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Abstract Given a 2-codimensional distribution normal to the structural vector field &
on a Kenmotsu manifold the necessary and sufficient conditions for the normality of
this distribution are studied. A main result is the existence of a total umbilical foliation
and of bundle-like metrics. Under certain circumstances, a new foliation arises and its
properties are investigated.
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1 Introduction

The geometry of Riemannian foliations has been intensively studied in the latest years
and many interesting results have been obtained; therefore, some monographs are
dedicated to this subject: [14,15]. In their book [2], Bejancu and Farran gives a new
approach by studying the foliations defined on a Riemannian manifold by using two
adapted linear connections. The main notion of this theory is that of bundle-like metric

Communicated by Young Jin Suh.

B Mircea Crasmareanu
mcrasm@uaic.ro

Constantin Calin
cOnstc@yahoo.com

Department of Mathematics, Technical University “Gh. Asachi”, 700049 Iasi, Romania

Faculty of Mathematics, University “Al. I. Cuza”, 700506 Iasi, Romania

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0173-6&domain=pdf

272 C. Cilin, M. Crasmareanu

introduced by Reinhart in [13] and intensively studied by several authors; see for
example [15] and the related references cited therein. It was subsequently proved in
[2, p. 32] that there exists a bundle-like metric on a Riemannian manifold (M, g)
endowed with two complementary orthogonal non-integrable distributions.

The purpose of this paper is to study several properties of a distribution of codi-
mension two in a Kenmotsu manifold. The given distribution is supposed to be normal
to the structural vector field & since the case when the structural distribution in a gen-
eralized quasi-Sasakian manifold is tangent to the structure vector field was studied in
[4,5] where was proved the existence of the bundle-like structure and other interesting
properties. Also, the case of foliation induced by the structural distribution was treated
in [10].

The structure of the paper is as follows. In the second section, several general results
regarding quasi-Sasakian manifolds are stated for later use. We introduce the notion
of a generalized quasi-Sasakian manifold (on short a G.Q.S manifold) defined as a
manifold endowed with an almost contact metric structure enjoying property (2.5).
Some important results of the G.Q.S manifolds are proved for later use (Proposi-
tion 2.2). In the third section, it is proved the existence of an almost contact metric
structure which satisfies the Eum condition (2.6) on any 2-codimension distribution
normal to the structural vector field of a Kenmotsu manifold. In the last section, we
study the existence of normal metric structure. This existence is proved by verifying
the necessary and sufficient conditions for the vanishing of a tensor field of (1, 2)-
type (Theorems 4.2, 4.4). Next, it is shown in Theorem 4.9 that the existence of a
normal metric structure implies the existence of a foliation of dimension two. Also, a
bundle-like metric and a totally umbilical property are studied in Theorems 4.8 and 4.9,
respectively.

2 Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and TM its tangent bundle; all
our objects are smooth differentiable. If F(M) is the algebra of the smooth functions
on M then I'(E) denotes the F(M)-module of the sections of a vector bundle E over
M.

Now suppose that there exists a pair of complementary orthogonal distributions D
and D on M i.e., TM has the decomposition TM = D @ D+ with respect to the
metric g. We denote by Q and Q' the projection morphisms of 7M on D and D+,
respectively.

Based on [2, p. 97], we consider two connections denoted by D and D' on the
distributions D and D called intrinsic linear connections and defined by

DxQY = QVox QY + Q[Q'X, QY1, Dx Q'Y = Q'Vox Q'Y + Q'[0X, Q'Y],
2.1

with X, Y € I'(TM) where V is the Levi-Civita connection of (M, g). Suppose that
the distribution D is integrable; then it defines a foliation on M which we denote by
Fp. The distribution D is called the structural distribution of Fp. The Riemannian
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metric g is called bundle like for the foliation Fp [15] if each geodesic in (M, g)
that is tangent to the normal distribution to Fp at one point remains tangent for its
entire length. Bejancu—Farran [2, p. 110] gave a characterization for a bundle-like
metric on (M, Fp): the Riemannian metric g is bundle like for the foliation Fp if the
Riemannian metric induced by g on D=+, denoted by the same symbol g, is parallel
with respect to the intrinsic connection D=

(D)L(g)(Q/Z, Q'Y)=0, VX,Y,ZeT'(TM).

Also, from [2, p. 112], we recall the following result:

Theorem 2.1 If (M, g, Fp) is a foliated Riemannian manifold, then the following
assertions are equivalent:

(a) g is bundle-like metric for Fp,
(b) OXisa DL—Killing vector field, that is for all X, Y, Z € I'(TM):

§(Voy0X, 0'7) +8(Vgz0X, Q'Y) = 0.
Now, we denote by V, respectively, V1 the connection induced by V on D (resp.
DLy and by h, h’ the F(M)-bilinear mappings h : T'(TM) x T'(D) — I'(DL), i’ :
['(TM) x T'(D+) — I'(D) given by

VxQY = QVxQY, VzQ'Y =Q'VxQ'y,
h(X,QY) = Q'VxQY, W (X,0'Y)=QVxQ'Y,

forany X, Y € I'(TM).
In connection with the decomposition (2.1), we have for all X,Y € I'(TM) [2,
p. 271]:

VxQY = VxQY +h(X,QY), VxQ'Y =VyxQ'Y +h'(X,Q'Y), (22)
relations which are called the Gauss formulae for the Riemannian distributions (D, g)
and (D1, g), respectively. For any Q'X € I'(D1) and QX € I'(D), we define two
F(M)-linear operators [2, p. 27]:

Agx :T(D) - T'(D), Apx: (DY) — I'(Dh),
by:

AgxQY = —h'(QY, Q'X), ApxQ'Y =—h(Q'Y, 0X), VX.Y € I (TM).

According to the theory of submanifolds, A o/ x and A/Q  are called the shape operators
of D and D+ with respect to the normal sections Q' X and QX, respectively.
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It is easy to see that [2, p. 28] for X, Y, Z € I'(TM):

g(h(0X,QY), 0'Z) = g(Agz0X, QY),[0X, QY] € I'(D) < h(QX, QY)
= h(QY, 0X). (2.3)

Next, let m = 2n + 1 and suppose that the manifold M is endowed with an almost
contact metric structure ( f, &, n, g) ([3] or [7]):

@ fP=—-1+n1®E& Bb)nE) =1, ()nof=0,
@) f&) =0, (e)n=g(, &), (2.4)

where [ is the identity on TM, f is a tensor field of (1, 1)-type, and 7 is the 1-form
dual to the vector field £. The Nijenhuis tensor field of the structural tensor field f is

Np(X,Y)=[fX, fY1+ f2X. Y] = fIfX. Y] = fIX, fY].

In the following, we consider a class of almost contact metric manifolds for which
the structural tensor field f is assumed to satisfy for all X, Y € I'(TM):

(Vx )Y = g(Vyx&, Y)E —n(Y)VxE. (2.5)

In the paper [9], Eum studied the integrability of invariant hypersurfaces immersed
in an almost contact Riemannian manifold satisfying the condition:

s(Vx )Y, Z) = (Vxn) (Y fZ —n(Z) fY)

which is equivalent with

(Vx )Y = g(fVxE V)& —n(Y) fVxE. (2.6)

It is interesting to see that if (2.5) holds then (2.6) is also true but not conversely.
For convenience, we define a tensor field F of (1, 1)-type by

F(X) = —Vx&. 2.7)

Using (2.4)a, (2.5), and (2.7) one obtains the following result through direct calcula-
tion:

Proposition 2.2 If M is an almost contact metric manifold with the property (2.5)
then the following equalities hold:

(@ (M, f,&,n,g) isnormaland f o F = F o f,
(b) F(§) =0andno F =0,
(c) Vef =0.

Next we prove the following characterization result for quasi-Sasakian manifold:
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Proposition 2.3 The structural vector field & on an almost contact metric manifold
M enjoying property (2.5) is a geodesic vector field, that is @gé = 0; then n is exact.
Moreover, & is a Killing vector field if and only if M is a quasi-Sasakian manifold,
that is d® = 0, where ® is the fundamental 2-form: ®(X,Y) = g(X, fY).

Examples 2.1 It is easy to see that on an almost contact metric manifold M enjoying
property (2.5) the structural vector field £ is not necessarily a Killing vector field.
Also, it is interesting to see that

(1) if F = —af then M is an w-Sasakian manifold [11],

(2) if F = B(—id + n ® &) then M becomes a 8-Kenmotsu manifold [6],

(3) if F = 0then M is a cosymplectic manifold,

4) if F =af + Bf> witha, B € F(M) then M is trans-Sasakian manifold [8].

This was the reason for which we called M satisfying (1.5) a generalized quasi-
Sasakian manifold, shortly G.(Q.S manifold.

3 Distributions of Codimension 2 in Kenmotsu Geometry

Suppose that the almost contact metric manifold (M, f, &, n, g) is a Kenmotsu one,

[6]:
(VXY = g(fX, V) —n(Y)fX, Vx&=X—n(X)E.

Let us given on M a distribution D of codimension 2, normal to the structural
vector field & and consider D, as the orthogonal complementary distribution:

™ = Dy & Ds. 3.1
From dim D, = 2 and & € I'(D,), one deduces that I'(D;) = {N, £} with N a unit
vector field orthogonal to &. By using (2.4)f, we get (D) = {f(N) = U} C D,

and let D be the orthogonal complementary distribution of f (D) in Dj. It results the
orthogonal decomposition:

Dy =D DY D = £(Dy), dimD* = 1. (3.2)

From (2.4) f one deduces that U is also a unit vector field. The decomposition (3.1)
has the detailed expression:

™ =D& D& f(DY) @ (&)

where {£} is the 1-dimensional distribution generated by & and then D is an f-invariant
distribution, f (D) = D, of dimension 2n — 2. The restriction of f to D is an almost
complex structure.
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Let V be the connection induced by V on D;. Relative to the decomposition (3.1),
the formulae (2.2) have the expression [1]:

VxY = VxY + B(X,Y)N + C(X, Y)&,
VxN = —AnX + b(X)E, (3.3)
Vx& = —AsX — b(X)N.

where Ay, Ag are the shape operators with respect to the sections N, & and B and C
are the bilinear forms:

I B(X,Y) = g(VxY,N) = —g(VxN.,¥) = g(ANX.,Y)
CX,Y) = g(VxY.§) = —g(Vx&.Y) = —g(X.Y).

The 1-form b of (3.3) is vanishing: b(X) = g(VxN, &) = —g(Vx&, N) = —g(X —
n(X)&, N) = 0since X € I'(Dy). Therefore, the formulae (3.3) become

[i: 6~XY=VXY+8(ANX, Y)N—g(X, Y)%., (34)

ii: VxN=—AyX = —AX, Vy&=-A:X=X.
which are very similar to that of hypersurfaces. Hence, Az = —id.
Suppose that n > 2 and let us denote by P the projection morphism of TM on D.
Taking into account the decompositions (3.1) and (3.2), we may express X € I'(Dy)
as
X =PX+uX)U, (3.5)
where u is the 1-form defined by u(X) = g(X, U). From (3.5) we see that
fX=tX—-u(X)N, (3.6)

where ¢ is the tensor field of (1, I)-type given by ¢+ = f o P. By straightforward
calculations, using (2.4) we obtain the following result:

Proposition 3.1 (¢, U, u, g) is an almost contact metric structure on the distribution
Dy:

X =—X4+uX)U, uot=0, t(U)=0, gtX,Y)+g(X,tY)=0.

This almost contact metric structure is of a special type:

Theorem 3.2 The almost contact metric structure (t, U, u, g) is of Eum’s type i.e.,
the tensor field t satisfies:

(Vx1)Y = g(tVxU, Y)U — u(Y)tVxU

on the distribution D;.
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Proof From (3.4) and the first above equation, we deduce that on I'(Dy):
VxU = —tAX. (3.7
The covariant derivatives of ¢ and u on D are given by
(Vx)Y = g(AX,Y)U —u(Y)AX, (Vxu)Y =g(AX,tY)U. (3.8)

Then the conclusion follows from a direct computation. O

4 Normality of a Distribution of Codimension 2

The purpose of this section is to study the normality of the almost contact metric
structure (¢, U, u, g) on the distribution Dj.

Recall that for an almost contact metric structure (¢, U, u, g) its normality tensor
S is:

S(X,Y)=N/(X,Y)+2du(X,Y)U. 4.1

This almost contact metric structure (¢, U, u, g) is normal if S = 0; then, we are
interested in the expression of S:

Proposition 4.1 The tensor field S is expressed by

S(X,Y) = u(X)(AtY —tAY) —u(Y)(AtX —tAX)
+[g(ArX,Y) — g(tX, AY) + g(AX,tY) — g(AtY, X)|U
+[g(ArX,tY) — g(AtY, tX)]N. 4.2)

Proof Since V is a torsion-free connection, by using (2.5) and (3.4)i we get:

Ne(X,Y) = (Vixt)Y — (Viy) X +t[(VyH) X — (Vx1)Y]
+[g(ArX, 1Y) — g(AtY, tX)IN
=u(X)(At —tA)(Y) —u(Y)(Ar — tA)(X)
+[g(ArX,Y) — g(X, AtY)|U + [g(AtX,tY) — g(AtY, tX)]N.
4.3)

On the other hand, from (3.8) we deduce that
2du(X,Y) = (Vxu)Y — (Vyu)X = [g(AX,tY) — g(AY,tX)]U. 4.4)

Finally, the relation (4.2) comes from (4.3) and (4.4). O

We now give a characterization for the normality of almost contact metric structure
(t, U, u, g) defined on the distribution D;.
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Theorem 4.2 The almost contact metric structure (¢, U, u, g) is normal if and only
if D is integrable and for all X € I'(D):

AtX =tAX +u(AtX)U. 4.5)
Proof For X,Y € I'(D) the relation (4.2) becomes

S(X,Y) = [g(AtX,Y) — g(tX, AY) + g(AX, 1Y) — g(X, AtY)|U
+[g(ArX, 1Y) — g(AtY, tX)IN (4.6)

and
S(X,U) =tAX — AtX + [u(AtX) — g(AU, tX)]U. “4.7)

Now, suppose that S = 0 on D;. Using the fact that S(X, U) = 0 for all X € I'(D)
and (4.7) we obtain:

AtX = tAX + [u(AtX) — g(AU, tX)]U,

which implies g(AU, tX) = 0 and then AU = 0. Therefore, the above relation can
be expressed as follows:

AtX =tAX +u(AtX)U, VX € I'(D),
and the relation (4.5) is proved. By using the fact that t AU = 0 we deduce that
VyU = 0. (4.8)
Next, from the relation (4.6), we obtain that for X, Y € I'(D):
g(AtX, 1Y) = g(AtY, tX). 4.9)

Since V is the Levi-Civita connection, one obtains from (3.3)ii that B(X,Y) =
B(Y,X) (& g(AX,Y) = g(X, AY)) for X,Y € I'(D) if and only if the distrib-
ution D is involutive.

Conversely, if the relation (4.5) are true, then it is easy to see that from (4.7) and
(4.9) we obtain that S = 0 on Dj. O

Remark 4.1 The last result justifies the fact that the normality of the almost contact
metric structure (¢, U, u, g) implies the involutivity of the distribution D and conse-
quently the existence of a foliation which we shall denote by F;. We shall also say
that the foliation F is normal provided that Theorem 4.2 is true.

We consider the distribution D} = D @ {N} and therefore we have the following
decomposition TM = D' @ {U} @ {£}. Next, we denote by A’ the shape operator with
respect to the section U and by JF) the foliation corresponding to the distribution D’.
Through direct calculation, we obtain the next result:
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Proposition 4.3 The next equivalence holds for any X € T'(D):
AtX =tAX +u(AtX)U & A'tX =tA’X + g(A'tX, N)N.

Therefore the foliation F\ is normal if and only if the foliation F| is normal, too.
Next we obtain a new characterization of the normality of foliation J7.

Theorem 4.4 The foliation F| on a Kenmotsu manifold M is normal if and only if the
following conditions are fulfilled:

(a) D is involutive,
(b) U is a Di-Killing vector field and a geodesic vector field: VyU = 0.

Proof Using (3.7) and (3.8), we obtain through direct calculation that for X,Y €
r'Dy):
g(VxU,Y)+g(VyU, X)) =g(tX, AY) — g(tAX,Y). (4.10)

Suppose that the foliation J; is normal. From (4.5) and (4.10), it follows that if
Xel(D)andY € I'(Dy) then

g(VxU,Y) +g(VyU, X) = 0.

Taking into account (4.8) it follows that the assertion c¢) is proved. Conversely, suppose
that U is a D;-Killing vector field, then from (4.10) we deduce that (4.5) is proved.
Thus the proof of the Theorem is complete. O

The Theorem 4.4 justifies the following consequence:

Corollary 4.5 Let M be a Kenmotsu manifold with normal foliation F| (or equiva-
lently normal foliation F, respectively). Then

(a) any integral curve of the D1-Killing vector field U is a geodesic,
(b) any integral curve of the D'-Killing vector field N is a geodesic.

The next result can be proved:

Theorem 4.6 If F| is a normal foliation then for all X,Y € T'(Dy):

(a) VixU =1tVxU,
(b) (Vixt)Y =t(Vxt)Y —g(VxU, Y)U,
(© (Vxt)Y = g(VixU,Y)U —u(Y)V,xU.

Proof The first assertion is a direct consequence of (4.5). By using the formulae of
Theorem 3.2. and again (4.5), we get also the next statements. O

The above theorem and Proposition 2.2 justify the next result:
Corollary 4.7 If the foliation F| is normal then the almost contact metric structure

(t, U, u, g) defines a quasi-Sasakian structure on each leaf of F1.
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Next, denote by A = D+ @ f(D). Based on the result from [2, p. 140], we say
that the distribution D is totally umbilical if there exists a vector field, denoted by H
and called the mean curvature vector field, such that

h(X,Y)=gX,Y)H, VYX,Y e '(Dy),

where £ is the second fundamental form.
We shall now prove our next important result:

Theorem 4.8 If the foliation F| is normal then the distribution A defines a foliation
F of dimension 2 on M. Moreover; the distribution A is totally umbilical and its mean
curvature vector field H is —&.

Proof 1t is enough to prove that the distribution A is involutive. As ] is normal, we
have VyU = 0 and Vy N = 0. Using the fact that V is a torsion-free connection and
Theorem 4.4 we obtain through direct calculation that

g(VyN,tX) = —g(AU, tX) = g(tAU, X) =0,
g(VnU,1X) = —g(A'N,1X) = g(tA'N, X) =0, VX e I'(D).

Therefore, [N, U] € T'(A). Next, the mean curvature vector field of the foliation
F is denoted by H and let /& is the second fundamental form of distribution A. In
order to evaluate H, we suppose that the foliation F| is normal. Then h(X,Y) €
L' @ {&}), VX,Y € I['(A) since D @ {&} is the orthogonal complement of A.
Now, from Theorem 4.4 and Proposition 2.2 it is easy to see that g(h(U, U), X) =
0,g(h(N,N),X) =0 VX € I'(D). By direct calculation, we deduce that for all
X, Y eT(A):

g(h(X,Y), &) = g(VxY, &) = —g(Vx&, ¥) = —g(X, Y).

Therefore, we have (X, Y) = —g(X, Y)& which ends the proof of Theorem. O

Let us remark that this result is a variant of the Theorem 5.2. of [12, p. 616] from
the distributions point of view. Next we denote by g; the induced metric tensor by g
of a leaf of the integrable contact distribution.

Theorem 4.9 Let (M, g, F) be a 2-foliated Kenmotsu manifold with the normal foli-
ation F1. Then the metric tensor g1 is bundle like for F.

Proof 1t is enough to prove that U and N are D-Killing vector fields, that is for all
X, Y e ' (D):

g1(VxU,Y) + g1 (VyU, X) =0=g1(VxN,Y) + g1 (VyN, X).
Since F is normal, one deduces that if X, Y € I'(D) then

g1(VxU,Y) + g1 (VyU, X) = —g1(tAX,Y) — g1(tAY, X)
= g1(AtX —tAX,Y) = 0.
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In the same way, it can be proved that N is a D-Killing vector field because the foliation

F} is normal too. The proof is complete. O
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