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Abstract In this paper our aim is to deduce some sufficient (and necessary) conditions
for the close-to-convexity of some special functions and their derivatives, like Bessel
functions, Struve functions, and a particular case of Lommel functions of the first
kind, which can be expressed in terms of the hypergeometric function 1F2. The key
tool in our proofs is a result of Shah and Trimble about transcendental entire functions
with univalent derivatives. Moreover, a known result of Pólya on entire functions,
the infinite product representations and some results on zeros of Bessel, Struve, and
Lommel functions of the first kind are used in order to achieve the main results of the
paper.
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1 Introduction and Main Results

Special functions play an important role in pure and appliedmathematics. Bessel func-
tions of the first kind are among of the special functions which were studied by many
authors frommany different points of view. The geometric properties, like univalence,
starlikeness, spirallikeness and convexity were studied already in the sixties by Brown
[9–11], and also by Kreyszig and Todd [13]. However, many important problems of
Bessel functions, like determining the radius of starlikeness, and the radius of convex-
ity, or finding the optimal parameter for which the normalized Bessel function of the
first kind will be starlike, convex, or close-to-convex, have not been studied in detail
or have not been solved completely. Some of these problems have been studied later
in the papers [1–3,5,6,8,19,20], however, there are still some open problems in this
direction. For example, there is no information about the close-to-convexity or univa-
lence of the derivatives of Bessel functions, or other special functions. In this paper
we make a contribution to the subject by showing some sufficient (and necessary)
conditions for the close-to-convexity of some special functions and their derivatives,
like Bessel functions, Struve functions, and a particular case of Lommel functions of
the first kind, which can be expressed in terms of the hypergeometric function 1F2. In
order to prove our main results we use a result of Shah and Trimble [17, Theorem2]
about transcendental entire functions with univalent derivatives. We use also a well-
known result of Pólya on entire functions, and theWeierstrass product representations
and some results on zeros of Bessel, Struve, and Lommel functions of the first kind
are used in order to achieve the main results of the paper. The paper is organized as
follows. In this section we recall the result of Shah and Trimble together with the def-
initions of Bessel, Struve and Lommel functions. Moreover, at the end of this section
we present the main results of this paper. Section 2 contains the proofs of these results.

The Bessel function of the first kind Jν, the Struve function of the first kind Hν,

and the Lommel function of the first kind sμ,ν, are particular solutions of the Bessel
differential equation [15, p. 217]

z2y′′(z) + zy′(z) +
(
z2 − ν2

)
y(z) = 0, (1.1)

Struve differential equation [15, p. 288]

z2y′′(z) + zy′(z) +
(
z2 − ν2

)
y(z) =

( z
2

)ν+1

√
π�

(
ν + 1

2

)

and the inhomogeneous Bessel differential equation [15, p. 294]

z2y′′(z) + zy′(z) +
(
z2 − ν2

)
y(z) = zμ+1.

Let D = {z ∈ C : |z| < 1} denote the open unit disk. In this paper we are mainly
interested on the normalized Bessel function of the first kind fν : D → C, normalized
Struve function of the first kind hν : D → C, and normalized Lommel function of the
first kind lμ : D → C, which are defined as follows
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Close-to-Convexity of Some Special Functions 429

fν(z) = 2ν�(ν + 1)z1−
ν
2 Jν(

√
z) =

∑
n≥0

(−1)n�(ν + 1)zn+1

4nn!�(ν + n + 1)
,

hν(z) = √
π2ν�

(
ν + 3

2

)
z
1−ν
2 Hν(

√
z) =

√
π

2

∑
n≥0

(−1)n�
(
ν + 3

2

)
zn+1

4n�
(
n + 3

2

)
�

(
ν + n + 3

2

) ,

lμ(z) = μ(μ + 1)z−
μ
2 + 3

4 sμ− 1
2 , 12

(
√
z) = z · 1F2

(
1; μ + 2

2
,
μ + 3

2
;− z

4

)

=
∑
n≥0

(−1)n�
(

μ
2 + 1

)
�

(
μ
2 + 3

2

)
zn+1

4n�
(

μ
2 + n + 1

)
�

(
μ
2 + n + 3

2

) , (1.2)

where Jν and Hν stand for the Bessel and Struve functions of the first kind, while
sμ,ν is the Lommel function of the first kind, which can be expressed in terms of a
hypergeometric series as

sμ,ν(z) = zμ+1

(μ − ν + 1)(μ + ν + 1)
1F2

(
1; μ − ν + 3

2
,
μ + ν + 3

2
;− z2

4

)
.

The next result of Shah and Trimble [17, Theorem2] is the cornerstone of this paper.

Lemma 1 Let f : D → C be a transcendental entire function of the form

f (z) = z
∏
n≥1

(
1 − z

zn

)
,

where all zn have the same argument and satisfy |zn| > 1. If f is univalent in D, then

∑
n≥1

1

|zn| − 1
≤ 1. (1.3)

In fact (1.3) holds if and only if f is starlike in D and all of its derivatives are close-
to-convex there. Furthermore, if z′n are the zeros of f ′, then f and all its derivatives
are univalent in D and map D onto convex domains if and only if

∑
n≥1

1

|z′n| − 1
≤ 1. (1.4)

Using the above lemma our aim is to present the following interesting results.

Theorem 1 The following assertions are true:

(a) The function fν is starlike and all of its derivatives are close-to-convex in D

if and only if ν ≥ ν0, where ν0 � −0.5623 . . . is the unique root of the equation
f ′
ν(1) = 0 on (−1,∞).
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(b) The function fν and all of its derivatives are convex in D if and only if ν ≥ ν1,

where ν1 � −0.1438 . . . is the unique root of the equation 3Jν(1) + 2(ν −
2)Jν+1(1) = 0 on (−1,∞).

Theorem 2 If |ν| ≤ 1
2 , then hν is starlike and all of its derivatives are close-to-convex

in D.

Theorem 3 If μ ∈ (−1, 1) , μ 
= 0, then lμ is starlike and all of its derivatives are
close-to-convex in D.

We note that the results of Theorem 1 are sharp. Moreover, it is worth to mention
that in [19, Theorem6] it was deduced already the starlikeness of fν, while in [8,
Theorem6] the convexity of fν , however, our approach is much easier and as we
can see below is applicable also for Struve and Lommel functions. Moreover, in the
above theorems we have also information on the close-to-convexity or convexity of
the derivatives of the Bessel, Struve, and Lommel functions, respectively.

Now, recall that the main idea of this paper is to use Lemma 1, which requires the
use of theWeierstrassian infinite canonical representation of the special functions. But,
these kinds of product representations are not valid for any range of the parameters of
the corresponding special functions. Thus, we do not know the best possible range of
parameters for which the normalized Struve and Lommel functions of the first kind
are starlike and their derivatives will be close-to-convex in the open unit disk. These
problems remain open and are subject of further research. As we can see in the case of
the Bessel functions of the first kind [5,8,19], these kind of problems are not easy to
handle, since they require a lot of information about the zeros of Bessel functions. But,
the zeros of Struve and Lommel functions are not much studied; for example, there is
no formula yet for their derivative with respect to the order, which would be a useful
source in the study of the geometric properties of Struve and Lommel functions.

2 Proofs of the Main Results

In this section our aim is to present the proofs of the main results.

Proof of Theorem 1 (a) Let jν,n denote the nth positive zero of the Bessel function
Jν . Using the infinite product representation [15, p. 235] of the Bessel functions of the
first kind, that is,

Jν(z) =
( z
2

)ν

�(ν + 1)

∏
n≥1

(
1 − z2

j2ν,n

)
,

we obtain that the normalized Bessel function of the first kind fν belongs to the family
of transcendental entire functions, and has the canonical Hadamard factorization

fν(z) = z
∏
n≥1

(
1 − z

j2ν,n

)
. (2.1)
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Close-to-Convexity of Some Special Functions 431

We know [19, Lemma3] that if ν > ν�, where ν� � −0.7745 . . . is the unique root
of fν(1) = 0 or equivalently jν,1 = 1, then jν,1 > 1, and then we have jν,n > 1 for
all n ∈ {1, 2, . . . } and ν > ν�. For the sake of completeness we mention here that the
above result is almost immediate if we use the well-known fact that ν �→ jν,1 is an
increasing function on (−1,∞). Now, using (2.1) we obtain that

z f ′
ν(z)

fν(z)
= 1 −

∑
n≥1

1

j2ν,n − z

and hence
f ′
ν(1)

fν(1)
= 1 −

∑
n≥1

1

j2ν,n − 1
≥ 0, (2.2)

if and only if ν ≥ ν0, where ν0 � −0.5623 . . . is the unique root of the equation
f ′
ν(1) = 0. Here we used that when ν > ν� all positive zeros jν,n satisfy jν,n > 1 and

hence fν(1) > 0, according to (2.1). Moreover, we used that for all ν > −1 we have

∂

∂ν

(
f ′
ν(1)

fν(1)

)
=

∑
n≥1

2 jν,n∂ jν,n/∂ν

( j2ν,n − 1)2
≥ 0,

since the function ν �→ jν,n is increasing on (−1,∞) for all fixed n ∈ {1, 2, . . . }, see
[15, p. 236]. Thus, using the inequality (2.2) we can see that the function fν satisfies
(1.3) and then by applying Lemma 1 we obtain that indeed fν is starlike and all of its
derivatives are close-to-convex in D if and only if ν ≥ ν0. This completes the proof
of this part.

(b) Differentiating (1.2) we get,

f ′
ν(z) = 2ν−1�(ν + 1)z−

ν
2
(
(2 − ν)Jν(

√
z) + √

z J ′
ν(

√
z)

)
.

Now, let us denote the nth positive zero of the Dini function z �→ (2−ν)Jν(z)+z J ′
ν(z)

by βν,n . Then the zeros of f ′
ν are exactly β2

ν,n . We know that [8, Lemma5] if ν > −1,
then we have

z f ′′
ν (z)

f ′
ν(z)

= ν(ν − 2)Jν(
√
z) + (3 − 2ν)

√
z J ′

ν(
√
z) + z J ′′

ν (
√
z)

2(2 − ν)Jν(
√
z) + 2

√
z J ′

ν(
√
z)

= −
∑
n≥1

z

β2
ν,n − z

.

Using this relation we get

∑
n≥1

1

β2
ν,n − 1

= −ν(ν − 2)Jν(1) + (3 − 2ν)J ′
ν(1) + J ′′

ν (1)

2(2 − ν)Jν(1) + 2J ′
ν(1)

= 1

2
· Jν(1) + 2(1 − ν)Jν+1(1)

2Jν(1) − Jν+1(1)
. (2.3)

123
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Here we used the recurrence relation [15, p. 222]

z J ′
ν(z) = ν Jν(z) − z Jν+1(z),

and the fact that the Bessel function Jν satisfies the Bessel differential equation (1.1)
and thus we have

z2 J ′′
ν (z) + z J ′

ν(z) +
(
z2 − ν2

)
Jν(z) = 0.

Now, for ν > −1 let γν,n be the nth positive root of the equation γ Jν(z)+ z J ′
ν(z) = 0.

Owing to Landau [14, p. 196] we know that if ν + γ ≥ 0, then the function ν �→ γν,n

is strictly increasing on (−1,∞) for n ∈ {1, 2, . . . } fixed. This implies that ν �→ βν,n

is strictly increasing on (−1,∞) for n ∈ {1, 2, . . . } fixed, and thus the function

ν �→ 1 −
∑
n≥1

1

β2
ν,n − 1

is strictly increasing on (−1,∞). Consequently we have that

∑
n≥1

1

β2
ν,n − 1

≤ 1

if and only if ν ≥ ν1, where ν1 � −0.1438 . . . is the unique root of the equation
3Jν(1) + 2(ν − 2)Jν+1(1) = 0 on (−1,∞), according to (2.3). With this the proof is
complete. �
Proof of Theorem 2 We start with the following result, see [7, Lemma1]. If |ν| ≤ 1

2 ,

then the Hadamard factorization of the transcendental entire function Hν : C → C,

defined by

Hν(z) = √
π2νz−ν−1�

(
ν + 3

2

)
Hν(z),

reads as follows

Hν(z) =
∏
n≥1

(
1 − z2

h2ν,n

)
,

where hν,n stands for the nth positive zero of the Struve function Hν . From this we
obtain that hν belongs to the family of transcendental entire functions, and has the
canonical Hadamard factorization

hν(z) = z
∏
n≥1

(
1 − z

h2ν,n

)
. (2.4)
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Recall again that if ν > ν�,where ν� � −0.7745 . . . is the unique root of fν(1) = 0 or
equivalently jν,1 = 1, then jν,1 > 1, and then we have jν,n > 1 for all n ∈ {1, 2, . . . }
and ν > ν�.Now, since (see Steinig [18, p. 371]) there is exactly one zero of Jν between
two consecutive positive zeros of Hν, and exactly one in the interval (0, hν,1), the
above result implies that hν,n > hν,1 > jν,1 > 1 for all |ν| ≤ 1

2 and n ∈ {2, 3, . . . }.
Thus, we have hν(1) > 0 for all |ν| ≤ 1

2 . Now, using (2.4) we obtain that

zh′
ν(z)

hν(z)
= 1 −

∑
n≥1

1

h2ν,n − z

and hence
h′

ν(1)

hν(1)
= 1 −

∑
n≥1

1

h2ν,n − 1
≥ 0 (2.5)

if and only if h′
ν(1) ≥ 0. Thus, using the inequality (2.5) we can see that the function

hν satisfies (1.3) and then by applying Lemma 1 we obtain that indeed hν is starlike
and all of its derivatives are close-to-convex in D if and only if h′

ν(1) ≥ 0.
Next, we show that if ν ≥ − 1

2 , then h′
ν(1) > 0. For this we use the recurrence

relation

Hν−1(x) = ν

x
Hν(x) + H′

ν(x)

and we obtain

2zh′
ν(z

2) = √
π2ν�

(
ν + 3

2

)
z−ν ((1 − 2ν)Hν(z) + zHν−1(z)) ,

which implies in particular

h′
ν(1) = √

π2ν�

(
ν + 3

2

)
((1 − 2ν)Hν(1) + Hν−1(1)) .

Using [15, p. 291]

H− 1
2
(z) =

√
2

π z
sin z and H− 3

2
(z) =

√
2

π z

(
cos z − sin z

z

)

for ν = − 1
2 we have

(1 − 2ν)Hν(1) + Hν−1(1) =
√

2

π
(sin 1 + cos 1) � 1.102495575 . . . ,
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that is, we have h′
− 1

2
(1) > 0. Now, using the recurrence relation [15, p. 292]

Hν−1(x) + Hν+1(x) = 2ν

x
Hν(x) +

( x
2

)ν

√
π�

(
ν + 3

2

)

and the integral representation of Hν

Hν(x) = 2
( x
2

)ν

√
π�

(
ν + 1

2

)
∫ 1

0
(1 − t2)ν− 1

2 sin(xt)dt,

we get that when ν > − 1
2

h′
ν(1) = √

π2ν�

(
ν + 3

2

)(
Hν(1) − Hν+1(1) + 1√

π2ν�
(
ν + 3

2

)
)

= 1 +
∫ 1

0
(1 − t2)ν− 1

2 (2ν + t2) sin(t)dt > 1 −
∫ 1

0
(1 − t2)ν+ 1

2 sin(t)dt > 0,

since the last integrand is less than 1. This completes the proof. �
Proof of Theorem 3 We start with the following result, see [4, Lemma1]. Let

ϕk(z) = 1F2

(
1; μ − k + 2

2
,
μ − k + 3

2
;− z2

4

)
,

where z ∈ C, μ ∈ R, and k ∈ {0, 1, . . .} such that μ − k is not in {0,−1, . . . }. Then,
the Hadamard’s factorization of ϕk is of the form

ϕk(z) =
∏
n≥1

(
1 − z2

z2μ,k,n

)
, (2.6)

where ±zμ,k,1,±zμ,k,2, . . . are all zeros of the function ϕk and the infinite product is
absolutely convergent. For n ∈ {1, 2, . . . } let ξμ,n := zμ,0,n be the nth positive zero
of ϕ0, and let ξμ,0 = 0. Then, using (2.6) for k = 0 we get that

lμ(z) = zϕ0(
√
z) = z

∏
n≥1

(
1 − z

ξ2μ,n

)

satisfies

l ′μ(z)

lμ(z)
= 1

z
−

∑
n≥1

1

ξ2μ,n − z
,
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which implies that
l ′μ(1)

lμ(1)
= 1 −

∑
n≥1

1

ξ2μ,n − 1
. (2.7)

We know that (see [12, Lemma2.1]) ξμ,n ∈ (nπ, (n + 1)π) for all μ ∈ (0, 1) and
n ∈ {1, 2, . . . }, which implies that ξμ,n > ξμ,1 > π > 1 for all μ ∈ (0, 1) and
n ∈ {2, 3, . . . }. Consequently, we have that lμ(1) = ϕ0(1) > 0 for μ ∈ (0, 1). On
the other hand, differentiating both sides of lμ(z2) = z2ϕ0(z) we obtain 2zl ′μ(z2) =
2zϕ0(z) + z2ϕ′

0(z). Now, using the recurrence relation [4, Lemma2]

(μ + 1)ϕ1(z) = (μ + 1)ϕ0(z) + zϕ′
0(z)

and the integral representations [4, Lemma3]

zϕ0(z) = μ(μ + 1)
∫ 1

0
(1 − t)μ−1 sin(zt)dt, ϕ1(z) = μ

∫ 1

0
(1 − t)μ−1 cos(zt)dt,

we get for μ ∈ (0, 1) that

2l ′μ(1) = (μ + 1)ϕ1(1) + (1 − μ)ϕ0(1) = μ(μ + 1)
∫ 1

0
(1 − t)μ−1 (cos(t)

+(1 − μ) sin(t)) dt > 0.

Thus, for μ ∈ (0, 1) the right-hand side of (2.7) is positive, and using Lemma 1 we
get that for μ ∈ (0, 1) the transcendental entire function lμ is starlike in D and all of
its derivatives are close-to-convex in D.

Now, let ζμ,n := zμ,1,n be the nth positive zero of ϕ1. By applying (2.6) for k = 1
we get that

lμ−1(z) = zϕ1(
√
z) = z

∏
n≥1

(
1 − z

ζ 2
μ,n

)

satisfies

l ′μ−1(z)

lμ−1(z)
= 1

z
−

∑
n≥1

1

ζ 2
μ,n − z

,

which implies that
l ′μ−1(1)

lμ−1(1)
= 1 −

∑
n≥1

1

ζ 2
μ,n − 1

. (2.8)

Recall the following known result of Pólya [16]: if the function f is positive,

strictly increasing, continuous on [0, 1), and satisfies
1∫
0

f (t)dt < ∞, then the entire
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function z �→
1∫
0

f (t) cos(zt)dt has only real and simple zeros, and each interval
(
(2n − 1)π

2 , (2n + 1)π
2

)
, n ∈ {1, 2, . . . }, contains exactly one zero. Applying this

result we obtain that ζμ,n > ζμ,1 > π
2 > 1 for all n ∈ {2, 3, . . . }, μ ∈ (0, 1), which

in turn implies that lμ−1(1) > 0 for μ ∈ (0, 1). Now, differentiating both sides of
lμ−1(z2) = z2ϕ1(z) we obtain 2zl ′μ−1(z

2) = 2zϕ1(z) + z2ϕ′
1(z), which by means of

the integral representation of ϕ1 implies that

2l ′μ−1(1) = 2ϕ1(1) + ϕ′
1(1) = μ

∫ 1

0
(1 − t)μ−1 (2 cos(t) − t sin(t)) dt > 0,

where μ ∈ (0, 1). Here we used that the function g : [0, 1] → R, defined by g(t) =
2 cos(t) − t sin(t), is decreasing and hence for all t ∈ [0, 1] we have g(t) ≥ g(1) =
2 cos 1 − sin 1 � 0.2391336269 · · · > 0. Thus, for μ ∈ (0, 1) the right-hand side of
(2.8) is positive, and using Lemma 1we conclude that forμ ∈ (0, 1) the transcendental
entire function lμ−1 is starlike in D and all of its derivatives are close-to-convex in D.

Changing μ to μ + 1, the proof of this theorem is complete. �
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