(G)-function in a graph G = (V, E) if it is a Roman dominating
function and f (V ) = γR(G).

Let f be a Roman dominating function on G and let B0, B1 and B2 be the sets of
vertices of G induced by f , where Bi = {v ∈ V : f (v) = i}. Frequently, a Roman
dominating function f is represented by the sets B0, B1 and B2, and it is common to
denote f = (B0, B1, B2). It is clear that for any Roman dominating function f on
the graph G = (V, E) of order n, we have that f (V ) = ∑

u∈V f (u) = 2|B2| + |B1|
and |B2| + |B1| + |B0| = n. The following lemmas will be useful into proving other
results in this section.

Lemma 3 [4] For any graph G, γ (G) ≤ γR(G) ≤ 2γ (G).

Lemma 4 Let G = (V, E) be a graph and let f = (B0, B1, B2) be a γR(G)-function.
Then for every v ∈ V ,

(i) if v ∈ B0, then γR(G) − 1 ≤ γR(G − v) ≤ γR(G),
(ii) if v ∈ B1, then γR(G − v) = γR(G) − 1,
(iii) if v ∈ B2, then γR(G) − 1 ≤ γR(G − v) ≤ γR(G) + δ(v) − 2.

Proof Let f ′ = (A0, A1, A2) be a γR(G − v)-function. By making f ′(v) = 1, we
have that f ′ is a Roman dominating function in G. Thus,

γR(G) ≤ γR(G − v) + 1. (1)

Now, if v ∈ B0, then it is clear that γR(G − v) ≤ γR(G) and (i) is proved.
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204 D. Kuziak et al.

Moreover, if v ∈ B1, then (B0, B1 − {v}, B2) is a Roman dominating function in
G − v. Thus, γR(G − v) ≤ γR(G) − 1. Therefore, by (1), we obtain (ii).

On the other hand, if v ∈ B2, then (B0, B1 ∪ (N (v) − B2), B2 − {v}) is a Roman
dominating function in G − v. Thus,

γR(G − v) ≤ 2|B2 − {v}| + |B1 ∪ (N (v) − B2)|
= 2|B2| − 2 + |B1| + |N (v) − B2|
≤ γR(G) + δ(v) − 2.

Therefore, (iii) is proved. ��

Lemma 5 Let G = (V, E) be a graph. If for every γR(G)-function f = (B0, B1, B2)

is satisfied that v ∈ B0, then

γR(G − v) = γR(G).

Proof From Lemma 4 (i), we have that γR(G − v) ≤ γR(G). If γR(G − v) < γR(G),
then there exists a γR(G − v)-function h = (A0, A1, A2) such that h(V − {v}) =
γR(G −v) < γR(G), which leads to h(V −{v}) ≤ γR(G)−1. If h′ is a function in G
such that for every u ∈ V , u 	= v, we have that h′(u) = h(u) and h′(v) = 1, then h′ is a
Roman dominating function in G. Thus, γR(G) ≤ h′(V ) = h(V −{v})+1 ≤ γR(G).
Hence, γR(G) = h′(V ) = h(V − {v}) + 1 = γR(G) and, we have that h′ is a γR(G)-
function such that h′(v) = 1,which is a contradiction. Therefore, γR(G−v) = γR(G).

��

The Roman domination number of rooted product graphs is studied at next.

Theorem 6 Let G be a graph of order n ≥ 2. Then for any graph H with root v and
at least two vertices,

n(γR(H) − 1) + γ (G) ≤ γR(G ◦ H) ≤ nγR(H).

Proof It is clear that γR(G ◦ H) ≤ nγR(H). Let Vi be the set of vertices of Hi for
every i ∈ {1, . . . , n} and let f = (B0, B1, B2) be a γR(G ◦ H)-function. Now, for
every i ∈ {1, . . . , n} and every k ∈ {0, 1, 2}, let B(i)

k = Bk ∩ Vi . Let j ∈ {1, . . . , n}.
We consider the following cases.

Case 1: v j ∈ B( j)
0 . If NHj (v j ) ∩ B( j)

2 	= ∅, then f j = (B( j)
0 − {v j }, B( j)

1 , B( j)
2 ) is

a Roman dominating function in Hj − v j . On the contrary, if NHj (v j ) ∩ B( j)
2 = ∅,

then v j is adjacent to some vertex vk ∈ B(k)
2 , with k 	= j and, again f j = (B( j)

0 −
{v j }, B( j)

1 , B( j)
2 ) is a Roman dominating function in Hj − v j . Hence, γR(Hj − v j ) ≤

2
∣
∣
∣B

( j)
2

∣
∣
∣ +

∣
∣
∣B

( j)
1

∣
∣
∣. By Lemma 4 (i), we have that γR(Hj − v j ) ≥ γR(H) − Hence,.

Thus, 2
∣
∣
∣B

( j)
2

∣
∣
∣ +

∣
∣
∣B

( j)
1

∣
∣
∣ ≥ γR(H) − 1.
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Case 2: v j ∈ B( j)
1 . Hence, it is clear that f j = (B( j)

0 , B( j)
1 −{v j }, B( j)

2 ) is a Roman

dominating function in Hj − v j . Hence, γR(Hj − v j ) ≤ 2
∣
∣
∣B

( j)
2

∣
∣
∣ +

∣
∣
∣B

( j)
1

∣
∣
∣ − 1. By

Lemma4 (ii),we have thatγR(Hj−v j )=γR(H)−1. Thus, 2
∣
∣
∣B

( j)
2

∣
∣
∣+

∣
∣
∣B

( j)
1

∣
∣
∣ ≥ γR(H).

Case 3: v j ∈ B( j)
2 . Thus, f j = (B( j)

0 , B( j)
1 , B( j)

2 ) is a Roman dominating function

in Hj . Hence, 2
∣
∣
∣B

( j)
2

∣
∣
∣ +

∣
∣
∣B

( j)
1

∣
∣
∣ ≥ γR(H).

Now, let V be the set of vertices of G and let A ⊆ V ∩ B0 be the set of vertices
of G such that for every vertex vl ∈ A is satisfied that NHl (vl) ∩ B(l)

2 = ∅. Hence,
every vertex vl ∈ A is dominated by some vertex in (V − A) ∩ B(k)

2 , with k 	= l. As a
consequence, V − A is a dominating set and γ (G) ≤ n − |A|. Since A ⊆ V ∩ B0, it

is satisfied that |A| equals at most the numbers of copies Hj of H such that 2
∣
∣
∣B

( j)
2

∣
∣
∣+

∣
∣
∣B

( j)
1

∣
∣
∣ ≥ γR(H) − 1 (those copies satisfying Case 1). Thus, we have the following,

γR(G ◦ H) = 2|B2| + |B1|

=
n∑

i=1

(
2

∣
∣
∣B

(i)
2

∣
∣
∣ +

∣
∣
∣B(i)

1

∣
∣
∣
)

=
n−|A|∑

i=1

(
2

∣
∣
∣B

(i)
2

∣
∣
∣ +

∣
∣
∣B(i)

1

∣
∣
∣
)

+
|A|∑

i=1

(
2

∣
∣
∣B

(i)
2

∣
∣
∣ +

∣
∣
∣B(i)

1

∣
∣
∣
)

≥ (n − |A|)γR(H) + |A|(γR(H) − 1)

= nγR(H) − |A|
≥ n(γR(H) − 1) + γ (G).

Therefore the lower bound is proved. ��
As the following proposition shows, the above bounds are tight.

Theorem 7 Let G be a graph of order n ≥ 2 and let H be a graph with root v and at
least two vertices. Then,

(i) if for every γR(H)-function f = (B0, B1, B2) is satisfied that f (v) = 0, then

γR(G ◦ H) = nγR(H),

(ii) if there exist two γR(H)-functions h = (B0, B1, B2) and h′ = (B ′
0, B

′
1, B

′
2) such

that h(v) = 1 and h′(v) = 2, then

γR(G ◦ H) = n(γR(H) − 1) + γ (G).

Proof Let f ′ = (B ′
0, B

′
1, B

′
2) be a γR(G ◦H)-function and let Vi be the set of vertices

of Hi , i ∈ {1, . . . , n}. Now, for every i ∈ {1, . . . , n}, let fi = (B(i)
0 = B ′

0∩Vi , B(i)
1 =

B ′
1 ∩ Vi , B(i)

2 = B ′
2 ∩ Vi ). From Theorem 6, we have that γR(G ◦ H) ≤ nγR(H). If
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γR(G ◦H) < nγR(H), then there exists j ∈ {1, . . . , n} such that f j (Vj ) = 2
∣
∣
∣B

( j)
2

∣
∣
∣+

∣
∣
∣B

( j)
1

∣
∣
∣ < γR(H). So f j = (B( j)

0 , B( j)
1 , B( j)

2 ) is not a Roman dominating function in

Hj . If f ′(v j ) = 1 or f ′(v j ) = 2, then every vertex in B( j)
0 is adjacent to a vertex

in B( j)
2 and, as a consequence, (B( j)

0 , B( j)
1 , B( j)

2 ) is a Roman dominating function in

Hj , which is a contradiction. So f ′(v j ) = 0 and f j = (B( j)
0 − {v j }, B( j)

1 , B( j)
2 ) is

a γR(Hj − v j )-function. Since f (v) = 0 for every γR(H)-function, by Lemma 5,

we have that 2
∣
∣
∣B

( j)
2

∣
∣
∣ +

∣
∣
∣B

( j)
1

∣
∣
∣ = γR(H − v) = γR(H) and this is a contradiction.

Therefore, γR(G ◦ H) = nγR(H) and (i) is proved.
To prove (ii), for every i ∈ {1, . . . , n}, we consider two γR(Hi )-functions hi =

(A(i)
0 , A(i)

1 , A(i)
2 ) and h′

i = (B(i)
0 , B(i)

1 , B(i)
2 ) such that hi (v) = 1 and h′

i (v) = 2, and
let S be a γ (G)-set. Now, we define a function g in G ◦ H in the following way.

• For every vertex x belonging to a copy Hj of H such that the root v j ∈ S, we make
g(x) = h′(x) (notice that g(v j ) = 2).

• For every vertex y, except the corresponding root, belonging to a copy Hl of H
such that the root vl /∈ S, we make g(x) = h(x).

• For every root of every copy Hl satisfying the conditions of the above item, we
make g(x) = 0 (note that these vertices are adjacent to a vertex w of G for which
g(w) = 2).

Since every vertex u ∈ Vj not in G, with g(u) = 0, is adjacent to a vertex u′ such
that g(u′) = 2 and also, every vertex vl of G, with g(vl) = 0, is adjacent to a vertex
vk ∈ S with g(vk) = 2, we obtain that g is a Roman dominating function in G ◦ H .
Thus,

γR(G ◦ H) ≤
|S|∑

i=1

(
2

∣
∣
∣B

(i)
2

∣
∣
∣ +

∣
∣
∣B(i)

1

∣
∣
∣
)

+
n−|S|∑

i=1

(
2

∣
∣
∣A

(i)
2

∣
∣
∣ +

∣
∣
∣A(i)

1

∣
∣
∣ − 1

)

= |S|γR(H) + (n − |S|)(γR(H) − 1)

= n(γR(H) − 1) + |S|
= γ (G) + n(γR(H) − 1).

Therefore, (ii) follows by Theorem 6. ��
On the other hand, we can see that there are rooted product graphs for which the

bounds of Theorem 6 are not achieved.

Theorem 8 Let G be a graph of order n ≥ 2, and let H be a graph with root v and
at least two vertices. If for every γR(H)-function f is satisfied that f (v) = 1, then

γR(G ◦ H) = n(γR(H) − 1) + γR(G).

Proof Let f = (B0, B1, B2) be a γR(H)-function and let f ′ = (B ′
0, B

′
1, B

′
2) be a

γR(G)-function. Now, let us define a function h in G ◦ H such that if u 	= v, then
h(u) = f (u). Otherwise, h(u) = f ′(u). Since f (v) = 1 for every γR(H)-function,
it is satisfied that every vertex x of G ◦ H with h(x) = 0 is adjacent to a vertex y in
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G ◦ H with h(y) = 2. Thus, h is a Roman dominating function in G ◦ H , and we have
that

γR(G ◦ H) ≤ (2|B ′
2| + |B ′

1|) +
n∑

i=1

(2|B2| + |B1| − 1)

= n(γR(H) − 1) + γR(G).

On the other hand, let Vi , i ∈ {1, . . . , n}, be the set of vertices of the copy Hi of
H in G ◦ H and let V be the set of vertices of G. Now, let g = (A0, A1, A2) be a
γR(G ◦ H)-function and for every i ∈ {1, . . . , n} let gi = (A(i)

0 = A0 ∩ Vi , A(i)
1 =

A1 ∩ Vi , A(i)
2 = A2 ∩ Vi ). Since the root vi of Hi satisfies that f (vi ) = 1 for every

γR(Hi )-function f , we have the following cases.

Case 1: If there exists l ∈ {1, . . . , n} such that g(vl) = 2, then gl is a Roman
dominating function in Hl , but it is not a γR(H)-function. Thus, γR(Hl) < 2|A(l)

2 | +
|A(l)

1 |, which leads to

γR(Hl) ≤ 2|A(l)
2 | + |A(l)

1 | − 1 = 2|A(l)
2 − {vl}| + |A(l)

1 | + 1.

Case 2: If there exists j ∈ {1, . . . , n} such that g(v j ) = 1, then g j is a Roman

dominating function in Hj and g′
j = (A( j)

0 , A( j)
1 −{v j }, A( j)

2 ) is a Roman dominating
function in Hj − v j . Thus, by Lemma 4 (ii), it is satisfied that

γR(Hj ) = γR(Hj − v j ) + 1 ≤ 2|A( j)
2 | + |A( j)

1 − {v j }| + 1.

Case 3: If there exists i ∈ {1, . . . , n} such that gi (vi ) = 0, then we have one of the
following possibilities:

• gi is not a Roman dominating function in Hi . Hence, vi should be adjacent to a
vertex v j , j 	= i , ofG such that g j (v j ) = 2.Moreover, g′

i = (A(i)
0 −{vi }, A(i)

1 , A(i)
2 )

is a Roman dominating function in Hi − vi and by Lemma 4 (ii) it is satisfied that
γR(Hi ) = γR(Hi − vi ) + 1 ≤ 2|A(i)

2 | + |A(i)
1 | + 1.

• gi is a Roman dominating function in Hi . Since f (vi ) = 1 for every γR(Hi )-
function f , we have that gi (Vi ) > γR(Hi ). Let fi be a γR(Hi )-function. Now, by
taking a function g′ on G ◦ H , such that if u ∈ Vi , then g′(u) = f ′(u) and, if
u /∈ Vi , then g′(u) = g(u), we obtain that g′ is a Roman dominating function for
G ◦ H and the weight of g′ is given by

g′
⎛

⎝
n⋃

j=1

Vj

⎞

⎠ = g

⎛

⎝
n⋃

j=1, j 	=i

V j

⎞

⎠ + fi (Vi )

= g

⎛

⎝
n⋃

j=1, j 	=i

V j

⎞

⎠ + γR(Hi )
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< g

⎛

⎝
n⋃

j=1, j 	=i

V j

⎞

⎠ + gi (Vi )

= g

⎛

⎝
n⋃

j=1

Vj

⎞

⎠

= γR(G ◦ H).

and this is a contradiction.

As a consequence, we obtain that if gi (vi ) = 0, then gi is not a Roman dominating
function in Hi . Hence, every vertex vl of G for which g(vl) = 0 is adjacent to a
vertex vk , k 	= l, of G such that g(vk) = 2 and it is satisfied that the function
g′ = (X0 = A0 ∩ V, X1 = A1 ∩ V, X2 = A2 ∩ V ) is a Roman dominating function
in G and γR(G) ≤ 2|X2| + |X1|. Thus, we have the following:

γR(G ◦ H) = 2|A2| + |A1|
=

∑

vi∈X0

(
2

∣
∣
∣A

(i)
2

∣
∣
∣ +

∣
∣
∣A

(i)
1

∣
∣
∣
)

+
∑

vi∈X1

(
2

∣
∣
∣A

(i)
2

∣
∣
∣ +

∣
∣
∣A

(i)
1

∣
∣
∣
)

+
∑

vi∈X2

(
2

∣
∣
∣A

(i)
2

∣
∣
∣ +

∣
∣
∣A(i)

1

∣
∣
∣
)

=
∑

vi∈X0

(
2

∣
∣
∣A

(i)
2

∣
∣
∣ +

∣
∣
∣A(i)

1

∣
∣
∣
)

+
∑

vi∈X1

(
2

∣
∣
∣A

(i)
2

∣
∣
∣ +

∣
∣
∣A(i)

1 − {vi }
∣
∣
∣
)

+

+
∑

vi∈X2

(
2

∣
∣
∣A

(i)
2 − {vi }

∣
∣
∣ +

∣
∣
∣A(i)

1

∣
∣
∣
)

+ |X1| + 2|X2|

≥
∑

vi∈X0

(γR(Hi ) − 1)

+
∑

vi∈X1

(γR(Hi ) − 1) +
∑

vi∈X2

(γR(Hi ) − 1) + 2|X2| + |X1|

≥
n∑

i=1

(γR(Hi ) − 1) + γR(G)

= n(γR(H) − 1) + γR(G).

Therefore the result follows. ��

4 Independent Domination Number

A set of vertices S of a graph G is independent if the subgraph induced by S has no
edges. Themaximum cardinality of an independent set inG is called the independence
number of G and it is denoted by α(G). A set S is a α(G)-set if it is independent and
|S| = α(G). A set of vertices D of a graph G is an independent dominating set in
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G if D is a dominating set and the subgraph 〈D〉 induced by D is independent in
G [1]. The minimum cardinality of any independent dominating set in G is called
the independent domination number of G and it is denoted by i(G). A set D is a
i(G)-set if it is an independent dominating set and |D| = i(G). Then, we study the
independent domination number of rooted product graphs, and we begin by studying
the independence number.

Lemma 9 Let v be any vertex of a graph G. If v belongs to every α(G)-set, then
α(G) ≥ α(G − v) + 1.

Proof Let S be a α(G−v)-set. Since S is still independent in G, we have α(G) ≥ |S|.
If α(G) = |S|, then S is a α(G)-set and v /∈ S, a contradiction. Hence, α(G) ≥
α(G − v) + 1. ��
Theorem 10 For any graph G of order n ≥ 2 and any graph H with root v and at
least two vertices,

(i) if there is a α(H)-set not containing the root v, then α(G ◦ H) = nα(H),
(ii) if the root v belongs to every α(H)-set, then α(G ◦ H) = n(α(H) − 1) + α(G).

Proof Let Si , i ∈ {1, . . . , n}, be aα(Hi )-set not containing the root vi . Hence,
⋃n

i=1 Si
is independent in G ◦H . Thus, α(G ◦H) ≥ nα(H). If α(G ◦H) > nα(H), then there
exists j ∈ {1, . . . , n} such that |S j | > α(H) and S j is independent, a contradiction.
Therefore, α(G ◦ H) = nα(H).

On the other hand, suppose the root v belongs to every α(H)-set. Let Ai be a
α(Hi )-set and let B be a α(G)-set. Since vi ∈ Ai for every i ∈ {1, . . . , n}, by taking
A = B ∪ (⋃n

i=1 Ai − {vi }
)
, we have that A is independent in G ◦ H . Thus,

α(G ◦ H) ≥ |A| = |B| +
n∑

i=1

|Ai − {vi }| = n(α(H) − 1) + α(G).

Now, let Vi , i ∈ {1, . . . , n}, be the set of vertices of the copy Hi of H in G ◦ H and let
V be the set of vertices of G. Let X be a α(G ◦ H)-set and let Xi = X ∩ (Vi − {vi })
for every i ∈ {1, . . . , n} and let Y = V ∩ X . Notice that Y and Xi are independent
sets. Hence, α(Hi − vi ) ≥ |Xi | and α(G) ≥ |Y | and by Lemma 9, we have that
|Xi | ≤ α(Hi ) − 1. Thus,

α(G ◦ H) = |Y | +
n∑

i=1

|Xi | ≤ α(G) +
n∑

i=1

(α(Hi ) − 1) = α(G) + n(α(H) − 1).

Therefore, the proof is complete. ��
Lemma 11 Let G = (V, E) be a graph. Then for every set of vertices A ⊂ V ,

i(G − A) ≥ i(G) − |A|.
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Proof Let us suppose i(G − A) < i(G) − |A|. Hence, there exists an independent
dominating set S ⊂ V − A in G − A such that |S| < i(G) − |A|. Let v ∈ A. If
NS(v) 	= ∅, then v is independently dominated by the set S in G. On the contrary, if
NS(v) = ∅, then the set S ∪ {v} is still independent. Hence, by adding those vertices
which maintain the independence in the set S, we obtain a set S′ which is independent
and dominating in G, and we have that i(G) ≤ |S′| ≤ |S|+ |A| < i(G)−|A|+ |A| =
i(G), which is a contradiction. Therefore, i(G − A) ≥ i(G) − |A|. ��
Lemma 12 If v does not belong to any i(G)-set, then

i(G − v) = i(G).

Proof Let S be an i(G)-set. Since v /∈ S, S is still independent and dominating in
G − v. Hence, i(G − v) ≤ i(G). On the other hand, let A be an i(G − v)-set. Let us
suppose that |A| < i(G). Hence, |A| ≤ i(G) − 1. If NA(v) = ∅ in G, then A ∪ {v} is
independent and dominating in G. Hence, i(G) ≤ |A∪ {v}| = |A| + 1 ≤ i(G). Thus,
|A+{v}| = i(G) and this is a contradiction because v does not belong to any i(G)-set.
On the contrary, if NA(v) 	= ∅, then A is independent and dominating in G, which is
a contradiction (|A| < i(G)). Hence, |A| ≥ i(G). Therefore, i(G − v) = |A| ≥ i(G)

and the result follows. ��
Theorem 13 Let G = (V, E) be a graph of order n ≥ 2 and let H be a graph with
root v and at least two vertices. Then

n(i(H) − 1) + i(G) ≤ i(G ◦ H) ≤ i(H)α(G) + i(H − v)(n − α(G)).

Proof Let S be an i(G ◦H)-set and let Si = S∩Vi , i ∈ {1, . . . , n}. If v ∈ S j for some
j ∈ {1, . . . , n}, then S j is an independent dominating set in Hj . Hence, |S j | ≥ i(H).
On the contrary, if v /∈ Sk for some k ∈ {1, . . . , n}, then Sk independently dominates
all vertices of Hk − v. Hence, Sk is an independent dominating set in Hk − v and by
Lemma 11, we have that |Sk | ≥ i(Hk − v) ≥ i(H) − 1. If |S j | = i(Hj ) − 1 for some
j ∈ {1, . . . , n}, thenv is not independently dominatedby S j .Also, ifv is independently
dominated by Sl for some l ∈ {1, . . . , n}, then |Sl | ≥ i(Hl). Let A = S ∩ V and let
B ⊂ V be the set of vertices of G such that every vertex ui ∈ B is independently
dominated by a vertex not in G. Notice that A is an independent dominating set in
G − B. Hence, by Lemma 11 we have that |A| ≥ i(G − B) ≥ i(G) − |B| and so,
|B| ≥ i(G) − |A|. Also, for every vertex ui ∈ B, we have that |Si | ≥ i(Hi ), and we
have the following:

|S| =
n∑

i=1

|Si |

=
|A|∑

i=1

|Si | +
|B|∑

i=1

|Si | +
n−|A|−|B|∑

i=1

|Si |

≥
|A|∑

i=1

i(H) +
|B|∑

i=1

i(H) +
n−|A|−|B|∑

i=1

(i(H) − 1)
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= |A|i(H) + |B|i(H) + (n − |A| − |B|)(i(H) − 1)

= n(i(H) − 1) + |A| + |B|
≥ n(i(H) − 1) + i(G).

Therefore, the lower bound follows.
To obtain the upper bound, let A be an independent set of maximum cardinality in

G. Now, for every vertex ui ∈ A let Ai be an independent dominating set in Hi . Also,
for every u j /∈ A let Bj be an independent dominating set in Hj − v. Then, it is clear

that
(⋃|A|

i=1 Ai

)
∪

(⋃n−|A|
j=1 Bj

)
is an independent dominating set in G ◦ H . Therefore

the upper bound follows. ��
Notice that the above bounds are tight. For instance, if G is the path graph Pn and

H is the star graph S1,m , m ≥ 2, with root v in the central vertex, (notice that G ◦ H
is a caterpillar), then by the above theorem,

i(G ◦ H) ≤ i(S1,m)α(Pn) + i(Km)(n − α(Pn))

=
⌈n

2

⌉
+ m

(
n −

⌈n

2

⌉)

= mn −
⌈n

2

⌉
(m − 1).

On the contrary, let S be an independent dominating set in G ◦ H , let A be the set
of vertices of Pn belonging to S and let Bi , i ∈ {1, . . . , n}, be the set of vertices of
Hi − v belonging to S. If there is a copy Hj of H in G ◦ H such that the root v of Hj

belongs to S, then neither any vertex of Hj − v nor any neighbor of v in G belongs to
S. Moreover, if for some copy Hl of H in G ◦ H is satisfied that the root v of Hl does
not belong to S, then every vertex of Hl − v belongs to S. Thus,

|S| = |A| +
n−|A|∑

i=1

|Bji |

= |A| + m(n − |A|)
= mn − |A|(m − 1)

≥ mn − α(G)(m − 1)

= mn −
⌈n

2

⌉
(m − 1).

Hence, i(G ◦ H) = mn − �n/2� (m − 1) and the upper bound is tight. To see
the sharpness of the lower bound, consider G as a path graph Pn and the graph H
obtained from the star graph S1,m , m ≥ 2, by subdividing an edge. Let v be the vertex
of H having distance two from the central vertex of the star. If v is the root of H , then
Theorem 13 leads to

i(G ◦ H) ≥ n(i(H) − 1) + i(G) = n(2 − 1) +
⌈n

3

⌉
=

⌈n

3

⌉
+ n.

On the other side, let A be the set of all central vertices of all copies of the star S1,m ,
used to obtain G ◦ H . Since i(H) = 2, we have that |A| = n(i(H) − 1). Let B be
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an independent dominating set in the path Pn . It is clear that A ∪ B is an independent
dominating set in G ◦ H . Hence, i(G ◦ H) ≤ n(i(H) − 1) + i(G) = n + �n/3�. As a
consequence i(G ◦ H) = n + �n/3� and the lower bound of Theorem 13 is achieved.

Moreover, notice that there are graphs which are not attained any one of the above
bounds. The next theorem is an example of that. In order to present such a result,
we need to introduce some notation. Let D be a subset of vertices of a graph G, and
let v ∈ D. We say that a vertex x is a private neighbor of v with respect to D if
N [x] ∩ D = {v}. The private neighbor set of v with respect to D is pn[v, D] =
N [v] − N [D − {v}].
Theorem 14 Let G = (V, E) be a graph of order n ≥ 2 and let H be a graph with
at least two vertices and root v. Then,

(i) if v does not belong to any i(H)-set, then i(G ◦ H) = ni(H),
(ii) if v belongs to every i(H)-set S, then

i(G ◦ H) ≤ α(G)i(H) + (n − α(G))(|pn[v, S]| + i(H) − 1).

Proof (i) Let us suppose v does not belong to any i(H)-set. From Lemma 12, we have
that i(H − v) = i(H). Hence, Theorem 13 leads to i(G ◦ H) ≤ ni(H). Let S′ be a
i(G ◦ H)-set such that |S′| < ni(H). Hence, there exists at least one copy Hj of H
such that S j = Vj ∩ S′ and |S j | < i(H). Since Si independently dominates Vi − v

for every i ∈ {1, . . . , n}, we have that v is not dominated by S j in Hj . Thus, S j is
an independent dominating set in Hj − v and i(Hj − v) ≤ |S j | < i(H), which is a
contradiction, since i(H − v) = i(H). Therefore, i(G ◦ H) ≥ ni(H), and the result
follows.

(ii) Let Bi be an i(Hi )-set, i ∈ {1, . . . , n} and let C be an independent set of
maximum cardinality in G. Let S = ⋃α(G)

i=1 Bi ∪⋃n−α(G)
j=1 (pn[v, Bj ]∪ Bj −{v}). We

will show that S is an independent dominating set of G ◦ H .
Let B = ⋃n

i=1 Bi . Notice that B is a dominating set in G ◦ H . If G = Kn , then B
is also independent set in G ◦H . In this case, α(G) = n, and the upper bound follows.
Now let us suppose that G � Kn . Since the root of every copy of H belongs to B,
there exists at least two roots vi and v j , i 	= j , which are adjacent in G ◦ H . Thus, B
is not independent in G ◦ H .

Hence, B ′ =
(⋃α(G)

i=1 Bi
)

∪
(⋃n

α(G)+1(Bi − {v})
)
is independent set in G ◦H and

dominates every vertex in Hi , except pn[v, Bi ]. Notice that Bi−{v} is still independent
in Hi , and also, it dominates every vertex in Hi , except pn[v, Bi ].

Therefore, we have that i(G◦H) ≤ α(G)i(H)+(n−α(G))(|pn[v, S]|+i(H)−1)
and the upper bound follows. ��

5 Connected Domination Number and Convex Domination Number

A set of vertices D of a graph G is a connected [16] (or convex [13]) dominating set in
G if D is a dominating set and the subgraph induced by D, (or the set D) is connected
(or convex) in G. The minimum cardinality of any connected (or convex) dominating
set in G is called the connected (or convex) domination number of G and it is denoted
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by γc(G) (or γcon(G)). A set D is a γc(G)-set (or a γcon(G)-set) if it is a connected (or
a convex) dominating set and |D| = γc(G) (or |D| = γcon(G)). Then, we study the
connected (or convex) domination number of rooted product graphs. We begin with
connected domination. This parameter was defined by Sampathkumar and Wallikar
in [16].

Theorem 15 Let G be a graph of order n ≥ 2. Then for any graph H with at least
two vertices and root v,

γc(G ◦ H) ∈ {nγc(H), n(γc(H) + 1)}.

Proof Since the vertex v of H is a cut vertex of G ◦H , the vertex v of each copy Hi of
H belongs to every connected dominating set of G ◦H . Also, the intersection of every
connected dominating set of G ◦ H and the set of vertices of every copy of H contains
a connected dominating set of H . Hence, γ (G ◦ H) ≥ ∑n

i=1 γc(H) = nγc(H).
Hence, if v belongs to a γc(Hi )-set Si , then by taking S = ⋃n

i=1 Si we have that S
is a connected dominating set. Hence, γc(G ◦ H) ≤ ∑n

i=1 |Si | = nγc(H). Therefore,
γc(G ◦ H) = nγc(H).

Now, let us suppose that γc(G ◦ H) 	= nγc(H). Hence, v does not belong to any
γc(Hi )-set Si . Let S be a γc(G ◦ H)-set. If |S| < nγc(H), then there exists a copy Hl

of H in G ◦ H in which |S ∩ Vl | < γc(H) and S ∩ Vl is a connected dominating set
in H , which is a contradiction. Hence, |S| > nγc(H) and there exists a copy Hj of H
such that |S ∩ Vj | > γc(H). Since the root v of H does not belong to any γc(H)-set,
and also v belongs to every γc(G ◦ H)-set, we obtain that

|S| =
n∑

i=1

|S ∩ Vi | + |V | ≥ nγc(H) + n = n(γc(H) + 1).

On the other hand, let Si be a γc(Hi )-set, i ∈ {1, . . . , n}. Since v does not belong
to any γc(H)-set, it is satisfied that v /∈ Si for every i ∈ {1, . . . , n}. Thus, by taking
the set S = V ∪ (⋃n

i=1 Si
)
, we have that S is a connected dominating set and, as a

consequence,

γc(G ◦ H) ≤ |S| =
n∑

i=1

|Si | + |V | = nγc(H) + n = n(γc(H) + 1).

Therefore, the result follows. ��
Next, we study the connected domination number of some particular cases of rooted

product graphs. We denote by n1(G) the number of end vertices (vertices of degree
one) in G and by �(G) the set of end vertices in G; |�(G)| = n1(G).

Lemma 16 [16] If T is a tree of order at least three, then γc(T ) = n(T ) − n1(T ).

Lemma 17 If G is a connected graph, H is a tree of order at least three, and the root
v is not an end vertex of H, then γc(G ◦ H) = nγc(H).
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Proof Since the root of the graph H is a cut vertex in the graph G ◦ H, we have
that root of each copy Hi of H belongs to every connected dominating set of G ◦
H . Also, the intersection of every connected dominating set of G ◦ H and the set
of vertices of every copy of H contains a connected dominating set of H . Hence,
γc(G ◦H) ≥ ∑n

i=1 γc(H) = nγc(H). Let D be a connected dominating set of G ◦H.

Since H is a tree, from Lemma 16, not any end vertex belongs to any minimum
connected dominating set of H and γc(H) = n(H) − n1(H). Also, for every Hi ,

γc(Hi ) = n(Hi ) − n1(Hi ). Since v is not an end vertex of H, we have that |D| =
|V ∪ ∑n

i=1(Vi − �i )|. Thus, γc(G ◦ H) ≤ |D| = nγ (H) and we are done. ��
Lemma 18 If T1, T2 are trees of order at least three, then T1◦T2 is also a tree of order
n(T1 ◦T2) = n(T1)n(T2). Moreover, n1(T1 ◦T2) ∈ {n(T1)n1(T2), n(T1)(n1(T2)−1)}.
Proof For a graph T1 ◦ T2 is n(T1 ◦ T2) = n(T1) + n(T1)(n(T2) − 1) = n(T1)n(T2).
If a root vertex v is an end vertex of T2, then n1(T1 ◦ T2) = n(T1)(n1(T2) − 1). On
the contrary, if v is not an end vertex of T2, then n1(T1 ◦ T2) = n(T1)n1(T2). ��
Theorem 19 Let T1, T2 be trees of order at least three. Thenγc(T1◦T2) = n(T1)γc(T2)
if and only if the rooted vertex v of T2 is not an end vertex of T2.

Proof From Lemma 16, we have γc(T1 ◦ T2) = n(T1 ◦ T2) − n1(T1 ◦ T2). Also,
from Lemma 18, we have n(T1 ◦ T2) = n(T1)n(T2). Let v be a non end vertex of T2.
Hence, n1(T1 ◦ T2) = n(T1)n1(T2). Thus, γc(T1 ◦ T2) = n(T1)n(T2) − n1(T2)n(T1)
= n(T1)(n(T2) − n1(T2)) = n(T1)γc(T2).

Assume now γc(T1 ◦ T2) = n(T1)γc(T2) and suppose v is an end vertex of T2.
Hence, we have n1(T1 ◦ T2) = (n1(T2) − 1)n(T1) = n1(T2)n(T1) − n(T1). Since
n(T1 ◦T2) = n(T1)n(T2),we have γc(T1 ◦T2) = n(T1)n(T2)−(n1(T2)n(T1)−n(T1))
= n(T1)(n(T2) − n1(T2) + 1) = n(T1)(γc(T2) + 1), what gives a contradiction. ��

From Theorems 15 and 19, we can conclude the following:

Corollary 20 γc(T1 ◦ T2) = n(T1)(γc(T2) + 1) if and only if the root v of T2 is an
end vertex of T2.

Convex domination was defined by Topp in [19] and it was first characterized in
[13]. Notice that for the case of the convex domination number of G ◦ H , the result
is similar to Theorem 15 about connected domination. The proofs of the following
results are omitted due to the analogy with the above ones.

Theorem 21 Let G be a graph of order n ≥ 2. Then for any graph H with root v and
at least two vertices,

γcon(G ◦ H) ∈ {nγcon(H), n(γcon(H) + 1)}.

Theorem 22 If T1, T2 are trees, then γcon(T1 ◦ T2) = n(T1)γcon(T2) if and only if the
root v of T2 is not an end vertex of T2.

Corollary 23 γcon(T1 ◦ T2) = n(T1)(γcon(T2) + 1) if and only if the root of T2 is an
end vertex.
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5.1 Weakly Connected Domination Number

Now, we consider the weakly connected domination number of rooted product graphs.
A dominating set D ⊂ V (G) is aweakly connected dominating set inG if the subgraph
G[D]w = (NG [D], Ew) (also called subgraph weakly induced by D) is connected,
where Ew is the set of all edges having at least one vertex in D. Dunbar et al. [7]
defined the weakly connected domination number γw(G) of a graph G to be the
minimum cardinality among all weakly connected dominating sets in G.

Theorem 24 Let G be a graph of order n ≥ 2. Then for any graph H with at least
two vertices and root v,

γw(G ◦ H) ∈ {nγw(H), nγw(H) + γw(G)}.

Proof Let DH be a minimum weakly connected dominating set of H and DHi be
the copy of DH in the i th copy Hi of H, 1 ≤ i ≤ n. Let D be a minimum weakly
connected dominating set of G ◦ H. We consider two cases.

1. v ∈ DH . Then, the identified vertices belong to a minimum weakly connected
dominating set of G ◦ H and γw(G ◦ H) = nγw(H).

2. v /∈ DH . Then
⋃n

i=1 DHi ⊂ D and the identified vertices are dominated by⋃n
i=1 DHi .But the set

⋃n
i=1 DHi is not weakly connected. Tomake this set weakly

connected, we need to add to this set γw(G) vertices. Hence, γw(G ◦ H) = |D| =
| ⋃n

i=1 DHi | + γw(G) = nγw(H) + γw(G). ��
The following lemmapresented in [14]will be useful into obtaining some interesting

results.

Lemma 25 [14] For any tree T of order n ≥ 3,

1

2
(n − n1(T ) + 1) ≤ γw(T ) ≤ n − n1(T ).

Theorem 26 If T1, T2 are trees and v is not an end vertex of T2, then

1

2
(n1(T1)γw(T2) + 1) ≤ γw(T1 ◦ T2) ≤ n1(T1)(2γw(T2) − 1).

Proof From Lemma 25, (1/2)(n(T1 ◦ T2)− n1(T1 ◦ T2)+ 1) ≤ γw(T1 ◦ T2) ≤ n(T1 ◦
T2)−n1(T1 ◦T2). Thus, from Lemma 18, we have (1/2)(n(T1)n(T2)−n(T1)n1(T2)+
1) ≤ γw(T1 ◦ T2) ≤ n1(T1)(n(T2)−n1(T2)). We have γw(T1 ◦ T2) ≤ n1(T1)(n(T2)−
n1(T2)) = n1(T1)2(1/2)(n(T2)−n1(T2)) = n1(T1)2(1/2)(n(T2)−n1(T2)+1−1) ≤
n1(T1)2γw(T2) − n1(T1) = n1(T1)(2γw(T2) − 1). From the other side, we have
γw(T1 ◦ T2) ≥ (1/2)(n1(T1)(n(T2) − n1(T2)) + 1) ≥ (1/2)(n1(T1)γw(T2) + 1), and
finally we obtain the desired result. ��

By using similar methods, we obtain the following result:
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Theorem 27 Let T1 be a tree of order n(T1). If v is a non-end vertex of a tree T2, then

1

2
(γw(T2)n(T1) + 1) ≤ γw(T1 ◦ T2) ≤ 2n(T1)γw(T2).

5.2 Super Domination Number

We continue with the super domination number of the rooted product graph. This
parameter was defined in [12]. A subset D of V is called a super dominating set if
for every v ∈ V − D there exists u ∈ NG(v) ∩ D such that NG(u) ⊆ D ∪ {v}. The
minimum cardinality of a super dominating set is called the super domination number
of G, and it is denoted by γsp(G). In [12], a paper has proven the following result:

Lemma 28 [12] For any tree of order n ≥ 3, n/2 ≤ γsp(T ) ≤ n− s(T ), where s(T )

is the number of support vertices in T .

Theorem 29 Let G be a graph of order n ≥ 2. Then for any graph H with root v and
at least two vertices,

γsp(G ◦ H) = nγsp(H).

Proof Let DH be a minimum super dominating set of H and DHi be the copy of DH

in the i th copy Hi of H, 1 ≤ i ≤ n. Let D be a minimum super dominating set of
G ◦ H. We consider two cases as follows:

1. v ∈ DH . Then identified vertices belong to a minimum super dominating set of
G ◦ H and γsp(G ◦ H) = nγsp(H).

2. v /∈ DH .Then
⋃n

i=1 DHi ⊂ D and identified vertices are dominated by
⋃n

i=1 DHi .

Also, every vertex belonging to
⋃n

i=1 Vi − ⋃n
i=1 DHi −U, where U is the set of

identified vertices is super dominated by
⋃n

i=1 DHi . Suppose there exists a vertex
u ∈ U which is not super dominated by

⋃n
i=1 DHi . Then for a vertex u, there

does not exist any v ∈ ⋃n
i=1 DHi such that NG◦H (v) ⊆ ⋃n

i=1 DHi . Hence, there
is 1 ≤ i ≤ n such that in Hi , there exists a vertex which is not super dominated, a
contradiction. Thus,

⋃n
i=1 DHi is a minimum super dominating set of G ◦ H and

γsp(G ◦ H) = |⋃n
i=1 DHi | = nγsp(H). ��

Now, by using Lemma 28 result, we can prove the following:

Theorem 30 If T1, T2 are trees of order n(T1) ≥ 3 and n(T2) ≥ 3, respectively, then

n(T1)s(T2) ≤ γsp(T1 ◦ T2) ≤ n(T1)(n(T2) − s(T2)).

Proof If a root v is a support vertex of T2, then s(T1 ◦ T2) = n(T1) + (s(T2) −
1)n(T1) = n(T1)s(T2). If v is not a support vertex, then also s(T1 ◦T2) = n(T1)s(T2).
The upper bound follows directly from Lemma 28. For the lower bound, we have
γsp(T1 ◦ T2) ≤ 2γsp(T1 ◦ T2) − n(T1)s(T2), which leads to the result. ��
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13. Lemańska, M.: Weakly convex and convex domination numbers. Opusc. Math. 24(2), 181–188 (2004)
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18. Šumenjak, T.Kraner, Pavlič, P., Tepeh, A.: On the roman domination in the lexicographic product of

graphs. Discrete Appl. Math. 160(13–14), 2030–2036 (2012)
19. Topp, J.: Private communication (2002)
20. Vizing, V.G.: The Cartesian product of graphs. Vyčisl. Sistemy 9, 30–43 (1963)
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