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Abstract The aim of this paper is to study the demographic impact of malaria on
the host population and investigate the possibility to eliminate it with a strategy based
on prevention (e.g., the use of bed nets). In this paper, a deterministic model for the
transmission of malaria (with variable human andmosquito population sizes) has been
studied. The model equilibria have been found. Their local and global stability have
been analyzed. An exact formula for the critical case fatality required to stop the
growth of the host has been found. The conditions to eliminate malaria with a strategy
based on the use of bed nets have been found.

Keywords Malaria model · Equilibria · Local and global stability · Case fatality ·
Elimination
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1 Introduction

Malaria is a life-threatening vector-borne disease caused by parasites which are trans-
mitted to people through the bites of infected mosquitoes. Recently, it has been
estimated that there were about 219 million cases of malaria in 2010 (with an uncer-
tainty range of 154–289million) and an estimated 660,000 deaths (with an uncertainty
range of 490,000–836,000) [31].
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The mathematical modeling of malaria has a long history since the discovery of
malaria mode of transmission. This history goes back to the work of the pioneers (Ross
[26] and Macdonald [17]) in this field. Ross [26] set the first model that describes the
transmission dynamics ofmalaria. Then,Macdonald [17] consideredmajor extensions
for Ross’s model, where he improved the model to a two-dimensional model with one
variable representing humans and one variable representing mosquitoes. An important
extension of the model was proposed by Dietz et al. [12] who added the inclusion of
immunity. Thereafter, other extensive studies for malaria models have been carried
out (see [3,19,21,22,29] and the references therein). Other studies concerning the
effect of climatic changes and weather on malaria dynamics are shown in [13,23,24].
Some good reviews on the mathematical modeling and analysis of malaria are in
[2,4,10,15,18,20]. However, almost all these studies concentrate on the epidemiology
of malaria infection, while this study gathers the epidemiology and demography of
malaria infection on the host population.

We consider an SIS model for malaria, where the human as well as the mosquito
populations are assumed to have variable (in time) size. The human population is
assumed to be exponentially growing with a growth rate ρ. Since the infectious period
of malaria is relatively short (in days), we assumed that individuals dying as a result of
malaria infection die after passing the infectious period, an assumption that we believe
to be more realistic than assuming differential mortality approach as considered in the
literature ( see for example [8,22,32]). Therefore, we consider the proportional fatality
approach [28]. We further investigate the impact of malaria on the demography of the
host.

The paper is organized as follows. In Sect. 2, the model is formulated and the cor-
responding model in sub-population proportions is introduced. In Sect. 3, the reduced
model is considered and thoroughly analyzed, where the endemic equilibria have been
found. Both the local and global stability of equilibria are evaluated in Sect. 4. The
effect of case fatality on the demography of the host is shown in Sect. 5. In Sect.
6, conditions to eliminate malaria with a strategy based on prevention (e.g., the use
of bed nets) are found. Finally, summary and conclusion on the results are given in
Sect. 7.

2 Formulation of the Model

The model supposes a homogeneous mixing of the human and vector (mosquito)
populations so that each mosquito bite has equal chance of transmitting the virus to
susceptible humans in the population. The total host (human) population at time t,
whose size is denoted by Nh(t), is subdivided into two sub-populations: susceptible
humans Sh(t) and infectious humans Ih(t), so that Nh(t) = Sh(t) + Ih(t). Similarly,
the total vector (mosquitoes) population at time t, whose size is denoted by Nv(t), is
split into two sub-populations: susceptiblemosquitoes Sv(t) and infectiousmosquitoes
Iv(t), so that Nv(t) = Sv(t) + Iv(t).

The susceptible human population is generated via recruitment of humans by birth
at rate βh . This population is decreased due to natural deaths at rate μh or due to
an infection by effective contacts with infectious vectors at rate λh(t) (the force of
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infection), given by λh = Cvh
Iv
Nv

. Thus, the rate of change in the susceptible human
population is given by,

dSh
dt

= βh Nh − (λh + μh)Sh + (1 − c)γh Ih .

Infected humans either die with natural death rateμh , die due to the infection with rate
cγh , or recover with temporal immunity to be susceptible again with rate (1 − c)γh .
Thus,

dIh
dt

= λh Sh − μh Ih − cγh Ih − (1 − c)γh Ih

= λh Sh − (μh + γh)Ih .

Physically, the parameter c represents the proportion of removed individuals (from
the Ih state) who die as a result of malaria in the human population.

The susceptible vector population is generated by births at rate βv . This susceptible
population is reduced by infection following effective contact rate λv(t) = Chv

Ih
Nh

and natural deaths at rate μv . Infected vectors die with rate μv . Thus,

dSv

dt
= βvNv − (λv + μv)Sv,

dIv
dt

= λvSv − μv Iv.

Since mosquitoes bite both susceptible and infected humans, it is assumed that the
average number of mosquito bites received by humans depends on the total sizes of
the population of mosquitoes and humans in the community. It is assumed further that
each susceptible mosquito bites an infected human at an average biting rate bs , and
the human hosts are always sufficient in abundance so that it is reasonable to assume
that the biting rate bs is constant. Let Chv = Phvbs , be the rate at which mosquitoes
acquire infection from infected humans, where Phv is the transmission probability
from an infected human to a susceptible mosquito and bs is the number of human
bites one mosquito has per unit time [8].

Similarly, let Cvh = Pvhbi , be the rate at which humans acquire infection from
infected mosquitoes, where Pvh is the transmission probability from an infected mos-
quito to a susceptible human and bi is the number ofmosquito bites one human receives
per unit time [8]. A full description for the model variable states and parameters is
given in Tables 1 and 2, respectively.

The mathematical representation of the model is

dSh
dt

= βh Nh − (λh + μh)Sh + (1 − c)γh Ih,

dIh
dt

= λh Sh − (μh + γh)Ih,

dSv

dt
= βvNv − (λv + μv)Sv, (1)

dIv
dt

= λvSv − μv Iv.
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Table 1 The state variables for
the original model (1) and for
the model with scaled
population sizes (2)

State variable Description

Sh Number of susceptible humans at time t

Ih Number of infectious humans at time t

Nh Total human population size at time t

Sv Number of susceptible mosquitoes at time t

Iv Number of infectious mosquitoes at time t

Nv Total mosquito population size at time t

sh Proportion of susceptible humans at time t

ih Proportion of infectious humans at time t

sv Proportion of susceptible mosquitoes at time t

iv Proportion of infectious mosquitoes at time t

Table 2 Description of the
model parameters and their
dimensions

Parameter Description and dimension

βh Per capita birth rate of humans. Time−1

βv Per capita birth rate of mosquitoes. Time−1

μh Per capita natural death rate of humans (i.e., deaths
due to causes other than malaria). Time−1

μv Per capita death rate of mosquitoes. Time−1

bs The number of human bites one mosquito has per unit
time. Time−1

bi The number of mosquito bites one human has per unit
time. Time−1

Pvh Transmission probability from an infectious human to
a susceptible mosquito. Dimensionless

Phv Transmission probability from an infectious mosquito
to a susceptible human. Dimensionless

Chv Rate at which mosquitoes acquire infection from
infectious humans. Time−1

Cvh Rate at which humans acquire infection from
infectious mosquitoes. Time−1

γh Removal rate from the Ih state with causes other than
natural death. Time−1

c Proportion of removed individuals (from the Ih state)
dying due to the infection in the human population.
Dimensionless

All parameters are strictly positive with the exception of the parameter c, representing
the proportional fatality, which is assumed to be non-negative. The mosquito birth rate
βv is assumed to be bigger than the mosquito death rate μv to ensure that there is a
stable positive mosquito population.
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2.1 Reformulation of the Model

Let us now reformulate model (1) to express it in terms of proportions rather than
numbers. Assume that sh = Sh

Nh
, ih = Ih

Nh
, sv = Iv

Nv
, iv = Iv

Nv
where sh + ih = 1 and

sv + iv = 1. Thus, the model (1) reads, see Appendix 1:

dsh
dt

= βh − (λh + βh − cγhih)sh + (1 − c)γhih,

dih
dt

= λhsh − (βh + γh)ih + cγhi
2
h , (2)

dsv
dt

= βv − (λv + βv)sv,

div
dt

= λvsv − βviv.

For this system the closed set D = {(sh, ih, sv, iv) ∈ R
4 : 0 ≤ sh, ih, sv, iv ≤

1, sh + ih = 1, sv + iv = 1} is positively invariant, and the model (2) is mathematically
and epidemiologically well posed, in the sense that solutions starting in D remain in
it all the time.

3 Reduced Model

Since sh + ih = 1 and sv + iv = 1, then model (2) can be reduced to the following
model with two equations

dih
dt

= λh(1 − ih) − (βh + γh)ih + cγhi
2
h ,

div
dt

= λv(1 − iv) − βviv, (3)

where λh = Cvhiv and λv = Chvih .

3.1 Existence and Stability of the Infection-Free Equilibrium and the Basic
Reproduction number

To find the equilibria we put the derivatives in the left-hand side in model (3) equal
zero. The infection-free equilibrium (IFE) is obtained by putting ih = iv = 0 and
solving the resulting system with respect to ih and iv . Therefore, the IFE is E0 =
(i0h , i

0
v )t = (0, 0)t , where t denotes vector transpose.

To find the basic reproduction number we use the next generation operator method
[30] to find the matrices F (for the new infection terms) and V (for the transition terms)
as, see Appendix 2

F =
(
0 Cvh

Chv 0

)
and V =

(
βh + γh 0
0 βv

)
.
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It follows then that the basic reproduction number is given by

R0 = ρ(FV−1) =
√

ChvCvh

βv(βh + γh)
, (4)

where ρ is the spectral radius (dominant eigenvalue in magnitude) of the matrix FV−1.
To establish the local stability of the infection-free equilibrium we consider its

corresponding jacobian matrix

JE0 =
(−(βh + γh) Cvh

Chv −βv

)
. (5)

It is clear that the trace of JE0 is less than zero, while its determinant is positive if
and only if the basic reproduction number R0 < 1. Therefore, we show the following
proposition:

Proposition 1 The infection-free equilibrium E0 is locally asymptotically stable
(LAS) if and only if R0 < 1.

The proof of this proposition is done using the next generation matrix method [30]
and is deferred to Appendix 3.

3.2 Endemic Equilibria

3.2.1 The Characteristic Epidemiologic Equation

The endemic equilibria are obtained by solving the following non-linear algebraic
system of two equations in the variables iv and ih

0 = λh(1 − ih) − (βh + γh)ih + cγhi
2
h ,

0 = λv(1 − iv) − βviv. (6)

We further assume that ih �= iv �= 0. Therefore, we get

iv = ih(βh + γh − cγhih)

Cvh(1 − ih)
, (7)

ih = βviv
Chv(1 − iv)

. (8)

On reducing ih between the last two equations, we get an equation in the proportion
of endemic infected vector iv as

G(iv) =: Ai2v + Biv + C = 0, (9)
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where

A = ChvCvh(Chv + βv),

B = Chvβv(βh + γh) + cγhβ
2
v − ChvCvh(2Chv + βv),

C = Chv[ChvCvh − βv(βh + γh)].

Equation (9) is the characteristic epidemiologic equation whose solutions have
one-to-one correspondence with the endemic equilibria of the system (3). A feasible
solution of this equation satisfies the inequality 0 < iv < 1. Moreover, the left-hand
side of (9) is a polynomial of the second degree and henceforth it can have up to
two feasible (non-negative) roots, depending on the values of the model parameters.
However, to study the possibility for the existence of positive equilibria, we analyze
the bifurcation near the infection-free equilibrium.

3.2.2 Bifurcation Points

The scalar equation (9) could be seen as a bifurcation equation.We keep the parameters
Cvh, βv, βh, γh , and c fixed and express the equation in terms of Chv and iv . Since the
infection-free equilibrium exists for all parameter values, we put iv = 0 in Eq. (9) to
get Chv = 0 or Chv = C0

hv where

C0
hv = βv(βh + γh)/Cvh . (10)

Hence, there are two bifurcation points, (0, 0) and (C0
hv, 0). We shall compute the

direction of bifurcation at each of them. It is shown in Appendix 4 that the bifurcation
is forward at the bifurcation point (0, 0).

3.2.3 Center Manifold Analysis Near the Infection-Free Equilibrium

Since the infection-free equilibrium exists for all parameter values, we put iv = 0 in
Eq. (9) to get Chv = 0 or Chv = C0

hv where,

C0
hv = βv(βh + γh)/Cvh . (11)

Hence, (C0
hv, 0) is a bifurcation point at whichwe compute the direction of bifurcation.

We use the center manifold theory [6,7,30] to analyze the model near the infection-
free equilibrium. To this end, we consider the jacobian matrix JE0 evaluated at the
infection-free equilibrium with Chv = C0

hv (denoted by J ∗) which becomes

J ∗ =
(−(βh + γh) Cvh

βv(βh + γh)/Cvh −βv

)
.

It is easy to check that the matrix J ∗ has a simple zero eigenvalue with another
one having negative real part. Therefore, the center manifold theory [6,7,30] can be
used to analyze the model. The method is based on evaluating a left eigenvector of
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J ∗ (corresponding to the zero eigenvalue), given by V = (βv,Cvh) and a right
eigenvector of it which is given by W = (Cvh, (βh + γh))

T . Then we compute the
two quantities a and b which are given by

a =
2∑

i, j,k=1

viw jwk
∂2 fi

∂x j∂xk
(x0,C

0
hv),

= −2Cvh[Cvhβv(βh + (1 − c)γh) + βv(βh + γh)
2] < 0. (12)

b =
2∑

i, j=1

viw j
∂
f
i

∂xi∂C0
hv

(x0,C
0
hv),

= C2
vh > 0. (13)

Therefore, according to theorem 4.1 of [7], the direction of bifurcation at the bifur-
cation point (C0

hv, 0) is forward and we show the following proposition.

Proposition 2 The model we consider has two bifurcation points (0, 0) and (C0
hv, 0)

at which the bifurcation direction is forward (i.e., at these points the bifurcation is
supercritical).

3.2.4 Existence of Endemic Equilibria

It can be checked that

G(0) = C = Chv[ChvCvh − βv(βh + γh)] = Chvβv(βh + γh)(R0 − 1) (14)

and
G(1) = A + B + C = cγhβ

2
v > 0. (15)

Hence, there are two cases:

Case 1 R0 < 1. In this case G(0) < 0 which implies that there is a unique positive
solution for (9). This solution is given by

i+v = −B + √
D

2A
, (16)

where

D = B2 − 4AC

= β2
v

{
[(βh + γh − Cvh) + cγhβv]2+4Cvh(βh+(1 − c)γh)C

2
hv

}
> 0. (17)

Thus, for model (3), there is a unique endemic equilibrium E+ = (i+h , i+v )t where,

i+h = βvi+v
Chv(1 − i+v )

. (18)
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Case 2 R0 > 1. In this case, G(0) > 0,G(1) > 0, and D > 0. Also, it is easy to
check that G ′(0) < 0. Therefore, equation (9) has two positive solutions i+v (given
by (16)) and i−v , given by

i−v = −B − √
D

2A
. (19)

Hence, model (3) has two equilibria E+ = (i+h , i+v )t and E− = (i−h , i−v )t , where
i−h has a similar form like (18).

We summarize our result in the following proposition.

Proposition 3 In addition to the infection-free equilibrium E0, the reduced model (3)
has an endemic equilibrium if R0 < 1 and two endemic equilibria if R0 > 1.

4 Stability Analysis

4.1 Local Stability Analysis of the Endemic Equilibria

To study the stability of the endemic equilibria of model (3) we make a small pertur-
bation (x(t), y(t))t around a general equilibrium (ih, iv)t of that model. It is easy to
get the linearized system of model (3) in the matrix form as

d

dt

(
x

y

)
=

(−(Cvhiv + βh + γh − 2cγhih) (1 − ih)Cvh

(1 − iv)Chv −(βv + Chvih)

)(
x

y

)
. (20)

We denote the coefficient matrix by J . Hence the characteristic equation of J is

λ2 − tr(J )λ + det(J ) = 0, (21)

where, using (6)

tr(J ) = −{(βv + Chvih) + (Cvhiv + βh + γh − 2cγhih)} , (22)

and

det(J ) = βv

Chv(1 − iv)2

{
Chv(βh + γh + Cvhiv)(1 − iv) − 2cγhβviv

}

−Cvh(Chv(1 − iv) − βviv)

= 1

Chv(1 − iv)2

{
Chv

[
βv(βh + γh) − ChvCvh

]

+ [
ChvCvh(2βv + 3Chv) − Chvβv(βh + γh) − 2cγhβ

2
v

]
iv

+ChvCvh(βv + Chv)i
2
v (iv − 3)

}

= 1

Chv(1 − iv)2

{
2C + Biv − 2Civ − Bi2v

}

= −iv(1 − iv)(2Aiv + B)

Chv(1 − iv)2
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= −iv(1 − iv)(∓
√
B2 − 4AC)

Chv(1 − iv)2

=
{

< 0 if iv = i+v ,

> 0 if iv = i−v .

It is shown in Appendix 5 that tr(J ) < 0. Therefore, we get the following proposition.

Proposition 4 The endemic equilibrium E+ = (i+h , i+v )t is unstable whenever it
exists, while the other one E− = (i−h , i−v )t is locally asymptotically stable whenever
it exists (i.e., for R0 > 1).

4.2 Global Stability

To study the global stability, we consider the reduced model (3) and define the set
� := {(ih, iv) : 0 < ih, iv < 1}.Onputting ih = 0 in (3.1)wegetdih/dt = Cvhiv > 0
for all iv > 0 and putting iv = 0 in (3.2) we get div/dt = Chvih > 0 for all ih > 0.
Therefore, the first quadrant and consequently the set� are positively invariant regions
for the model, for any solution of (3) starting in the interior of �. Hence the ω− limit
set of trajectory must be contained in �. Now, assume that

X (ih, iv) = Cvhiv(1 − ih) − (βh + γh)ih + cγhi
2
h ,

Y (ih, iv) = Chvih(1 − iv) − βviv,

and consider the Dulac’s function

D = 1

βvihiv[(1 − cih)γh + βh] , (23)

where both ih and iv are positive. Hence

∂(DX)

∂ih
+ ∂(DY )

∂iv
= −D2

{
Cvhβv

[
(1 − ih)

2cγh + (1 − c)γh + βh
]

+βvChv

[
(1 − cih)γh + βh

]}
< 0.

Therefore, using the Dulac’s criterion [25], the reducedmodel (3) has no limit cycle
in the first quadrant. We show the following proposition.

Proposition 5 The reduced model (3) has no periodic solutions.

Hence, based on the Poincare–Bendixon theorem and propositions 4 and 5, the local
stability of the equilibria E0 and E− implies their global stability. Thus, we show the
following proposition.

Proposition 6 For model (3), the following hold:
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Table 3 The parameter values
for which we do simulations for
the model

The unit of time is days

Parameter Value Reference

βh 1.1 × 10−4 [9]

βv 0.13 [9]

μv 0.033 [9]

Cvh 0.022 × 0.5 [9]

cγh 9.0 × 10−5 [9]

(1 − c)γh 0.02 [1]

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
0

i v

(a)

i
v
+

i
v
−

Fig. 1 Bifurcation diagram showing the endemic equilibrium values for the proportion of infectious mos-
quito population for the parameters in Table 3. The figure shows that there are two bifurcation points, at
R0 = 0 and at R0 = 1, at which the bifurcation is supercritical. In addition to the infection-free equilibrium
E0, an unstable endemic equilibrium E+ (represented by the dashed curve, i+v ) exists for all values of R0.
For R0 < 1, E0 is globally stable, while for R0 > 1, E0 looses its stability and another endemic equilibrium
E− (represented by the solid curve, i−v ) exists and is globally stable

1. If R0 < 1, then an unstable endemic equilibrium E+ exists in addition to the
infection-free equilibrium which is globally stable, see Fig. 2.

2. If R0 > 1, then two endemic equilibria (E− and E+) exist in addition to the
infection-free equilibrium. Both the infection-free equilibrium E0 and the endemic
equilibrium with higher infection level E+ are unstable, while the endemic equi-
librium with lower infection level E− is globally asymptotically stable, see Fig. 3.

A bifurcation diagram, with parameter values in Table 3, has been created, Fig. 1.
The figure shows that there are two bifurcation points; one at R0 = 0 and the other
at R0 = 1. It further shows that at both points, the bifurcation is supercritical.
The equilibrium solution represented by the curve bifurcating at R0 = 0 is always
unstable while that represented by the curve bifurcating at R0 = 1 is stable.

Figure 2 shows the proportion of the infectious mosquito population for many
randomly generated initial conditions, for parameter values in Table 3 and withChv =
0.06 per daywhich corresponds to a R0 = 0.25 < 1. It shows that an unstable endemic
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Fig. 2 Time-dependent solutions in the region R0 < 1. An unstable endemic equilibrium, E+, co-exists
with the infection-free equilibriumwhich is the global attractor. Simulations aremadewith parameter values
in Table 3 and for Chv = 0.06 per day which means that R0 = 0.25
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Fig. 3 Time-dependent solutions in the region R0 > 1. Two positive equilibria exist. The infection-
free equilibrium looses its stability, while the equilibrium infection level corresponding to the equilibrium
solution E− is the global attractor. The other equilibrium solution E+ is unstable. Simulations are made
with parameter values in Table 3 and for Chv = 0.48 per day which means that R0 = 2

equilibrium (iv = i+v = 0.9752) co-exists with the infection-free equilibrium (iv = 0)
that attracts all solutions (i.e., it is globally stable).

Simulations for the same parameter values except forChv which has been increased
toChv = 0.48per day (i.e., R0 = 2) are shown inFig. 3. Thefigure shows that solutions
are attracted by an endemic positive equilibrium (iv = i−v = 0.6604) that is globally
stable and lie in between an unstable endemic equilibrium (iv = i+v = 0.9996) and
the infection-free equilibrium (iv = i0v = 0) which looses its stability at R0 = 1.
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5 Effects on Demography

To study the effects of malaria infection on the human population demography, we
assume that ρ is the growth/decay rate of the human population. Since, system (1) is
homogeneous, then the stationary solution of the human model [the first two equa-
tions in model (1)] is not a stationary (fixed) point, but an exponential “persistent”
solution, i.e., a solution of the form (Sh, Ih)eρt . Thus, on applying the theory of finite-
dimensional homogeneous systems ([5,14,27]), we get

ρ Ih = CvhivSh − (μh + γh)Ih, (24)

ρNh = (βh − μh)Nh − cγh Ih, (25)

which implies

(ρ + μh + γh)ih = Cvhiv(1 − ih), (26)

ih = βh − (ρ + μh)

cγh
. (27)

Now, we rewrite (8) to get

iv = Chvih
βv + Chvih

. (28)

On omitting iv and ih among Eqs. (26), (27), and (28) we get an equation in the
exponent of growth ρ

[(ρ + μh) + γh][cγhβv + Chv(βh−(ρ + μh))] = ChvCvh[cγh − (βh − (ρ + μh))],
(29)

i.e.,

Chv(ρ + μh)
2 + [(Cvh + γh − βh)Chv − cγhβv](ρ + μh)

+ChvCvh(cγh − βh) − γh(βhChv + cγhβv) = 0. (30)

It should be noted that the relations (27) and (28) imply

iv = Chv(βh − (ρ + μh))

cγhβv + Chv(βh − (ρ + μh))
(31)

or equivalently,

ρ = ρ0 − cγhβv

Chv(1 − iv)
, (32)

where ρ0 = βh −μh is the malthusian growth rate (i.e., the growth rate in the absence
of infection) for the human population. Thus, there is a one-to-one correspondence
between solutions of (9) and those of (30). On the other hand, the case fatality ([11,
16,28]) is
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f = Total number of human deaths

Total number of human infections

= cγh
∫ ∞
0 Ih(t)dt∫ ∞

0 Cvhiv(t)Sh(t)dt

= cγh
∫ ∞
0 Ih(t)dt

(ρ + μh + γh)
∫ ∞
0 Ih(t)dt

= cγh
ρ + μh + γh

. (33)

Now, we investigate whether the exponent of growth ρ can be driven to zero and what
the case fatality is required to do so. To this end, we put ρ = 0 and c = c	 in (29) to get

c	 = Chv(βh − μh)(γh + μh − Cvh)

γh[ChvCvh − βv(μh + γh)]

= μh

γh
· R0

2(RD − 1)

(R0
2 − 1)

(
C0
hv

βv

− 1

)
, (34)

where RD = βh/μh is the demographic reproduction number for the human popu-
lation. Thus, the critical case fatality f 	 [28] required to drive the human population
growth rate to zero is

f 	 = c	γh

μh + γh
,

= c	

(
1 − DIh

L0

)
,

= c	(1 − PIh), (35)

where

• DIh = 1/(μh + γh) is the average time spent in the Ih state for a human,
• L0 = 1/μh is the expected time of life at birth in the absence of infection for a
human,

• PIh = DIh/L0 is the proportion of life spent in the Ih state for a human.

It is clear that the existence of the critical case fatality f 	 depends on the existence
of a feasible value of the proportion c, i.e., the critical proportion c	 must satisfy
c	 ∈ [0, 1]. We summarize our results in the following proposition.

Proposition 7 If the model parameters satisfy that c	 ∈ [0, 1], then the critical case
fatality f 	 required to stop the growth of the human population is given by (35) and
any slightly higher case fatality could drive the population to extinction.

6 Elimination of the Infection

Since the infection-free equilibrium is the global attractor if R0 < 1, then eliminating
the infection could be implemented if R0 is reduced to slightly below one. One way to
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do so is to use nets as a barrier to prevent mosquitoes biting. In the infection transmis-
sion process, the bite is important when it occurs between an infected human and a
susceptible mosquito or vice versa (i.e., when it occurs between an infected mosquito
and a susceptible human). Now, using nets could be applied in three different scenar-
ios: by susceptible humans only, by infected humans only, or by both (susceptible and
infected humans). We shall study the three different scenarios.

Scenario #1 In this case, we assume that a proportion p of susceptible human
individuals would use nets to protect themselves from the biting of mosquitoes.
Thus, a proportion (1− p) of susceptible human individuals are subject to get bitten
by infected mosquitoes. Hence, the total number of susceptible humans available
for contacts with infected mosquitoes is reduced to (1− p)Sh . In other words, the
effect of applying this strategy on model (1) appears in the term representing new
infections in humans, where the term λh Sh in the first two equations of model (1)
modifies to (1 − p)λh Sh = (1 − p)CvhivSh . The mathematical analysis of the
model does not get affected, except we replace every Cvh with (1− p)Cvh . Thus,
the basic reproduction number for the modified model is simply

√
(1 − p)R0 and

eliminating the infection could be achieved if a proportion p of the susceptible
humans use nets such that

p > 1 − 1

R0
2 . (36)

Scenario #2 In this case, we assume that a proportion q of infected human indi-
viduals would use nets to prevent susceptible mosquitoes from infecting itself
while taking its meals from the infected humans. This means that a proportion q
of infected humans are excluded from contacts with mosquitoes and, therefore,
the probability that a susceptible mosquito gets its meal from an infected human
individual will be reduced from Ih/Nh to (1 − q)Ih/Nh , which in turn means
that the term λvSv representing new infections in the vector population in model
(1) is modified to (1 − q)λvSv . The effect of this modification can be considered
if we replace every Chv with (1 − q)Chv in the analysis of the original model.
This implies that the basic reproduction number for the modified model becomes√

(1 − q)R0. Hence, to eliminate the infection, a proportion q of the infected
humans could use nets such that

q > 1 − 1

R0
2 . (37)

Scenario #3 In this case we assume that the above two scenarios are combined
together, i.e., a proportion p of susceptible humans and a proportion q of infected
humans would use the nets. As, in the above two scenarios we replace Cvh with
(1− p)Cvh and Chv with (1−q)Chv . Thus, the basic reproduction number for the
new model reads

√
(1 − p)(1 − q)R0. Hence, eliminating the infection requires

√
(1 − p)(1 − q) <

1

R0
. (38)
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We notice that if p = q := p̂, then a proportion

p̂ > 1 − 1

R0
(39)

of the total human population is required to use nets to ensure an effective elimi-
nation of the infection. We end this section by the following proposition.

Proposition 8 Malaria infection could be eliminated from the population if

1. a proportion p > 1 − 1/R0
2 of the susceptible human population uses nets to

protect themselves from the biting of infected mosquitoes, or
2. a proportion q > 1 − 1/R0

2 of the infected human population uses nets to pre-
vent susceptible mosquitoes from getting infected while taking its meals from the
infected humans, or

3. a proportion p̂ > 1− 1/R0 of the total human population uses nets to prevent the
incidence of new infections.

7 Summary and Conclusion

As malaria is one of the most serious health problems facing the world today, several
studies have been made in an attempt to understand its dynamics and predict what
may happen and then suggest strategies to eliminate it [3,8,10,12,15,21,22].

In this paper, a deterministic model (SIS for humans and SI for mosquitoes) has
been studied. Both the human and mosquito populations are of varying size. Though
it’s simple, the model shows interesting dynamics. Its analysis shows that in addition
to the infection-free equilibrium (denoted by E0) two endemic equilibria exist. One of
them (denoted by E+ and has high level of endemic infection) exists forever, while the
other (denoted by E− and has low level of endemic infection) exists only if R0 > 1.
The analysis shows further that E0 is globally stable if R0 < 1 and is unstable if
R0 > 1, while E+ is unstable but E− is globally stable whenever they exist. Thus any
control strategy aiming to eliminate malaria should consider the inequality R0 < 1. In
other words, reducing R0 to slightly below one is not only a necessity but a sufficient
condition to eliminate malaria.

Since malaria is preventable (i.e., preventing the recruitment of new infections),
our model has been modified to study the possibility to eliminate malaria using nets.
The analysis shows that there are three scenarios to eliminate malaria. The first is that
a proportion p > 1− 1/R0

2 of the susceptible human population uses nets to protect
themselves from the bites of infected mosquitoes. This scenario is applicable if the
total number of infected humans is much bigger than that of the susceptible human
population. The second is that a proportion q > 1 − 1/R0

2 of the infected humans
should use nets to prevent the transmission of infection to susceptible mosquitoes
while taking its meals. This is applicable if the number of infected humans is much
less than that of susceptible human population. Finally, if the proportion of infected
humans is close to 50 % then a proportion p̂ > 1 − 1/R0 of the total human popu-
lation should use bed nets as barriers to prevent the transmission of malaria to new
cases.
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On the other hand, the impact of malaria fatality on the demography of the host has
been investigated. It has been shown that malaria case fatality could stop the growth
of the host if the model parameters are such that the critical proportional fatality
c	 ∈ [0, 1].
Acknowledgments The authors would like to thank the editor as well as the anonymous referees very
much for their invaluable and comprehensive comments which helped in improving the paper.

Appendix 1

Since Nh = Sh + Ih and Nv = Sv + Iv , then

dNh

dt
= dSh

dt
+ dIh

dt
= (βh − μh)Nh − cγh Ih,

dNv

dt
= dSv

dt
+ dIv

dt
= (βv − μv)Nv.

Hence,

1

Nh

dNh

dt
= (βh − μh) − cγhih,

1

Nv

dNv

dt
= βv − μv.

Since sh = Sh
Nh

, then

dsh
dt

= 1

Nh
2

(
Nh

dSh
dt

− Sh
dNh

dt

)

= 1

Nh

dSh
dt

− sh · 1

Nh
· dNh

dt

= 1

Nh

(
βh Nh − (λh + μh)Sh + (1 − c)γh Ih

)
− sh

(
βh − μh − cγhih

)
= βh − (λh + μh)sh + (1 − c)γhih − sh

(
βh − μh − cγhih

)
= βh − (λh + βh − cγhih)sh + (1 − c)γhih .

Similarly, ih = Ih
Nh

implies that

dih
dt

= 1

Nh

dIh
dt

− ih · 1

Nh
· dNh

dt

= 1

Nh
(λh Sh − (μh + γh)Ih) − ih(βh − μh − cγhih)

= λhsh − (μh + γh)ih − ih(βh − μh − cγhih)

= λhsh − (βh + γh)ih + cγhi
2
h .
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Also,

dsv
dt

= 1

Nv

dSv

dt
− sv · 1

Nv

· dNv

dt
= βv − (λv + βv)sv,

div
dt

= 1

Nv

dIv
dt

− iv · 1

Nv

· dNv

dt
= λvsv − βviv.

Appendix 2

To obtain the martinis F and V we rearrange the model (2) so that the equations
representing the infections come first. Therefore,

dih
dt

= Cvhivsh − (βh + γh)ih + cγhi
2
h ,

div
dt

= Chvihsv − βviv,

dsh
dt

= βh − (Cvhiv + βh − cγhih)sh + (1 − c)γhih,

dsv
dt

= βv − (Chvih + βv)sv.

The above system can be written as ẋi = fi (x) = Fi (x)−Vi (x), where i = 1, 2, 3, 4;
x1 = ih, x2 = iv, x3 = sh, x4 = sv; Fi (x) is the rate of appearance of new infections
in compartment i , and Vi (x) = V−

i (x) − V+
i (x) with V+

i (x) representing the rate of
transfer of individuals into compartment i by all other means and V−

i (x) represent-
ing the rate of transfer of individuals out of compartment. It has the infection-free
equilibrium x0 = (i0h , i

0
v , s0h , s

0
v )′ = (0, 0, 1, 1)′. Thus,

F =

⎛
⎜⎜⎝
Cvhivsh
Chvihsv
0
0

⎞
⎟⎟⎠ , V =

⎛
⎜⎜⎝

(βh + γh)ih − cγhi2h
βviv
−βh + (Cvhiv + βh − cγhih)sh − (1 − c)γhih
−βv + (Chvih + βv)sv

⎞
⎟⎟⎠

Hence,

F =
⎛
⎜⎝

∂F1
∂ih

∂F1
∂iv

∂F2
∂ih

∂F2
∂iv

⎞
⎟⎠

x=x0

=
(
0 Cvh

Chv 0

)
,

V =
⎛
⎜⎝

∂V1
∂ih

∂V1
∂iv

∂V2
∂ih

∂V2
∂iv

⎞
⎟⎠

x=x0

=
(

βh + γh 0
0 βv

)
.
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Appendix 3

Proof of proposition 1

Let

J1 = F − V =
(−(βh + γh) Cvh

Chv −βv

)
.

Following the approach shown in [30], the stability of the infection-free equilibrium
is determined by the sign of the quantity s( j1) representing the maximum real part
of all the eigenvalues of the matrix J1 (i.e., it is the spectral abscissa of J1). Thus the
proof summarizes in showing that

1. s(J1) < 0 ⇐⇒ R0 = ρ(FV−1) < 1,
2. s(J1) = 0 ⇐⇒ R0 = ρ(FV−1) = 1,
3. s(J1) > 0 ⇐⇒ R0 = ρ(FV−1) > 1.

It is easy to evaluate that

s(J1) = 1

2

(
−[βh + γh + βv] +

√
[βh + γh + βv]2 − 4βv(βh + γh)(1 − R2

0)

)
.

Now, if R0 < 1, then the value of the expression under the square root is less than
[βh +γh +βv]2 which implies that s(J1) < 0 and vice versa. Also, if R0 > 1 then the
expression under the square root will have a value that is bigger than [βh + γh + βv]2
which induces that s(J1) > 0. It is easy to check that a value of R0 = 1 makes
s(J1) = 0. Thus, the infection-free equilibrium is locally stable if and only if s(J1) <

0 ⇐⇒ R0 = ρ(FV−1) < 1, while it is unstable if and only if s(J1) > 0 ⇐⇒ R0 =
ρ(FV−1) > 1.

Appendix 4

Direction of bifurcation at (0, 0)

Using the implicit function theorem, the direction of bifurcation at a point depends on
the sign of the expression

div
dChv

= −GChv

Giv

at this point. It is easy to check that

Giv |(0,0) = cγhβ
2
v ,

GChv
|(0,0) = −βv(βh + γh).

Hence
div
dChv

|(0,0) = βh + γh

cγhβv

> 0

Thus, the bifurcation is forward at the point (0, 0).
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Appendix 5

We have
tr(J ) = −{(βv + Chvih) + (Cvhiv + βh + γh − 2cγhih)}.

However, from the second equation of (6) we have

βv + Chvih = Chv

ih
iv

= βv

1 − iv
.

Also, from the first equation of (6) we have

cγhih = βh + γh − Cvh
iv(1 − ih)

ih
.

This implies that

Cvhiv + βh + γh − 2cγhih = −βh − γh − Cvhiv + 2Cvh
iv
ih

= −βh − γh − Cvhiv + 2
CvhChv(1 − iv)

βv

.

Hence,

tr(J ) = − 1

βv(1 − iv)
H(iv),

where

H(iv) = βv
2 + 2CvhChv(1 − iv)

2 − βv(1 − iv){Cvhiv + βh + γh} (40)

= Cvh(βv + 2Chv)iv
2 + [βv(βh + γh) − 4CvhChv − βvCvh]iv

+[βv
2 + 2CvhChv − βv(βh + γh)]. (41)

Now, we use (9) in (41) to reduce the degree by one. Therefore, we get

H(iv) = (H1 − ivH2)

A
, (42)

where

H1 = βvCvhChv

{
βv

2 + Chv(Cvh + βv + βh + γh)
}

> 0,

H2 = βvCvh
{
(βh + γh + Cvh)Chv

2 + cγhβv(βv + 2Chv)
}

> 0.

It is clear that H is linear in iv . Moreover, H(0) = H1/A > 0 and H ′(0) = −H2/A <

0. On the other hand, since i−v tends to 1 as Chv tends to ∞, then H(1) = βv
2, this

could be obtained also if we put iv = 1 in (40). Thus H(i−v ) > 0. Hence, tr(J ) < 0
for iv = i−v .
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