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Abstract Given a 2-codimensional distribution normal to the structural vector field ξ

on a Kenmotsu manifold the necessary and sufficient conditions for the normality of
this distribution are studied. Amain result is the existence of a total umbilical foliation
and of bundle-like metrics. Under certain circumstances, a new foliation arises and its
properties are investigated.
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1 Introduction

The geometry of Riemannian foliations has been intensively studied in the latest years
and many interesting results have been obtained; therefore, some monographs are
dedicated to this subject: [14,15]. In their book [2], Bejancu and Farran gives a new
approach by studying the foliations defined on a Riemannian manifold by using two
adapted linear connections. The main notion of this theory is that of bundle-like metric
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introduced by Reinhart in [13] and intensively studied by several authors; see for
example [15] and the related references cited therein. It was subsequently proved in
[2, p. 32] that there exists a bundle-like metric on a Riemannian manifold (M, g)
endowed with two complementary orthogonal non-integrable distributions.

The purpose of this paper is to study several properties of a distribution of codi-
mension two in a Kenmotsu manifold. The given distribution is supposed to be normal
to the structural vector field ξ since the case when the structural distribution in a gen-
eralized quasi-Sasakian manifold is tangent to the structure vector field was studied in
[4,5] where was proved the existence of the bundle-like structure and other interesting
properties. Also, the case of foliation induced by the structural distribution was treated
in [10].

The structure of the paper is as follows. In the second section, several general results
regarding quasi-Sasakian manifolds are stated for later use. We introduce the notion
of a generalized quasi-Sasakian manifold (on short a G.Q.S manifold) defined as a
manifold endowed with an almost contact metric structure enjoying property (2.5).
Some important results of the G.Q.S manifolds are proved for later use (Proposi-
tion 2.2). In the third section, it is proved the existence of an almost contact metric
structure which satisfies the Eum condition (2.6) on any 2-codimension distribution
normal to the structural vector field of a Kenmotsu manifold. In the last section, we
study the existence of normal metric structure. This existence is proved by verifying
the necessary and sufficient conditions for the vanishing of a tensor field of (1, 2)-
type (Theorems 4.2, 4.4). Next, it is shown in Theorem 4.9 that the existence of a
normal metric structure implies the existence of a foliation of dimension two. Also, a
bundle-likemetric and a totally umbilical property are studied in Theorems 4.8 and 4.9,
respectively.

2 Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and TM its tangent bundle; all
our objects are smooth differentiable. If F(M) is the algebra of the smooth functions
on M then �(E) denotes the F(M)-module of the sections of a vector bundle E over
M .

Now suppose that there exists a pair of complementary orthogonal distributionsD
and D⊥ on M i.e., TM has the decomposition TM = D ⊕ D⊥ with respect to the
metric g. We denote by Q and Q′ the projection morphisms of TM on D and D⊥,
respectively.

Based on [2, p. 97], we consider two connections denoted by D and D⊥ on the
distributions D and D⊥ called intrinsic linear connections and defined by

DX QY = Q∇̃QX QY + Q[Q′X, QY ], D⊥
X Q

′Y = Q′∇̃Q′X Q
′Y + Q′[QX, Q′Y ],

(2.1)

with X,Y ∈ �(TM) where ∇̃ is the Levi-Civita connection of (M, g). Suppose that
the distribution D is integrable; then it defines a foliation on M which we denote by
FD . The distribution D is called the structural distribution of FD . The Riemannian
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Distributions of Codimension 2 in Kenmotsu Geometry 273

metric g is called bundle like for the foliation FD [15] if each geodesic in (M, g)
that is tangent to the normal distribution to FD at one point remains tangent for its
entire length. Bejancu–Farran [2, p. 110] gave a characterization for a bundle-like
metric on (M,FD): the Riemannian metric g is bundle like for the foliation FD if the
Riemannian metric induced by g on D⊥, denoted by the same symbol g, is parallel
with respect to the intrinsic connection D⊥:

(D⊥
X g)(Q

′Z , Q′Y ) = 0, ∀X,Y, Z ∈ �(TM).

Also, from [2, p. 112], we recall the following result:

Theorem 2.1 If (M, g,FD) is a foliated Riemannian manifold, then the following
assertions are equivalent:

(a) g is bundle-like metric for FD,
(b) QX is a D⊥-Killing vector field, that is for all X,Y, Z ∈ �(TM):

g(∇̃Q′Y QX, Q′Z) + g(∇̃Q′Z QX, Q′Y ) = 0.

Now, we denote by ∇, respectively, ∇⊥ the connection induced by ∇̃ on D (resp.
D⊥) and by h, h′ the F(M)-bilinear mappings h : �(TM) × �(D) → �(D⊥), h′ :
�(TM) × �(D⊥) → �(D) given by

∇X QY = Q∇̃X QY, ∇⊥
X Q′Y = Q′∇̃X Q

′Y,

h(X, QY ) = Q′∇̃X QY, h′(X, Q′Y ) = Q∇̃X Q
′Y,

for any X,Y ∈ �(TM).

In connection with the decomposition (2.1), we have for all X,Y ∈ �(TM) [2,
p. 27]:

∇̃X QY = ∇X QY + h(X, QY ), ∇̃X Q
′Y = ∇⊥

X Q′Y + h′(X, Q′Y ), (2.2)

relations which are called the Gauss formulae for the Riemannian distributions (D, g)
and (D⊥, g), respectively. For any Q′X ∈ �(D⊥) and QX ∈ �(D), we define two
F(M)-linear operators [2, p. 27]:

AQ′X : �(D) → �(D), AQX : �(D⊥) → �(D⊥),

by:

AQ′X QY = −h′(QY, Q′X), A′
QX Q

′Y = −h(Q′Y, QX), ∀X,Y ∈ �(TM).

According to the theory of submanifolds, AQ′X and A′
QX are called the shapeoperators

of D and D⊥ with respect to the normal sections Q′X and QX , respectively.
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It is easy to see that [2, p. 28] for X,Y, Z ∈ �(TM):

g(h(QX, QY ), Q′Z) = g(AQ′Z QX, QY ), [QX, QY ] ∈ �(D) ⇔ h(QX, QY )

= h(QY, QX). (2.3)

Next, let m = 2n + 1 and suppose that the manifold M is endowed with an almost
contact metric structure ( f, ξ, η, g) ([3] or [7]):

(a) f 2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) η ◦ f = 0,
(d) f (ξ) = 0, (e) η = g(·, ξ),

( f ) g( f ·, ·) + g(·, f ·) = 0,
(2.4)

where I is the identity on TM, f is a tensor field of (1, 1)-type, and η is the 1-form
dual to the vector field ξ . The Nijenhuis tensor field of the structural tensor field f is

N f (X,Y ) = [ f X, f Y ] + f 2[X,Y ] − f [ f X,Y ] − f [X, f Y ].

In the following, we consider a class of almost contact metric manifolds for which
the structural tensor field f is assumed to satisfy for all X,Y ∈ �(TM):

(∇̃X f )Y = g(∇̃ f Xξ,Y )ξ − η(Y )∇̃ f Xξ. (2.5)

In the paper [9], Eum studied the integrability of invariant hypersurfaces immersed
in an almost contact Riemannian manifold satisfying the condition:

g((∇̃X f )Y, Z) = (∇̃Xη)(η(Y ) f Z − η(Z) f Y )

which is equivalent with

(∇̃X f )Y = g( ˜f ∇Xξ,Y )ξ − η(Y ) f ∇̃Xξ. (2.6)

It is interesting to see that if (2.5) holds then (2.6) is also true but not conversely.
For convenience, we define a tensor field F of (1, 1)-type by

F(X) = −∇̃Xξ. (2.7)

Using (2.4)a, (2.5), and (2.7) one obtains the following result through direct calcula-
tion:

Proposition 2.2 If M is an almost contact metric manifold with the property (2.5)
then the following equalities hold:

(a) (M, f, ξ, η, g) is normal and f ◦ F = F ◦ f ,
(b) F(ξ) = 0 and η ◦ F = 0,
(c) ∇̃ξ f = 0.

Next we prove the following characterization result for quasi-Sasakian manifold:
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Distributions of Codimension 2 in Kenmotsu Geometry 275

Proposition 2.3 The structural vector field ξ on an almost contact metric manifold
M enjoying property (2.5) is a geodesic vector field, that is ∇̃ξ ξ = 0; then η is exact.
Moreover, ξ is a Killing vector field if and only if M is a quasi-Sasakian manifold,
that is d� = 0, where � is the fundamental 2-form: �(X,Y ) = g(X, f Y ).

Examples 2.1 It is easy to see that on an almost contact metric manifold M enjoying
property (2.5) the structural vector field ξ is not necessarily a Killing vector field.
Also, it is interesting to see that

(1) if F = −α f then M is an α-Sasakian manifold [11],
(2) if F = β(−id + η ⊗ ξ) then M becomes a β-Kenmotsu manifold [6],
(3) if F = 0 then M is a cosymplectic manifold,
(4) if F = α f + β f 2 with α, β ∈ F(M) then M is trans-Sasakian manifold [8].

This was the reason for which we called M satisfying (1.5) a generalized quasi-
Sasakian manifold, shortly G.Q.S manifold.

3 Distributions of Codimension 2 in Kenmotsu Geometry

Suppose that the almost contact metric manifold (M, f, ξ, η, g) is a Kenmotsu one,
[6]:

(∇̃X f )Y = g( f X,Y )ξ − η(Y ) f X, ∇̃Xξ = X − η(X)ξ.

Let us given on M a distribution D1 of codimension 2, normal to the structural
vector field ξ and consider D2 as the orthogonal complementary distribution:

TM = D1 ⊕ D2. (3.1)

From dimD2 = 2 and ξ ∈ �(D2), one deduces that �(D2) = {N , ξ} with N a unit
vector field orthogonal to ξ . By using (2.4)f, we get f (D2) = { f (N ) = U } ⊂ D1
and letD be the orthogonal complementary distribution of f (D2) inD1. It results the
orthogonal decomposition:

D1 = D ⊕ D⊥; D⊥ = f (D2), dimD⊥ = 1. (3.2)

From (2.4) f one deduces that U is also a unit vector field. The decomposition (3.1)
has the detailed expression:

TM = D ⊕ D⊥ ⊕ f (D⊥) ⊕ {ξ}

where {ξ} is the 1-dimensional distribution generated by ξ and thenD is an f -invariant
distribution, f (D) = D, of dimension 2n − 2. The restriction of f to D is an almost
complex structure.
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276 C. Călin, M. Crasmareanu

Let ∇ be the connection induced by ∇̃ onD1. Relative to the decomposition (3.1),
the formulae (2.2) have the expression [1]:

⎧
⎨

⎩

∇̃XY = ∇XY + B(X,Y )N + C(X,Y )ξ,

∇̃X N = −AN X + b(X)ξ,

∇̃Xξ = −Aξ X − b(X)N .

(3.3)

where AN , Aξ are the shape operators with respect to the sections N , ξ and B and C
are the bilinear forms:

{
B(X,Y ) = g(∇̃XY, N ) = −g(∇̃X N ,Y ) = g(AN X,Y )

C(X,Y ) = g(∇̃XY, ξ) = −g(∇̃Xξ,Y ) = −g(X,Y ).

The 1-form b of (3.3) is vanishing: b(X) = g(∇̃X N , ξ) = −g(∇̃Xξ, N ) = −g(X −
η(X)ξ, N ) = 0 since X ∈ �(D1). Therefore, the formulae (3.3) become

{
i : ∇̃XY = ∇XY + g(AN X,Y )N − g(X,Y )ξ,

i i : ∇̃X N = −AN X =: −AX, ∇̃Xξ = −Aξ X = X.
(3.4)

which are very similar to that of hypersurfaces. Hence, Aξ = −id.
Suppose that n ≥ 2 and let us denote by P the projection morphism of TM on D.

Taking into account the decompositions (3.1) and (3.2), we may express X ∈ �(D1)

as

X = PX + u(X)U, (3.5)

where u is the 1-form defined by u(X) = g(X,U ). From (3.5) we see that

f X = t X − u(X)N , (3.6)

where t is the tensor field of (1, 1)-type given by t = f ◦ P . By straightforward
calculations, using (2.4) we obtain the following result:

Proposition 3.1 (t,U, u, g) is an almost contact metric structure on the distribution
D1:

t2X = −X + u(X)U, u ◦ t = 0, t (U ) = 0, g(t X,Y ) + g(X, tY ) = 0.

This almost contact metric structure is of a special type:

Theorem 3.2 The almost contact metric structure (t,U, u, g) is of Eum’s type i.e.,
the tensor field t satisfies:

(∇X t)Y = g(t∇XU,Y )U − u(Y )t∇XU

on the distribution D1.
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Proof From (3.4) and the first above equation, we deduce that on �(D1):

∇XU = −t AX. (3.7)

The covariant derivatives of t and u on D1 are given by

(∇X t)Y = g(AX,Y )U − u(Y )AX, (∇Xu)Y = g(AX, tY )U. (3.8)

Then the conclusion follows from a direct computation. ��

4 Normality of a Distribution of Codimension 2

The purpose of this section is to study the normality of the almost contact metric
structure (t,U, u, g) on the distribution D1.

Recall that for an almost contact metric structure (t,U, u, g) its normality tensor
S is:

S(X,Y ) = Nt (X,Y ) + 2du(X,Y )U. (4.1)

This almost contact metric structure (t,U, u, g) is normal if S = 0; then, we are
interested in the expression of S:

Proposition 4.1 The tensor field S is expressed by

S(X,Y ) = u(X)(AtY − t AY ) − u(Y )(At X − t AX)

+[g(At X,Y ) − g(t X, AY ) + g(AX, tY ) − g(AtY, X)]U
+[g(At X, tY ) − g(AtY, t X)]N . (4.2)

Proof Since ∇̃ is a torsion-free connection, by using (2.5) and (3.4)i we get:

Nt (X,Y ) = (∇t X t)Y − (∇tY t)X + t[(∇Y t)X − (∇X t)Y ]
+ [g(At X, tY ) − g(AtY, t X)]N

= u(X)(At − t A)(Y ) − u(Y )(At − t A)(X)

+[g(At X,Y ) − g(X, AtY )]U + [g(At X, tY ) − g(AtY, t X)]N .

(4.3)

On the other hand, from (3.8) we deduce that

2du(X,Y ) = (∇Xu)Y − (∇Y u)X = [g(AX, tY ) − g(AY, t X)]U. (4.4)

Finally, the relation (4.2) comes from (4.3) and (4.4). ��
We now give a characterization for the normality of almost contact metric structure

(t,U, u, g) defined on the distribution D1.
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Theorem 4.2 The almost contact metric structure (t,U, u, g) is normal if and only
if D is integrable and for all X ∈ �(D):

At X = t AX + u(At X)U. (4.5)

Proof For X,Y ∈ �(D) the relation (4.2) becomes

S(X,Y ) = [g(At X,Y ) − g(t X, AY ) + g(AX, tY ) − g(X, AtY )]U
+[g(At X, tY ) − g(AtY, t X)]N (4.6)

and

S(X,U ) = t AX − At X + [u(At X) − g(AU, t X)]U. (4.7)

Now, suppose that S = 0 on D1. Using the fact that S(X,U ) = 0 for all X ∈ �(D)

and (4.7) we obtain:

At X = t AX + [u(At X) − g(AU, t X)]U,

which implies g(AU, t X) = 0 and then t AU = 0. Therefore, the above relation can
be expressed as follows:

At X = t AX + u(At X)U, ∀ X ∈ �(D),

and the relation (4.5) is proved. By using the fact that t AU = 0 we deduce that

∇UU = 0. (4.8)

Next, from the relation (4.6), we obtain that for X,Y ∈ �(D):

g(At X, tY ) = g(AtY, t X). (4.9)

Since ∇̃ is the Levi-Civita connection, one obtains from (3.3)i i that B(X,Y ) =
B(Y, X) (⇔ g(AX,Y ) = g(X, AY )) for X,Y ∈ �(D) if and only if the distrib-
ution D is involutive.

Conversely, if the relation (4.5) are true, then it is easy to see that from (4.7) and
(4.9) we obtain that S = 0 on D1. ��
Remark 4.1 The last result justifies the fact that the normality of the almost contact
metric structure (t,U, u, g) implies the involutivity of the distributionD1 and conse-
quently the existence of a foliation which we shall denote by F1. We shall also say
that the foliation F1 is normal provided that Theorem 4.2 is true.

We consider the distribution D′
1 = D ⊕ {N } and therefore we have the following

decomposition TM = D′
1 ⊕{U }⊕{ξ}. Next, we denote by A′ the shape operator with

respect to the section U and by F′
1 the foliation corresponding to the distributionD

′
1.

Through direct calculation, we obtain the next result:
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Distributions of Codimension 2 in Kenmotsu Geometry 279

Proposition 4.3 The next equivalence holds for any X ∈ �(D):

At X = t AX + u(At X)U ⇔ A′t X = t A′X + g(A′t X, N )N .

Therefore the foliation F1 is normal if and only if the foliation F′
1 is normal, too.

Next we obtain a new characterization of the normality of foliation F1.

Theorem 4.4 The foliation F1 on a Kenmotsu manifold M is normal if and only if the
following conditions are fulfilled:

(a) D is involutive,
(b) U is a D1-Killing vector field and a geodesic vector field: ∇UU = 0.

Proof Using (3.7) and (3.8), we obtain through direct calculation that for X,Y ∈
�(D1):

g(∇XU,Y ) + g(∇YU, X) = g(t X, AY ) − g(t AX,Y ). (4.10)

Suppose that the foliation F1 is normal. From (4.5) and (4.10), it follows that if
X ∈ �(D) and Y ∈ �(D1) then

g(∇XU,Y ) + g(∇YU, X) = 0.

Taking into account (4.8) it follows that the assertion c) is proved. Conversely, suppose
that U is a D1-Killing vector field, then from (4.10) we deduce that (4.5) is proved.
Thus the proof of the Theorem is complete. ��

The Theorem 4.4 justifies the following consequence:

Corollary 4.5 Let M be a Kenmotsu manifold with normal foliation F1 (or equiva-
lently normal foliation F′

1, respectively). Then

(a) any integral curve of the D1-Killing vector field U is a geodesic,
(b) any integral curve of the D′

1-Killing vector field N is a geodesic.

The next result can be proved:

Theorem 4.6 If F1 is a normal foliation then for all X,Y ∈ �(D1):

(a) ∇t XU = t∇XU,
(b) (∇t X t)Y = t (∇X t)Y − g(∇XU,Y )U,
(c) (∇X t)Y = g(∇t XU,Y )U − u(Y )∇t XU.

Proof The first assertion is a direct consequence of (4.5). By using the formulae of
Theorem 3.2. and again (4.5), we get also the next statements. ��

The above theorem and Proposition 2.2 justify the next result:

Corollary 4.7 If the foliation F1 is normal then the almost contact metric structure
(t,U, u, g) defines a quasi-Sasakian structure on each leaf of F1.
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Next, denote by A = D⊥ ⊕ f (D⊥). Based on the result from [2, p. 140], we say
that the distributionD1 is totally umbilical if there exists a vector field, denoted by H
and called the mean curvature vector field, such that

h(X,Y ) = g(X,Y )H, ∀X,Y ∈ �(D1),

where h is the second fundamental form.
We shall now prove our next important result:

Theorem 4.8 If the foliation F1 is normal then the distribution A defines a foliation
F of dimension 2 on M. Moreover, the distributionA is totally umbilical and its mean
curvature vector field H is −ξ .

Proof It is enough to prove that the distribution A is involutive. As F1 is normal, we
have ∇UU = 0 and ∇N N = 0. Using the fact that ∇̃ is a torsion-free connection and
Theorem 4.4 we obtain through direct calculation that

g(∇̃U N , t X) = −g(AU, t X) = g(t AU, X) = 0,

g(∇̃NU, t X) = −g(A′N , t X) = g(t A′N , X) = 0, ∀X ∈ �(D).

Therefore, [N ,U ] ∈ �(A). Next, the mean curvature vector field of the foliation
F is denoted by H and let h is the second fundamental form of distribution A. In
order to evaluate H , we suppose that the foliation F1 is normal. Then h(X,Y ) ∈
�(D ⊕ {ξ}), ∀X, Y ∈ �(A) since D ⊕ {ξ} is the orthogonal complement of A.
Now, from Theorem 4.4 and Proposition 2.2 it is easy to see that g(h(U,U ), X) =
0, g(h(N , N ), X) = 0 ∀X ∈ �(D). By direct calculation, we deduce that for all
X,Y ∈ �(A):

g(h(X, Y ), ξ) = g(∇̃XY, ξ) = −g(∇̃Xξ,Y ) = −g(X,Y ).

Therefore, we have h(X,Y ) = −g(X,Y )ξ which ends the proof of Theorem. ��
Let us remark that this result is a variant of the Theorem 5.2. of [12, p. 616] from

the distributions point of view. Next we denote by g1 the induced metric tensor by g
of a leaf of the integrable contact distribution.

Theorem 4.9 Let (M, g,F) be a 2-foliated Kenmotsu manifold with the normal foli-
ation F1. Then the metric tensor g1 is bundle like for F.

Proof It is enough to prove that U and N are D-Killing vector fields, that is for all
X,Y ∈ �(D):

g1(∇XU,Y ) + g1(∇YU, X) = 0 = g1(∇X N ,Y ) + g1(∇Y N , X).

Since F1 is normal, one deduces that if X,Y ∈ �(D) then

g1(∇XU,Y ) + g1(∇YU, X) = −g1(t AX,Y ) − g1(t AY, X)

= g1(At X − t AX,Y ) = 0.
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Distributions of Codimension 2 in Kenmotsu Geometry 281

In the sameway, it can be proved that N is aD-Killing vector field because the foliation
F′
1 is normal too. The proof is complete. ��
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