
Bull. Malays. Math. Sci. Soc. (2016) 39:381–390
DOI 10.1007/s40840-015-0177-2

A Class of Finite Dimensional Modular Lie
Superalgebras of Special Type

Keli Zheng1 · Yongzheng Zhang2 ·
Jiaqian Zhang2,3

Received: 19 July 2013 / Revised: 15 November 2013 / Published online: 30 July 2015
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract This paper is concerned with the Lie superalgebra S(n,m) of special type
over a field of prime characteristic.We construct themodular Lie superalgebra S(n,m)

and discuss some properties of this algebra. Then the derivation superalgebra of
S(n,m) is determined.
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1 Introduction

In mathematics, a Lie superalgebra is a generalization of a Lie algebra including
a Z2-grading, where Z2 = {0̄, 1̄} is the residue class ring of integers modulo 2.
Lie superalgebras are also important in theoretical physics where they are used to
describe the mathematics of supersymmetry [8]. Although many structural features of
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non-modular Lie superalgebras (see [9,15,20,22]) are well understood, there seem to
be few general results on modular Lie superalgebras. The treatment of modular Lie
superalgebras necessitates different techniques which are set forth in [11,13]. In [7]
Elduque obtained two new simplemodular Lie superalgebras. These Lie superalgebras
share the property that their even parts are orthogonal Lie algebras and the odd parts
are their spin modules. Since distinctions between non-modular and modular Lie
superalgebras are reflected on Lie superalgebras of Cartan type, the structure of Lie
superalgebras of Cartan type seems to be important and interesting. In [23], four
series of modular graded Lie superalgebras of Cartan type were constructed, which
are analogous to the finite dimensional modular Lie algebras of Cartan type [19] or
the four series of infinite dimensional Lie superalgebras of Cartan type defined by
even differential forms over a field of characteristic zero [10]. In [16], the iso-classes
of simple restricted modules of the special Lie superalgebra S(n) were classified,
and the character formulas of restricted simple modules were given. Recent works
on modular Lie superalgebras of Cartan type can also be found in [5,6,12,21] and
references therein.

It is well known that derivation techniques are of great importance in the struc-
ture and the classification theories of Lie (super)algebras (see [3,9,15,18]). For some
classes of modular Lie (super)algebras, the derivation (super)algebras have been well
investigated, for example, the derivation algebras of modular Lie algebras of Cartan
type [4,17], the derivation superalgebras of modular Lie superalgebras of Cartan type
[2,13].

The original motivation for this paper comes from the structures of the finite dimen-
sional modular Lie superalgebras W (n,m) and H(n,m), which were first introduced
in [1,14], respectively. The starting point of our studies is to construct a class of finite
dimensional modular Lie superalgebras of special type, which is denoted by S(n,m).
A brief summary of the relevant concepts and notations in the finite dimensionalmodu-
lar Lie superalgebras S(n,m) is presented in Sect. 2. In Sect. 3, the intrinsic properties
of S(n,m) are investigated. In Sect. 4, the derivation superalgebra of S(n,m) is deter-
mined.

2 Preliminaries

Throughout this paper, F denotes an algebraic closed field of characteristic p > 2, n
is an integer greater than 3. In addition to the standard notation Z, we write N and N0
denote the sets of positive integers and non-negative integers, respectively.

Let �(n) be the Grassmann algebra over F in n variables x1, x2, . . . , xn . Set Bk =
{〈i1, i2, . . . , ik〉 | 1 ≤ i1 < i2 < · · · < ik ≤ n} and B(n) = ⋃n

k=0 Bk , where
B0 = ∅. For u = 〈i1, i2, . . . , ik〉 ∈ Bk , set |u| = k, {u} = {i1, i2, . . . , ik} and
xu = xi1xi2 · · · xik (|∅| = 0, x∅ = 1). Then {xu |u ∈ B(n)} is an F-basis of �(n).

Let� denote the prime field ofF, that is,� = {0, 1, . . . , p−1}. Suppose that the set
{z1, z2, . . . , zm} is a �-linearly independent finite subset of F. Let G = {∑m

i=1 λi zi |
λi ∈ �}. Then G is an additive subgroup of F. Let F[y1, y2, . . . , ym] be the truncated
polynomial algebra satisfying y pi = 1 for all i = 1, 2, . . . ,m. For every element

λ = ∑m
i=1 λi zi ∈ G, define yλ = yλ1

1 yλ2
2 · · · yλm

m . Then yλyη = yλ+η for all λ, η ∈ G.
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Let T(m) denote F[y1, y2, . . . , ym]. Then T(m) = {∑λ∈G aλyλ | aλ ∈ F}. Set
U = �(n)⊗T(m). ThenU is an associative superalgebra withZ2-gradation induced
by the trivial Z2-gradation of T(m) and the natural Z2-gradation of �(n), that is,
U = U0̄ ⊕ U1̄, where U0̄ = �(n)0̄ ⊗ T(m) and U1̄ = �(n)1̄ ⊗ T(m).

For f ∈ �(n) and α ∈ T(m), we abbreviate f ⊗α as f α. Then the elements xu yλ

with u ∈ B(n) and λ ∈ G form an F-basis of U . It is easy to see that U = ⊕n
i=0 Ui

is a Z-graded superalgebra, where Ui = spanF{xu yλ | u ∈ B(n), |u| = i, λ ∈ G}. In
particular, U0 = T(m) and Un = spanF{xπ yλ | λ ∈ G}, where π := 〈1, 2, . . . , n〉 ∈
B(n).

In this paper, if A = A0̄ ⊕ A1̄ is a superalgebra (or Z2-graded linear space), then
let hg(A) = A0̄ ∪ A1̄ is the set of all Z2-homogeneous elements of A. If degx occurs
in some expression, we regard x as a Z2-homogeneous element and degx as the Z2-
degree of x . Let A = ⊕n

i=−r Ai be a Z-graded superalgebra. If x ∈ Ai , then we call
x a Z-homogeneous element, i the Z-degree of x and set zd(x) = i .

Let pl(A) = pl0̄(A) ⊕ pl1̄(A) denote the general linear Lie superalgebra of the
Z2-graded space A. For ϕ ∈ plθ (A) with θ ∈ Z2, if

ϕ(xy) = ϕ(x)y + (−1)θdegx xϕ(y)

for all x ∈ hg(A) and y ∈ A, then ϕ is called a derivation of A with Z2-degree θ .
Let Derθ A denote the set of all derivations of A with Z2-degree θ . Then DerA =
Der0̄A ⊕ Der1̄A, which is called the derivation superalgebra of A, is a subalgebra of
pl(A) (see [15]).

Set Y = {1, 2, . . . , n}. Given i ∈ Y, let ∂/∂xi be the partial derivative on �(n)

with respect to xi . For i ∈ Y , let Di be the linear transformation on U such that
Di (xu yλ) = (∂xu/∂xi )yλ for all u ∈ B(n) and λ ∈ G. Then Di ∈ Der1̄U for all
i ∈ Y since ∂/∂xi ∈ Der1̄(�(n)).

Suppose that u ∈ Bk ⊆ B(n) and i ∈ Y. When i ∈ {u}, we denote the uniquely
determined element of Bk−1 satisfying {u − 〈i〉} = {u}\{i} by u − 〈i〉, and denote the
number of integers less than i in {u} by τ(u, i). When i /∈ {u}, we set τ(u, i) = 0 and
xu−〈i〉 = 0. Therefore, Di (xu) = (−1)τ(u,i)xu−〈i〉 for all i ∈ Y and u ∈ B(n).

We define ( f D)(g) = f D(g) for f, g ∈ hg(U ) and D ∈ hg(DerU ). Since the
multiplication of U is supercommutative, f D is a derivation of U . Let

W (n,m) = spanF
{
xu yλDi | u ∈ B(n), λ ∈ G, i ∈ Y

}
.

Then W (n,m) is a finite dimensional Lie superalgebra contained in DerU . A direct
computation shows that

[
f Di , gD j

] = f Di (g)Dj − (−1)deg( f Di )deg(gD j )gD j ( f )Di , (2.1)

where f, g ∈ hg(U ) and i, j ∈ Y.
Let Dr1r2 : U −→ W (n,m) be the linear mapping such that for every f ∈ hg(U )

and r1, r2 ∈ Y,

Dr1r2( f ) =
2∑

i=1

fri Dri , (2.2)
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where fr1 = −Dr2( f ) and fr2 = −Dr1( f ). It is easy to see that Dr1r2 is an even
linear mapping. Let S(n,m) = {Di j ( f ) | f ∈ U , i, j ∈ Y}. Then S(n,m) is a finite
dimensional Lie superalgebra with a Z-gradation S(n,m) = ⊕n−2

r=−1 Sr (n,m), where
Sr (n,m) = {Di j (xu yλ) | u ∈ B(n), |u| = r + 2, λ ∈ G, i, j ∈ Y}. In this paper,
S(n,m) is called the Lie superalgebra of special type.

By the definition of linearmapping Dr1r2 , the following equalities are easy to verify:

Dii ( f ) = −2Di ( f )Di , (2.3)

Di j ( f ) = Dji ( f ), (2.4)
[
Dk, Di j ( f )

] = −Di j (Dk( f )), (2.5)

[
Ds1s2( f ), Dr1r2(g)

] =
2∑

i, j=1

(−1)deg f Dsi r j ( fsi gr j ), (2.6)

where f, g ∈ hg(U ), i, j, k ∈ Y and fsi , gr j as in (2.2). The equality (2.6) shows that
S(n,m) is a subalgebra of W (n,m).

3 Some Basic Properties of S(n,m)

Hereafter, W (n,m), S(n,m), and Si (n,m) will be simply denoted by W , S, and Si ,
respectively.

The linear mapping div : W → U defined by div( f Di ) = (−1)deg f Di ( f ) for all
f ∈ hg(U ) and i ∈ Y is called the divergence.
A direct calculation shows that div is a derivation of W with values in U (see [9]

or [23]), that is

div[D, E] = Ddiv(E) − (−1)degDdegE Ediv(D) for all D, E ∈ W. (3.1)

Following [23], put S(n,m) := {D ∈ W | div(D) = 0}. We also denote S(n,m) by
S for short.

Suppose that D1 and D2 are arbitrary elements of S; then div(D1) = 0 and
div(D2) = 0. By the equality (3.1), we have

div[D1, D2] = D1 (div(D2)) − (−1)degD1degD2D2 (div(D1)) = 0

Therefore, S is a subalgebra of W .

Proposition 3.1 S = S.

Proof A direct calculation shows that

div
(
Di j ( f )

) = div
(−Di ( f )Dj − Dj ( f )Di

)

= −(−1)deg f+1Dj Di ( f ) − (−1)deg f +1Di D j ( f )

= (−1)deg f D j Di ( f ) − (−1)deg f D j Di ( f )

= 0,
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where f ∈ hg(U ) and i, j ∈ Y. Hence, Di j ( f ) ∈ S. This implies that S is contained
in S.

Conversely, since S ∈ W and div(xu−〈i〉yλDi ) = 0, we suppose that an arbi-
trary element of S has the form xu−〈i〉yλDi , where u ∈ B(n), λ ∈ G and
i ∈ Y. The equality (2.4) shows that xu−〈i〉yλDi = (−1)τ(u,i)Di (xu yλ)Di =
(−1)τ(u,i)+12−1Dii (xu yλ) ∈ S. Hence, S ⊆ S. Consequently, S = S. �


Adopting the notion of [15, Definition 2, p. 73], the Lie superalgebra L is called
transitive if {A ∈ Li | [A, L−1] = 0} = 0 for all i ∈ N0.

Proposition 3.2 The Lie superalgebra S is transitive.

Proof Let D = Di j ( f ) ∈ St , where t ∈ N0 and i, j ∈ Y. Then f ∈ Ut+2. If
[D, S−1] = 0, then [Di j ( f ), yλDk] = 0 for all k ∈ Y and λ ∈ G. The equality
(2.5) shows that Di j (Dk(yλ f )) = 0, that is, Dk(yλ f ) ∈ U0 = T(m). Then f ∈ U1
which implies that f ∈ U1 ∩ Ut+2 for t ∈ N0. Hence, f = 0. It follows that D = 0.
Therefore, S is transitive. �


Let I = {∑λ∈G aλyλ | ∑
λ∈G aλ = 0, aλ ∈ F} and � = {xuα | u ∈ B(n), α ∈

I}. By [14, Lemma 4.2 and 4.3], I and � are ideals of T(m) and U , respectively.
Furthermore, T(m) = I ⊕ F1. By definition of S, we have S(n, 0) = {Di j (xu) | u ∈
B(n)}, which is isomorphic to the special Lie superalgebra S(n) (see [16] or [23] for
definition).

Proposition 3.3 Let J = {Di j (xuα) | xuα ∈ �, i, j ∈ Y}. Then J is an ideal of S
and S ∼= S(n) ⊕ J.

Proof Suppose that xuα ∈ � and xvβ ∈ U , where α ∈ I and β ∈ T(m). Since I is
an ideal of T(m) and Ds1s2(x

uα) ∈ J, by equality (2.6), we have

[Ds1s2

(
xuα

)
, Dr1r2

(
xvβ

)] = (−1)|u|Ds1r1

(
Ds2

(
xuα

)
Dr2

(
xvβ

))

+ (−1)|u|Ds1r2

(
Ds2

(
xuα

)
Dr1

(
xvβ

))

+ (−1)|u|Ds2r1

(
Ds1

(
xuα

)
Dr2

(
xvβ

))

+ (−1)|u|Ds2r2

(
Ds1

(
xuα

)
Dr1

(
xvβ

))

= (−1)|u|Ds1r1

(
Ds2

(
xu

)
Dr2

(
xv

)
αβ

)

+ (−1)|u|Ds1r2

(
Ds2

(
xu

)
Dr1

(
xv

)
αβ

)

+ (−1)|u|Ds2r1

(
Ds1

(
xu

)
Dr2

(
xv

)
αβ

)

+ (−1)|u|Ds2r2

(
Ds1

(
xu

)
Dr1

(
xv

)
αβ

) ∈ J,

where s1, s2, r1, r2 ∈ Y. Thus, J is an ideal of S.
Suppose that Di j (xuβ) is an arbitrary element of S. Since T(m) = I⊕F1, we may

write β = α + a1, where α ∈ I and a ∈ F. Then Di j (xuβ) = Di j (xuα) + Di j (axu)
for all i, j ∈ Y. It follows from S(n, 0) ∩ J = 0 that S = S(n, 0) ⊕ J. As S(n, 0) is
isomorphic to S(n), the desired result follows immediately. �


123



386 K. Zheng et al.

Remark It was shown in [23] that S(n) is a simple Lie superalgebra. Then the results
of Proposition 3.3 imply that the ideal J of S is maximal.

Let S(m, n, 1) denote the restricted special Lie superalgebra as definition in [23].
Then the following proposition is easy to obtain.

Proposition 3.4 The Lie superalgebra S is isomorphic to a subalgebra of S(m, n, 1).

4 The Derivation Superalgebra of S(n,m)

In this section we will investigate the question of the derivation superalgebra of S.
Let � := T(m)m = T(m) × · · · × T(m). Then

� = {θ = (h1(y), . . . , hm(y)) | hi (y) ∈ T(m), i = 1, 2, . . . ,m}.

For every θ = (h1(y), . . . , hm(y)) ∈ �, we define θ̃ : G → T(m) by θ̃ (λ) =∑m
j=1 λ j h j (y) forλ = ∑m

j=1 λ j z j ∈ G. It is easy to check that θ̃ (λ+η) = θ̃ (λ)+θ̃ (η)

for λ, η ∈ G. For every θ ∈ �, let Dθ : S → S be the linear mapping given by
Dθ Di j (xu yλ) = θ̃ (λ)Di j (xu yλ) for xu yλ ∈ U and i, j ∈ Y. A direct verification
shows that Dθ ∈ Der0̄(S) for all θ ∈ �.

The derivation Dθ is called the derivation of �-type. Put � := {Dθ | θ ∈ �}.
If θ̃ (λ) = ∑m

i=1 λi hθ i (y) and ϑ̃(λ) = ∑m
i=1 λi hϑi (y), where θ, ϑ ∈ �, then

θ̃ (λ) + ϑ̃(λ) =
m∑

i=1

λi (hθ i (y) + hϑi (y)) = θ̃ + ϑ(λ).

The equality above shows that Dθ + Dϑ = Dθ+ϑ and aDθ = Daθ for a ∈ F. Hence,
� is a subspace of Der0̄(S) and dim� = dim� = (pm)m .

Analogous to [14, Lemma 3.3], we have the following lemmas.

Lemma 4.1 If ϕ ∈ hg(Der(W )) and ϕ(Dj ) = 0 for all j ∈ Y, then there exists θ ∈ �

such that ϕ(yλDj ) = Dθ (yλDj ) for all λ ∈ G.

Lemma 4.2 Let hkλ = xk yλDk, where k ∈ Y and λ ∈ G. Then hkλ ∈ NorW (S).

Proof For arbitrary i, j ∈ Y, u ∈ B(n) and η ∈ G, we have

[
hkλ, Di j

(
xu yη

)] = − [
xk y

λDk, Di
(
xu yη

)
Dj

] − [
xk y

λDk, Dj
(
xu yη

)
Di

]
.

If k ∈ Y\{i, j}, then
[
hkλ, Di j

(
xu yη

)] = −xk y
λDkDi

(
xu yη

)
Dj − Di

(
xu yη

)
Dj (xk)y

λDk

−xk y
λDkD j

(
xu yη

)
Di − Dj

(
xu yη

)
Di (xk)y

λDk

= −Dj
(
xu yλ+η

)
Di − Di

(
xu yλ+η

)
Dj

= Di j
(
xu yλ+η

)
.
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In the case of k = i �= j we have

[
hkλ, Di j

(
xu yη

)] = − [
xk y

λDk, Dj
(
xu yη

)
Dk + Dk

(
xu yη

)
Dj

]

= −Dj
(
xu yλ+η

)
Dk + Dj

(
xu yλ+η

)
Dk

= 0.

When k = j �= i , we may obtain [hkλ, Di j (xu yη)] = 0 similarly.
If k = i = j , then [hkλ, Di j (xu yη)] = −Dkk(xu yλ+η).
In conclusion, hkλ ∈ NorW (S). �


Lemma 4.3 Let ϕ ∈ Dert (S) and t ∈ Z. Suppose that ϕ(Si ) = 0 for i = −1, 0, . . . , j
and j ≥ −1. If j + t ≥ −1, then ϕ = 0.

Proof Suppose that q ≥ j . To prove ϕ(Sq) = 0, we use induction on q.
Note that ϕ(S j ) = 0. Let q > j and z be an arbitrary element of Sq . Suppose that

[z, yλDl ] = zl for all l ∈ Y and λ ∈ G, then zl ∈ Sq−1. The induction hypothesis
yields ϕ(zl) = 0. Let ϕ(z) = ∑

k∈Y fk Dk , where fk ∈ U . Applying ϕ to the equality
[z, yλDl ] = zl , we have

ϕ
([
z, yλDl

]) = [
ϕ(z), yλDl

] + (−1)degϕdegz
[
z, ϕ

(
yλDl

)] = 0.

It follows from ϕ(yλDl) = 0 that [ϕ(z), yλDl ] = 0. Hence, [∑k∈Y fk Dk, yλDl ] = 0,
that is,

∑
k∈Y yλDl( fk)Dk = 0. It follows that yλDl( fk) = 0 for all l ∈ Y and

λ ∈ G. This implies fk ∈ T(m) for k ∈ Y. Thus, ϕ(z) ∈ S−1. On the other hand,
z ∈ Sq and ϕ ∈ Dert (S). So ϕ(z) ∈ Sq+t . Since q + t > j + t ≥ −1, we have
ϕ(z) ∈ S−1 ∩ Sq+t = 0, that is, ϕ(Sq) = 0.

The above considerations show that ϕ(S) = 0. Therefore, the desired result ϕ = 0
follows. �

Theorem 4.4 Suppose that t ∈ N0 and N = spanF{hkλ | k ∈ Y, λ ∈ G, hkλ =
xk yλDk}, then Dert (S) = ad(S + N )t + �.

Proof By virtue of Lemma 4.2, we have [N , S] ⊆ S. It is easy to show that ad(S +
N ) + � ⊆ Der(S). Hence, ad(S + N )t + � ⊆ Dert (S). Note that div(hkλ) �= 0 and
S = S. Then N � S.

Next we will consider the converse inclusion.
Suppose that for every k ∈ Y and ϕt ∈ Dert (S), ϕt (Dk) = ∑n

i=1 fik Di , where
fik ∈ U . Applying ϕt to [Dk, Dl ] = 0, where k �= l ∈ Y, we have Dl( fik) =
−Dk( fil) for all i ∈ Y.Then [14, Lemma3.1] shows that there exist gi for i = 1, . . . , n
such that Dk(gi ) = fik for all k ∈ Y.

Let z = −(−1)degϕt
∑n

i=1 gi Di ∈ Wt . Then ϕt (Dk) = adz(Dk) for all k ∈ Y.
Consequently, by Lemma 4.1, there exists θ ∈ � such that (ϕt − adz)(Dkj (xk yλ)) =
Dθ (Dkj (xk yλ)) for all distinct elements j, k of Y and λ ∈ G.

Set φt = ϕt − adz − Dθ . We use induction on j to show that φt (S j ) = 0 for
j = −1, 0, . . . , n − 2. A direct calculation shows that φt (S−1) = 0. Suppose that
j ≥ 0. For arbitrary element ξ of S j , the induction hypothesis yields [φt (ξ), Di ] = 0

123



388 K. Zheng et al.

for all i ∈ Y. Therefore,φt (ξ) ∈ S−1∩St+ j . Noting that t+ j ≥ 0, we haveφt (ξ) = 0;
hence, φt (S j ) = 0. Consequently, ϕt = adz + Dθ .

Since adz(Dk) = ϕt (Dk) ∈ S and Dk ∈ S for k ∈ Y, we have [Dk, z] ∈ S. Thus,
div[Dk, z] = 0 and div(Dk) = 0. The equality (3.1) shows that div(z) ∈ T(m). Then
div(z − div(z)xi Di ) = 0 for all i ∈ Y. It follows from z − div(z)xi Di ∈ S that
z ∈ S + N . This implies that adz ∈ ad(S + N ). The above considerations show that
adz+Dθ ∈ ad(S+N )+�. Therefore, the inclusion relationDert (S) ⊆ ad(S+N )t+�

holds.
In conclusion, Dert (S) = ad(S + N )t + �. �


Lemma 4.5 ad(S + N ) ∩ � = {0}.
Proof Firstly, we consider the set adS ∩ �. For any x ∈ adS ∩ �, we suppose that
x = adE = Dθ , where E ∈ S and θ ∈ �. Then adE(Dj ) = Dθ (Dj ) = 0 for all
j ∈ Y. It follows that E ∈ S−1. Without loss of generality, we may suppose that E =∑n

k=1
∑

λ∈G akλyλDk , where akλ ∈ F. For all i, j ∈ Y, we have adE(Di j (xi x j )) =
Dθ (Di j (xi x j )) = 0. This implies that akλ = 0 for all k ∈ Y. Then E = 0, that is,
x = 0. Therefore, adS ∩ � = {0}.

Next we will prove that adN ∩ � = {0}. Suppose that x ∈ adN ∩ � such that
x = adE = Dθ , where E ∈ N and θ ∈ �. Using the similar discussion above, the
Z-graded degree of E is −1. It is contradiction to zd(N ) = 0. Therefore, there does
not exist a non-zero element belongs to adN ∩ �, that is, adN ∩ � = {0}.

Consequently, ad(S + N ) ∩ � = {0} and the proof is completed. �

Theorem 4.6 Der−1(S) = adS−1.

Proof It suffices to show that Der−1(S) ⊆ adS−1. According to the definition of Si ,
we may easily obtain

S0 = spanF
{
Di j

(
xi x j y

λ
)
, xi y

λDj | i, j ∈ Y, i �= j, λ ∈ G
}
.

Let ϕ ∈ Der−1(S). Suppose that ϕ(Di j (xi x j yλ)) = ∑
t∈Y αi j tλDt , where αi j tλ ∈

T(m). For k ∈ Y\{i, j}, we obtain that ϕ(Djk(x j xk yη)) = ∑
t∈Y α jktηDt , where

α jktη ∈ T(m) and η ∈ G. Applying ϕ to the equality [Di j (xi x j yλ), Djk(x j xk yη)] =
0, we have

αi j jλDj − αi jkλDk − α jkiηDi + α jk jηDj = 0.

In particular, αi jkλ = 0 for all k ∈ Y\{i, j}. Therefore,

ϕ
(
Di j

(
xi x j y

λ
)) = αi j iλDi + αi j jλDj , (4.1)

where αi j iλ, αi j jλ ∈ T(m).
We may also suppose that ϕ(xi yλDj ) = ∑

t∈Y βi j tλDt , where βi j tλ ∈ T(m).
Applying ϕ to [Di j (xi x j ), xi yλDj ] = 2xi yλDj , by equality (4.1), we have

αi j j0y
λDj − βi j iλDi + βi j jλDj = 2

∑

t∈Y
βi j tλDt .
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It follows that βi j tλ = 0 for all t ∈ Y\{i, j}. Therefore,

ϕ
(
xi y

λDj
) = βi j iλDi + βi j jλDj ,

By equality (4.1), we may suppose that ϕ(Dl j (xl x j )) = αl jl0Dl + αl j j0Di ,
where αl jl0, αl j j0 ∈ T(m) and l ∈ Y\{i, j}. A direct calculation shows that
[Dl j (xl x j ), xi yλDj ] = xi yλDj . Applying ϕ to this equality yields that βi j iλ = 0.
Hence, ϕ(xi yλDj ) = βi j jλDj , where βi j jλ ∈ T(m). Without loss of generality,
we may suppose that ϕ(xi yλDi+1) = γiλDi+1 and ϕ(xn yλD1) = γnλD1, where
γiλ, γnλ ∈ T(m) and i ∈ Y\{n}.

Let φ = ϕ − ∑
i∈Y γiλ(adDi ). Then φ(xi yλDi+1) = φ(xn yλD1) = 0 for all

i ∈ Y\{n}. Suppose that M is generated by {xi yλDi+1, xn yλD1 | i ∈ Y\{n}, λ ∈ G},
thenM is a subalgebra of S. It is obvious that Di j (xi x j yλ), xi yλDj ∈ M ,where i, j are
distinct elements of Y. Then M = S0. Considering the Z-graded degree of φ we have
φ(S−1) = 0. Lemma 4.3 shows that φ = 0. Hence, ϕ = ∑

i∈Y γiλ(adDi ) ∈ adS−1.
This implies that Der−1(S) ⊆ adS−1. �

Theorem 4.7 Suppose that t > 1, then Der−t (S) = 0.

Proof Let ϕ ∈ Der−t (S). By Lemma 4.3, it suffices to prove that ϕ(St−1) = 0.
Suppose that Di j (xu yλ) with u ∈ B(n) and λ ∈ G is a basis element of St−1 and
ϕ(Di j (xu yλ)) = ∑

l∈Y αi jlλDl , where αi jlλ ∈ T(m) and i, j ∈ Y.
Next we will prove that ϕ(Di j (xu yλ)) = 0 for the different cases of i and j .
It is obvious that ϕ(Di j (xu yλ)) = 0 for i, j ∈ Y\{u}.
If i and j are distinct elements of {u}, then [Di j (xi x j ), Di j (xu yλ)] = 0. For

k ∈ {u}\{i, j}, we have
[
Dj j

(
xkx j

)
, Di j

(
xu yλ

)] = 0.

Applying ϕ to these equalities yields αi j iλ = αi j jλ = αi jkλ = 0. Thus,
ϕ(Di j (xu yλ)) = 0.

When i ∈ {u} and j ∈ Y\{u}, by the similar argument above, we may obtain
αi jlλ = 0 for all l ∈ Y. Hence, ϕ(Di j (xu yλ)) = 0 in this case.

By equality (2.4), ϕ(Di j (xu yλ)) = 0 for j ∈ {u} and i ∈ Y\{u}.
In conclusion, ϕ(St−1) = 0. Now Lemma 4.3 ensures that ϕ = 0, as desired. �


Theorem 4.8 Der(S) = ad(S + N ) ⊕ �.

Proof This is a direct consequence of Theorems 4.4, 4.7, 4.6, and Lemma 4.5. �
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