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Abstract We give a new type of contractive condition that ensures the existence and
uniqueness of fixed points and best proximity points in complete metric spaces. We
provide an example to validate our best proximity point theorem. This result extends
and complements some known results from the literature.

Keywords Best proximity point · Fixed point · Generalized Geraghty–Suzuki
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1 Introduction and Preliminaries

The Banach contraction mapping principle is a crucial theorem in fixed point theory,
which asserts that every contraction on a complete metric space has a unique fixed
point. Consequently, a number of extensions of this result appeared in the literature (see
[28] and references therein); in particular, one of the most interesting generalizations
was given by Geraghty [8] as follows.

Theorem 1 (Geraghty [8]) Let (X, d) be a complete metric space and T : X → X be
an operator. Suppose that there exists β : [0,+∞) → [0, 1) satisfying the condition
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β(tn) → 1 implies tn → 0, as n → +∞.

If T satisfies the following inequality

d(T x, T y) ≤ β(d(x, y)) d(x, y), for all x, y ∈ X,

then T has a unique fixed point.

On the other hand, Kirk [13] explored several significant generalizations of the
Banach contraction mapping principle to the case of non-self-mappings. Let A and
B be nonempty subsets of a metric space (X, d). A mapping T : A → B is called
a k-contraction if there exists k ∈ [0, 1) such that d(T x, T y) ≤ kd(x, y), for all
x, y ∈ A. Notice that k-contraction coincides with Banach contraction mapping if one
take A = B.
Moreover, a contraction non-self-mapping may not have a fixed point. In this case, it is
quite natural to find an element x such that d(x, T x) is minimum, which implies that x
and T x are in close proximity to each other. Precisely, in light of the fact that d(x, T x)
is at least d(A, B) := inf{d(x, y) : x ∈ A, y ∈ B}, we are interested in establishing
the existence of an element x for which d(x, T x) = d(A, B), such an element is
designated as a best proximity point of the non-self-mapping T . Obviously, a best
proximity point reduces to a fixed point if the considered mapping is a self-mapping.

This research subject has attracted attention ofmany authors, as confirmed referring
to [1–30]. It should be noted that best proximity point theorems furnish an approximate
solution to the equation T x = x , when T has no fixed point.

Here, we collect some notions and notations which will be used throughout the rest
of this work. We denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A, B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A, B) for some x ∈ A}.

In 2003, Kirk et al. [14] presented sufficient conditions for determining when the
sets A0 and B0 are nonempty.

LetF denote the class of all functions β : [0,+∞) → [0, 1) satisfying the follow-
ing condition:

β(tn) → 1 implies tn → 0, as n → +∞.

Definition 1 ([8]) Let (A, B) be a pair of nonempty subsets of a metric space (X, d).

A mapping T : A → B is said to be a Geraghty-contraction if there exists β ∈ F
such that

d(T x, T y) ≤ β((d(x, y)) d(x, y), for all x, y ∈ A.

In [24], Raj introduced the following definition.

Definition 2 Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with
A0 �= ∅. Then the pair (A, B) is said to have the P-property if and only if for all
x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = d(A, B)

d(x2, y2) = d(A, B)

}
⇒ d(x1, x2) = d(y1, y2).
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Also in [24], the author showed that any pair (A, B) of nonempty closed convex
subsets of a real Hilbert space satisfies the P-property. Moreover, it is easily seen that,
for any nonempty subset A of (X, d), the pair (A, A) has the P-property.

Finally we recall the result obtained by Caballero et al. [4].

Theorem 2 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Let T : A → B be a Geraghty-contraction
satisfying T (A0) ⊆ B0. Suppose that the pair (A, B) has the P-property. Then there
exists a unique x∗ in A such that d(x∗, T x∗) = d(A, B).

In this paper, motivated by Caballero et al. [4] and Salimi and Karapinar [25], we
give a new type of contractive condition that ensures the existence and uniqueness of
fixed points and best proximity points in complete metric spaces. The presented results
are independent from the analogous results in [4], as shown with a simple example.

2 Main Results

In this section, we introduce the notion of generalized Geraghty–Suzuki contraction
and use this notion for proving our main result.

Definition 3 Let (A, B) be a pair of nonempty subsets of a metric space (X, d). A
mapping T : A → B is said to be a generalized Geraghty–Suzuki contraction if there
exists β ∈ F such that

1

2
d∗(x, T x) ≤ d(x, y) ⇒ d(T x, T y) ≤ β(M(x, y))[M(x, y) − d(A, B)], (2.1)

for all x, y ∈ A, where d∗(x, y) = d(x, y) − d(A, B) and

M(x, y) = max
{
d(x, y), d(x, T x), d(y, T y)

}
.

Thus, we state and prove the following result of existence and uniqueness.

Theorem 3 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Let T : A → B be a generalized Geraghty–
Suzuki contraction such that T (A0) ⊆ B0. Suppose that the pair (A, B) has the
P-property. Then there exists a unique x∗ in A such that d(x∗, T x∗) = d(A, B).

Proof Let us select an element x0 ∈ A0; since T x0 ∈ T (A0) ⊆ B0, we can find
x1 ∈ A0 such that d(x1, T x0) = d(A, B). Further, since T x1 ∈ T (A0) ⊆ B0, it
follows that there is an element x2 in A0 such that d(x2, T x1) = d(A, B).Recursively,
we obtain a sequence {xn} in A0 such that

d(xn+1, T xn) = d(A, B), for any n ∈ N ∪ {0}. (2.2)

Since (A, B) has the P-property, we derive that

d(xn, xn+1) = d(T xn−1, T xn), for any n ∈ N. (2.3)
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Now, by (2.2) we get

d(xn−1, T xn−1) ≤ d(xn−1, xn) + d(xn, T xn−1) = d(xn−1, xn) + d(A, B) (2.4)

and by (2.2) and (2.3) we obtain

d(xn, T xn) ≤ d(xn, T xn−1) + d(T xn−1, T xn) = d(xn, xn+1) + d(A, B).

Therefore, we have

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, T xn−1), d(xn, T xn)}
≤ max{d(xn−1, xn), d(xn, xn+1)} + d(A, B). (2.5)

Clearly, if there exists n0 ∈ N such that d(xn0 , xn0+1) = 0, then we have nothing to
prove, the conclusion is immediate. In fact,

0 = d(xn0 , xn0+1) = d(T xn0−1, T xn0),

and consequently, T xn0−1 = T xn0 . Thus, we conclude that

d(A, B) = d(xn0 , T xn0−1) = d(xn0 , T xn0).

For the rest of the proof, we suppose that d(xn, xn+1) > 0 for any n ∈ N ∪ {0}. Now
from (2.4), we deduce that

1

2
d∗(xn−1, T xn−1) ≤ d∗(xn−1, T xn−1) ≤ d(xn, xn−1)

and by (2.1), we get

d(xn, xn+1) = d(T xn−1, T xn)

≤ β(M(xn−1, xn))[M(xn−1, xn) − d(A, B)]
< M(xn−1, xn) − d(A, B). (2.6)

By (2.5) and (2.6), we obtain

d(xn, xn+1) < M(xn−1, xn) − d(A, B) ≤ max{d(xn−1, xn), d(xn, xn+1)}.

Now, if max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then

d(xn, xn+1) < d(xn, xn+1),

which is a contradiction and hence

M(xn−1, xn)≤max{d(xn−1, xn), d(xn, xn+1)} + d(A, B) = d(xn−1, xn) + d(A, B).
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Therefore, by (2.6) we get

d(xn, xn+1) = d(T xn−1, T xn)

≤ β(M(xn−1, xn))d(xn−1, xn)

< d(xn−1, xn), (2.7)

for all n ∈ N. Consequently, {d(xn, xn+1)} is a decreasing sequence and bounded
below and so limn→+∞ d(xn, xn+1) := L exists. Suppose L > 0 and then, from
(2.7), we have

d(xn+1, xn+2)

d(xn, xn+1)
≤ β(M(xn, xn+1)) ≤ 1,

for any n ≥ 0, which implies that

lim
n→+∞ β(M(xn, xn+1)) = 1.

On the other hand, since β ∈ F , we get limn→+∞ M(xn, xn+1) = 0, that is,

L = lim
n→+∞ d(xn, xn+1) = 0.

Since, d(xn, T xn−1) = d(A, B) holds for all n ∈ N and the pair (A, B) satisfies
the P-property, then for all m, n ∈ N, we can write d(xm, xn) = d(T xm−1, T xn−1).

Using the fact that

d(xl , T xl) ≤ d(xl , xl+1) + d(xl+1, T xl) = d(xl , xl+1) + d(A, B)

for all l ∈ N, we deduce easily

M(xm, xn) = max{d(xm, xn), d(xm, T xm), d(xn, T xn)}
≤ max{d(xm, xn), d(xm, xm+1), d(xn, xn+1)} + d(A, B).

Since lim
n→+∞ d(xn, xn+1) = 0, then we have

lim
m,n→+∞ M(xm, xn) ≤ lim

m,n→+∞ d(xm, xn) + d(A, B). (2.8)

We shall show that {xn} is a Cauchy sequence. If not, then we get

[
lim

m,n→+∞ d(xn, xm) > 0.

]

Thus, without loss of generality, we can assume

ε = lim
m,n→+∞ d(xn, xm) > 0. (2.9)
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By using the triangular inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm). (2.10)

Now, since lim
n→+∞ d(xn, xn+1) = 0, then

d(A, B) ≤ lim
m→+∞ d(xm, T xm)

≤ lim
m→+∞[d(xm, xm+1) + d(xm+1, T xm)]

= lim
m→+∞[d(xm, xm+1) + d(A, B)] = d(A, B),

which implies limm→+∞ d(xm, T xm) = d(A, B), that is

lim
m→+∞

1

2
d∗(xm, T xm) = lim

m→+∞
1

2
[d(xm, T xm) − d(A, B)] = 0.

On the other hand, from (2.9) it follows that there exists N ∈ N such that, for all
m, n ≥ N , we have

1

2
d∗(xm, T xm) ≤ d(xn, xm).

Now, from (2.1) and (2.10) we have

d(xn, xm) ≤ d(xn, xn+1) + d(T xn, T xm) + d(xm+1, xm) (2.11)

≤ d(xn, xn+1) + β(M(xn, xm))[M(xn, xm) − d(A, B)] + d(xm+1, xm).

Then from (2.8), (2.11) and limn→+∞d(xn, xn+1) = 0, we have

lim
m,n→+∞ d(xn, xm) ≤ lim

m,n→+∞ β(M(xn, xm)) lim
m,n→+∞[M(xm, xn) − d(A, B)]

≤ lim
m,n→+∞ β(M(xn, xm)) lim

m,n→+∞ d(xm, xn)

and so, by (2.9), we get

1 ≤ lim
m,n→+∞ β(M(xn, xm)),

that is limm,n→+∞ β(M(xn, xm)) = 1. Therefore, limm,n→+∞ M(xn, xm) = 0 and
consequently limm,n→+∞ d(xn, xm) = 0, which is a contradiction. Thus, {xn} is a
Cauchy sequence. Since {xn} ⊂ A and A is a closed subset of the complete metric
space (X, d), we can find x∗ ∈ A such that xn → x∗, as n → +∞. We shall show
that d(x∗, T x∗) = d(A, B). Suppose to the contrary that d(x∗, T x∗) > d(A, B). At
first, we have
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d(x∗, T x∗) ≤ d(x∗, T xn) + d(T xn, T x
∗)

≤ d(x∗, xn+1) + d(xn+1, T xn) + d(T xn, T x
∗)

≤ d(x∗, xn+1) + d(A, B) + d(T xn, T x
∗),

and taking limit as n → +∞, we get

d(x∗, T x∗) − d(A, B) ≤ limn→+∞d(T xn, T x
∗). (2.12)

Also, we have

d(xn, T xn) ≤ d(xn, xn+1) + d(xn+1, T xn) = d(xn, xn+1) + d(A, B).

Taking limit as n → +∞ in the above inequality, we obtain

lim
n→+∞ d(xn, T xn) ≤ d(A, B),

that is, limn→+∞ d(xn, T xn) = d(A, B). Then, we get

lim
n→+∞ M(xn, x

∗) = max{ lim
n→+∞ d(x∗, xn), lim

n→+∞ d(xn, T xn), d(x∗, T x∗)}
= d(x∗, T x∗)

and hence
lim

n→+∞ M(xn, x
∗) − d(A, B) = d(x∗, T x∗) − d(A, B). (2.13)

Next, we have

d∗(xn, T xn) = d(xn, T xn) − d(A, B)

≤ d(xn, xn+1) + d(xn+1, T xn) − d(A, B)

= d(xn, xn+1) (2.14)

and

d∗(xn+1, T xn+1) = d(xn+1, T xn+1) − d(A, B)

≤ d(T xn, T xn+1) + d(xn+1, T xn) − d(A, B)

= d(T xn, T xn+1)

= d(xn+1, xn+2)

< d(xn, xn+1), (2.15)

and so (2.14) and (2.15) imply that

1

2
[d∗(xn, T xn) + d∗(xn+1, T xn+1)] ≤ d(xn, xn+1). (2.16)
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Now, we suppose that the following inequalities hold

1

2
d∗(xn, T xn) > d(xn, x

∗) and
1

2
d∗(xn+1, T xn+1) > d(xn+1, x

∗),

for some n ∈ N ∪ {0}. Hence, by using (2.16), we can write

d(xn, xn+1) ≤ d(xn, x
∗) + d(xn+1, x

∗)

<
1

2
[d∗(xn, T xn) + d∗(xn+1, T xn+1)]

≤ d(xn, xn+1),

which is a contradiction. Then, for any n ∈ N ∪ {0}, either

1

2
d∗(xn, T xn) ≤ d(xn, x

∗) or
1

2
d∗(xn+1, T xn+1) ≤ d(xn+1, x

∗)

holds. Therefore, by (2.1), (2.12) and (2.13) we deduce

d(x∗, T x∗) − d(A, B) ≤ lim
n→+∞ d(T xn, T x

∗)

≤ lim
n→+∞ β(M(xn, x

∗)) lim
n→+∞[M(xn, x

∗) − d(A, B)]
= lim

n→+∞ β(M(xn, x
∗))[d(x∗, T x∗) − d(A, B)]. (2.17)

Since d(x∗, T x∗) − d(A, B) > 0 , then from (2.17) we get

1 ≤ lim
n→+∞ β(M(xn, x

∗)),

that is,

lim
n→+∞ β(M(xn, x

∗)) = 1,

which implies

lim
n→+∞ M(xn, x

∗) = d(x∗, T x∗) = 0

and so d(x∗, T x∗) = 0 > d(A, B), a contradiction. Therefore, d(x∗, T x∗) ≤
d(A, B), that is, d(x∗, T x∗) = d(A, B). This means that x∗ is a best proximity
point of T and so the existence of a best proximity point is proved.

We shall show the uniqueness of the best proximity point of T . Suppose that x∗
and y∗ are two distinct best proximity points of T , that is, x∗ �= y∗. This implies that

d(x∗, T x∗) = d(A, B) = d(y∗, T y∗).
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Using the P-property, we have

d(x∗, y∗) = d(T x∗, T y∗)

and so

M(x∗, y∗) = max{d(x∗, y∗), d(x∗, T x∗), d(y∗, T y∗)}
= max{d(x∗, y∗), d(A, B)}.

Also, we have

1

2
d∗(x∗, T x∗) = 1

2
[d(x∗, T x∗) − d(A, B)] = 0 ≤ d(x∗, y∗).

Since M(x∗, y∗) − d(A, B) ≤ d(x∗, y∗), by (2.1), we have

d(x∗, y∗) = d(T x∗, T y∗)
≤ β(M(x∗, y∗))[M(x∗, y∗) − d(A, B)]
< d(x∗, y∗),

which is a contradiction. This completes the proof. ��
In order to demonstrate the independence of our result from Theorem 2, we give

the following example.

Example 1 Consider the space X = R
2 endowed with the metric d : X × X →

[0,+∞) given by

d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|,

for all (x1, x2), (y1, y2) ∈ X . Define the sets

A = {(1, 0), (4, 5), (5, 4)} and B = {(0, 0), (0, 4), (4, 0)},

so that d(A, B) = 1, A0 = {(1, 0)}, B0 = {(0, 0)} and the pair (A, B) has the
P-property. Also define T : A → B by

T (x1, x2) =
{

(x1, 0) if x1 ≤ x2,

(0, x2) if x1 > x2.

Notice that T (A0) ⊆ B0. Now, consider the function β : [0,+∞) → [0, 1) given by

β(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t = 0,
ln(1+t)

t if 0 < t ≤ 1,
t

1+t if 1 < t ≤ 10,
10
11 if t > 10,
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and note that β ∈ F .
Assume that 1

2d
∗(x, T x) ≤ d(x, y), for some x, y ∈ A. Then,

⎧⎪⎪⎨
⎪⎪⎩

x = (1, 0), y = (4, 5) or
x = (1, 0), y = (5, 4) or
y = (1, 0), x = (4, 5) or
y = (1, 0), x = (5, 4).

Since d(T x, T y) = d(T y, T x) and M(x, y) = M(y, x) for all x, y ∈ A, hence
without loss of generality, we can assume that

(x, y) = ((1, 0), (4, 5)) or (x, y) = ((1, 0), (5, 4)).

Now, we distinguish the following cases:

(i) if (x, y) = ((1, 0), (4, 5)), then

d(T (1, 0), T (4, 5)) = 4 ≤ 8

1 + 8
· (8 − 1)

= β(M((1, 0), (4, 5)))[M((1, 0), (4, 5)) − 1];

(ii) if (x, y) = ((1, 0), (5, 4)), then

d(T (1, 0), T (5, 4)) = 4 ≤ 8

1 + 8
· (8 − 1)

= β(M((1, 0), (5, 4)))[M((1, 0), (5, 4)) − 1].

Consequently, we have

1

2
d∗(x, T x) ≤ d(x, y) ⇒ d(T x, T y) ≤ β(M(x, y))[M(x, y) − d(A, B)]

and hence all the conditions of Theorem 3 hold and T has a unique best proximity
point. Here, x = (1, 0) is a unique best proximity point of T . On the other hand, if
(x, y) = ((4, 5), (5, 4)), then we have

d(T (4, 5), T (5, 4)) = 8 > 4/3 = β(d((4, 5), (5, 4)))d((4, 5), (5, 4)),

that is, Theorem 2 cannot be applied in this case.

If in Theorem 3 we take β(t) = r , where r ∈ [0, 1), then we have the following
consequence.

Corollary 1 Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 is nonempty. Let T : A → B be a non-self-mapping such
that T (A0) ⊆ B0 and
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1

2
d∗(x, T x) ≤ d(x, y) ⇒ d(T x, T y)

≤ r [max
{
d(x, y), d(x, T x), d(y, T y)

} − d(A, B)],

for all x, y ∈ A,where d∗(x, y) = d(x, y)−d(A, B). Suppose that the pair (A, B)has
the P-property. Then there exists a unique x∗ in A such that d(x∗, T x∗) = d(A, B).

If in Theorem 3 we take A = B = X , then we deduce the following fixed point result.

Corollary 2 Let (X, d) be a complete metric space and T : X → X be a self-
mapping. Assume that there exists β ∈ F such that

1

2
d(x, T x) ≤ d(x, y) ⇒ d(T x, T y) ≤ β(M(x, y))M(x, y),

for all x, y ∈ A, where

M(x, y) = max
{
d(x, y), d(x, T x), d(y, T y)

}
.

Then T has a unique fixed point.
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