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Abstract Let a and b be two given meromorphic functions on a domain D. We
study normality of the family 7 of meromorphic functions that satisfy f(z) f® (z) =
a(z) & f®(z) = b(z) forevery f € F on D. Examples are also given to show the
necessity of the conditions in our results.
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1 Introduction and Main Result

Let F be a family of meromorphic functions on a domain D C C. Then F is said to
be normal on D in the sense of Montel, if each sequence of F contains a subsequence
which converges spherically uniformly on each compact subset of D to a meromorphic
function which may be oo identically. See [1-3].

For two functions f and g meromorphic on D, and two complex numbers or
meromorphic functions a and b, we write f(z) = a(z) = g(z) = b(z) if g(z) = b(2)
whenever f(z) = a(z), and write f(z) = a(z) < g(z) = b(z) if f(z) = a(z) if and
only if g(z) = b(z). When a is a complex value and f(z) = a < g(z) = a, we also
say that f and g share the value a or a is a shared value of f and g. For families
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of meromorphic functions, the connection between normality and shared values has
been studied frequently following Schwick’s initial paper [4]. Some recent results in
this area appear in [5-9].
The starting point of this paper is the following result.

Theorem A [10, Theorem 2] Let F be a family of meromorphic functions on a domain
D, k be a positive integer, and let a # 0 and b be two finite values. If, for every f € F,
all zeros of f have multiplicity at least k and f(z) f®(z) = a < f®(z) = b, then
the family F is normal on D.

In this paper, we prove the following result.
Theorem 1.1 Let k be a positive integer, and let a(z) (% 0) and b(z) be two functions
meromorphic on D such that

(1) all zeros of a have multiplicity at most k — 1 and all poles of a have multiplicity
at most k;
(i1) each pole of b that is not a zero of a has multiplicity at most f%] — 1, and each

pole of b that is a zero of a with multiplicity m has multiplicity at most [k_T’"T —1.

Then the family F of meromorphic functions on a domain D, all of whose zeros have
multiplicity at least k, such that f(2) f®(z) = az) & f®(z) = b(z) for every
f € F, is normal on D.

Here, [x7] denotes the smallest integer that is not less than x. For example, [2.1] = 3
and [2] = 2.

Example 1.1 Let D = {z : |z] < 1} and F = {f,}, where
nz l
(@) =€ ——.
n

Then f,(z) = ne", and f,(2) f,(z) = n ("% — L) "= It follows that f,(2) f;(z) =
0 < f,(z) = 1, but F is not normal at 0. This shows that the condition a(z) # 0 is
necessary in Theorem 1.1.

Example 1.2 Let D = {z : |z] < 1} and F = {f,}, where
1
@ =2+ —,
nz

and let a(z) = z and b = 1. We see that f,(z) = 1 — # # land f,(2) f(2) =

z (1 — #) # z.Soforevery f, € {f,} satisfies that f,(2) f,,(z) = a(z) & f,(z) =

b(z). But F is not normal at 0. This shows that the condition that every zero of a has
multiplicity at most k£ — 1 (at least for k = 1) is sharp in Theorem 1.1.

Example 1.3 Let D = {z : |z| < 1} and F = {f,}, where f,(z) = nz""!, and let
a(z) = 252 and b(z) = z. We see that £ (z) = n(k + D!z and £,(2) £ X (2) =
n2(k+1)1z5+2. Soforevery f, € {f,) satisfies that £, (z) X (2) = a(z) & P () =
b(z). But F is not normal at 0. This shows that the condition that every zero of a has
multiplicity at most k£ — 1 is necessary in Theorem 1.1.
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Example 1.4 Let D = {z : |z| < 1} and F = {f,}, where f,(z) = 1/nz, and
let a(z) = 1/z5*2 and b = 1/z5+1. We see that £ (z) = (=1)*k!/nzk*! and
F1@ fh(2) = (—=D*k!/n?Z¥2. So for every f, € {f,) satisfies that f,(2) f/(z) =
a(z) < f,(z) = b(z). But F is not normal at 0. This shows that the condition that
every pole of a has multiplicity at most k is necessary in Theorem 1.1.

2 Some Lemmas

In order to prove our theorem, we require the following results. We assume the standard
notations of value distribution theory, as presented and used in [2]. In particular, we
write f, N f on D to denote that the sequence { f;,} converges spherically locally
uniformly to f on D and denote f,, — f on D if the convergence is in Euclidean
metric.

Lemma 2.1 ([11, Theorem 2]; [12, Lemma 2]) Let F be a family of functions mero-
morphic on D, all of whose zeros have multiplicity at least k. Then if F is not
normal at some point zo in D, there exist, for each 0 < o < k, points z, in
D with z, — zo, positive numbers p, — 0 and functions f, € F such that
&n(Q) = p, % fulzn + pPrl) BN g(&) on C, where g is a nonconstant mero-
morphic function on C, all of whose zeros have multiplicity at least k, such that
¢%(¢) < g%(0) = 1. In particular, g has order at most two.

Here, as usual, g(¢) = |g/(¢)]/(1 + |g(¢)|?) is the spherical derivative.

Lemma 2.2 [10, Lemmas 9 and 10] Let g be a nonconstant meromorphic function
in C, and a be a nonzero constant. If all zeros of g have multiplicity at least k and
g® £ 0, then the equation gg® = a has solutions on C, where k is a positive integer.

Lemma 2.3 [13, Lemma 8] Let f be a nonpolynomial rational function such that
f'(z) # 1 forz € C. Then

a
f(z)=Z+C+m’

where a # 0, b, ¢ are constants and m is a positive integer.

Lemma 2.4 [14, Theorem 1.1] Let g be a transcendental meromorphic function on
C, and R # 0 be a rational function. If all zeros and poles of g are multiple except
possibly finitely many, then g’ — R has infinitely many zeros on C.

Lemma 2.5 Let k > 2 and m be two integers, and let g be a meromorphic function
on C, all of whose zeros have multiplicity at least k. If g(¢)g® (¢) # y¢™ on C\ {0}
and g® () # 0 on C\ {0}, where y is a given nonzero constant, then m > k or
m < —(k +2), and g must be a rational function of the form g(¢) = C¢ 3t for some
nonzero constant C.
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Proof Without loss of generality, we may assume that y = 1. If not, we can use

G() = y_%g to replace g. The conditions guarantee that all zeros of g, possibly
except ¢ = 0, have multiplicity k exactly.

Suppose first that g is transcendental. Then by Nevanlinna’s second fundamental
theorem, we have

(k) _ (k) _ 1 — 1
88 88
T{r, <N|\r, N|r,— N\|r,——— S(r,
(r e ) ( Z )+ ATl R TS

— — 1
= N(r, g)-l-N(r, E)—G—S(r, g). 2.1

where S(r, g) = o(T(r, g)) as r — 00, possibly outside a set of finite measure. On
the other hand, we have by Nevanlinna’s first fundamental theorem

(k) (k)
T ('ﬂ gfm ) > N(r, gfm ) > N(r,g)+ N(r,g®) + 5, 9)

=2N(r,8) +kN(r,g) + S(r, g)
> (k+2)N(r, &) + S(r, g) (2.2)

and

T rgg(k) >N r—gm >N rl + N rL + S(r, g)
em )7 Ulgg®/) T Ul "g® ¢
=kN (r, é) + 8@, g). (2.3)

Then by (2.1)—(2.3), we have

(k) (k)
g8 1 1 88
T(r, o )5 (k+2 —}—%)T(r, o )+S(r, 2). 2.4

Since k > 2, we see from (2.4) that

(k)
T (r, gfm ) — S(r, g). 2.5)

Then by (2.2) and (2.3), we have

1
N(r9g):S(r’g)a N<r’§)=S(r’g)
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Thus

g g® g®
T (r, W) =T\rn—)+O0M)=N{r,— )+ 508 =S0rg. (26
8 8 g

and hence by (2.5) and (2.6),

(k)
88 8
2T(r,g) =T\ r,c"- =1 =S(02).
( TG

This is a contradiction. Hence there is no transcendental function that satisfies the
conditions of the lemma. O

Now we consider the case that g is a rational function.

Case 1. g has at least one nonzero pole. We denote by ¢; (i = 1, 2, ..., n) all distinct
poles of g on C\ {0}, and p; (i = 1, 2, ..., n) their corresponding multiplicities. Since
g®(¢) #00on C\ {0}, g% has the form

N
[Timi (& = ¢opith”

g®©) = 2.7)

where s € Z is an integer and )\ is a nonzero constant. And since g(¢) g(k)@ N
on C\ {0}, we have

us'! I I )Pk 4 pg!
[T (¢ — gi)?rith [T, (¢ — g)2Pitk

g0 @) ="+ (2.8)

for some integer / € Z and nonzero constant p. So, by (2.7) and (2.8),

T € = )Ptk + et
MO @ =

gl = (2.9)

Next, we consider three cases accordingtom > [,m =l and m < [.

Case 1.1. Suppose that m > [. Then as all zeros of g, possibly except { = 0, have
multiplicity k exactly, we see from (2.9) that all zeros of the polynomial

Py =" e =P 4

i=1

on C\ {0}, and hence on C since P;(0) = u # 0, have exact multiplicity & > 2. This
shows that P; has

_degP_m—1430,Qpith)

ok k

7]
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distinct zeros, and each zero of Py is a zero of P| with multiplicity k — 1. By compu-
tation, we have

P{) =" @ - gyt [(m =n[Jec - +¢> @pi+h
i=1 i=1 i=1
x H(C - Q)]
J#
Since P;1(¢&;) # 0 and P;(0) # 0, it follows that the polynomial
0@y =m-n[Jec-w+c> Cr+b]]c-¢n
i=1 i=1 j#i

has at least 7| distinct zeros with multiplicity k£ — 1. Thus,

n=deg Q1> (k— 1)1 > (k— Dn.

This is impossible, since k > 2.

Case 1.2. Suppose that m = [. Then as showed in Case 1.1, all zeros of the polynomial
n
Py(o) =[] = e+ +
i=1

on C\ {0} have exact multiplicity k > 2. Denote by « the multiplicity if O is a zero of
P>, and say « = 0 if P,(0) # 0. This shows that P> has

_degPy—a D1 2pi+k) —a

T
2 K K

distinct zeros on C\ {0}, and each zero of P, on C\ {0} is a zero of P, with multiplicity
k — 1. By computation, we have

n n

P3¢) =[] = ¢)* ™1 0a(¢), where 02(¢) = D @pi + b [ [ (¢ = ¢
i=1 i=1 J#i

Since P>(¢;) # 0, the polynomial Q; has at least t; distinct zeros on C \ {0} with

multiplicity k — 1. Further, if @ > 2, then 0 is a zero of Q» with multiplicity o — 1.

Letf=a—1ifa>2,and B =0if o« =0 or o = 1. Thus, we see that

k—1

k—1
n—l=degQr>k-Du+p=——23 Cp+h+p-——«

i=1
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zw_i_ﬁ_a

Then we have

2

a—1> i n+p > g,

which is a contradiction.

Case 1.3. Suppose that m < [. Then as showed in Case 1.1, all zeros of the polynomial
n
P3@) =[] = )P + g
i=1
on C )\ {0} have exact multiplicity £ > 2. Note that P3(0) # 0. This shows that P3 has

_deg P3
ok

73

distinct zeros on C \ {0}, and each zero of P;3 is a zero of P?: with multiplicity £ — 1.
By computation, we have

(e P@) =" ] - PP s ),

i=1
where
Qs =m—-D[Jec-w)+cD Cp+b ][] -
i=1 i=1 JAi

Since P3(¢;) # 0 and P3(0) # O, it follows that the polynomial Q3 has at least 13
distinct zeros with multiplicity kK — 1. Thus,

deg 03 > (k — D)13. (2.10)

Ifdeg P; > Z?zl(Zpi—i—k),then T3 > Zf’zl(Zp,-—i—k)/k > (k+2)n/k. This, together
with (2.10) and the fact deg Q3 < n, leads to a contradiction.

Thus deg P3 < D7 (2p; + k). Since deg P3 = max{> |_,2p; + k), | — m} if
> @2pi +k) # 1 —m, we see that

n

> epi+k=1-m 2.11)
i=1
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162 X. Liu

and u = —1. Hence deg Q3 < n — 1, so that by (2.10)

7 < (2.12)

k—1"

Now since Pz has t3 distinct zeros with exact multiplicity k, we can obtain that

n 3 k
[ =itk —¢m=c [H(; - wi)] 2.13)
i=1 i=1

for some nonzero constant ¢ and t3 distinct nonzero points w;. It follows from (2.13)
with the transformation { — 1/z that

n 73 k
R@) =[] = 52?1 = ezl 7ok []‘[(1 - wiz)] .

i=1 i=1

Thus 0 is a zero of R with multiplicity / — m — 73k. Since
n n
R =[]0 = a1 > ep+ k) [Ja -2 |,
i=1 i=1 j#i
we see that 0 is a zero of R’ with multiplicity at most n — 1. Hence
[l —m— 13k <n.
This with (2.11) and (2.12) shows that

k(n —1)

n
k+n <> Cpi+k)=l-m=nk+n<——:

i=1

’

which is impossible.

Case 2. g has no nonzero poles. Then as g (¢) # 0 on C\ {0}, we have g (¢) = c¢*
for some constant ¢ # 0 and integer s € Z.

If s > 0, then g is a polynomial with deg g = s + k. And since g(¢)g®(¢) # ¢™
on C\ {0}, we also have g(;‘)g(l‘)(g) = ¢™ 4! for some constant ) # 0 and integer
t. Thus

o>

1 m-—s t—s
gy =-¢"7 4+ =
C

If m # t, then it can be seen that g has at least one simple zero on C \ {0}, which
contradicts that all zeros of g on C \ {0} have multiplicity k > 2. Thus m = t, then
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AN+ 1#0and g(¢) = W+ 1)¢™ 5 /c. Thus m — s = degg = s + k, and hence
m—s = (m+k)/2,sothat g(¢) = C{mTJrk for some nonzero constant C and m > k.

If s < O, then O is the pole of g with multiplicity —s — k > 0. And since
g(£)g® (&) # ¢™ on C\ {0}, we also have g(£)g®(¢) = ¢" + ¢ for some
constant \ # 0 and integer ¢. Thus

A

1 m—s t—s
g(@)=-¢""+ -0
C

(9}

If m # t, then it can be seen that g has at least one simple zero on C \ {0}, which
contradicts that all zeros of g on C \ {0} have multiplicity k > 2. Thus m = ¢,
then \ + 1 # 0 and g(¢) = (n 4+ 1)¢™*/c. Thus —m + s = —s — k, and hence
m—s=(m-+k)/2 <0,sothat g(¢) = C¢ EE for some nonzero constant C. Note,
m=2s+k<-2k+1)+k<—(k+2).

The lemma is proved. O

Lemma 2.6 Let g be a meromorphic function on C. If g'(¢) # 0 on C \ {0}, then
the equation g(£)g'(¢) = y¢ ! has solutions on C \ {0}, where y is a given nonzero
constant.

Proof Without loss of generality, we may assume that y = 1.

Suppose first that g is transcendental. Then by Lemma 2.4, %(gz)’ — ¢7! has
infinitely many zeros on C, hence g(¢)g’(¢) = ¢! has infinitely many zeros on
C\ {0}.

Next we suppose that g is a polynomial. Since g’(¢) # 0 on C \ {0}, we have
g(¢) = al" +b,wherea # 0. Then g(2)g'(¢) — ¢ ' = n¢ Y ac® +be™ + 1) must
have zero on C \ {0}. O

Finally, we suppose that g is non-polynomial rational function.

Case 1. If g’(¢) # 0 on C, then by Lemma 2.3, g(¢) = B + A/(z + a)", where
A # 0, B are two constants. Then

—An[A+ B¢ + )"t — (¢ +a)* !

1 _ sl
808 —¢ (T

If a # 0, we see that g(£)g’(¢) — ¢~ must have zeros on C \ {0}. If a = 0, then

, 1 —An(A+ Bg"y — ¢
s(Og' @) — ¢ = A gznf]) :

also has zeros on C \ {0}.

Case 2. If g’(¢) # 0 on C\ {0} and g’(0) = 0, then we can suppose that

ue!
[T (¢ = cypitl’

g'@) = (2.14)
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164 X. Liu

where ¢; # 0 =1, 2, ..., n) are all distinct poles of g, u is a nonzero constant and
I € Z is a positive integer. If g(¢)g’(¢) # ¢! on C \ {0}, then we can suppose that

'}\-é-S
H?:l(f - fi)2pi+l '

g0 =¢"+

where ) is a nonzero constant. We see that s = —1, otherwise ¢ = 0 would be a pole
of gg’, hence of g, which contradicts that g’(0) = 0. Then we have

[T, (¢ = ¢)?Pitt 4+
¢TI € = &)2rit!

8(0)g'©) =

hence

()
Trdany | Y CaER L

, where Q(¢) = [ [(¢ = ¢)* ! 4.

i=1

g) =

Case 2.1. If g(0) = 0, then ¢ = 0 is a zero of Q(¢) with multiplicity 2(/ + 1) and

¢*P©)

8(0) = wllie, ¢ —)r’

where P(¢) is a monic polynomial and
n
deg P =degQ —2(+1)= > 2p;+1)—2(+1) > 0.
i=1
Then we have

ctPi(D)
w T, (¢ = gritt,

§'¢) = (2.15)

where P(§) = [(+DP )+ P (OITZ (¢ —¢)—¢ P(©) 200 pi [ € —¢)p-
We see that the polynomial P;(¢) is not a constant, since the first coefficient of P;(¢)
is

n n
n
l+1+degP—;pi =Z}(pi+1)—(1+1)z 5 >0.
i= i=
Hence comparing with (2.15) and (2.14), it is a contradiction.

Case 2.2. If g(0) # 0, then ¢ = 0 is a zero of Q(¢) with multiplicity [ 4+ 1 and

P()

I R
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where P(¢) is a monic polynomial and

degP=degQ—(+1)=> 2pi+1)—(+1)=0.

i=1
Then we have

P>(2)
78§ e L

g'@) = (2.16)

where P2(¢) = P'(O) [/ (¢ — &) — P(©) 23/_; pi [1;.4 (¢ — ¢;). We see that the
leading term of P> (¢) is

n n
(deg P-> Pi)(degP+"_1 = |:Z(pl~ T —(+ 1)] ¢ Zim1 @it —(+2)
i=1

i=1

Y (pi+1)—(+1)#0,then > (2p; +2) — (I +2) # [. Hence comparing
with (2.16) and (2.14), it is a contradiction.

If>7 (pi+1)—(+1) =0,then X7, (2p;+2) — (I4+2) = [. Hence comparing
with (2.16) and (2.14), it is also a contradiction.

The lemma is proved.

3 Proof of Theorem 1.1

In this section, we first prove the following theorem.

Theorem 3.1 Let{ f,}be asequence of meromorphic functions on D whose zeros have
multiplicity at least k, where k is a positive integer. Let {a, } and {h, } be two sequences
of meromorphic functions on D such that a,(z) X a(z) and hy, (2) X h(z) on D,
where a(z) # 0, 00, h(z) # 0,00 on D, and let | € Z be an integer such that 21 < k.
Then the family { f,,} is normal on D provided that f,,(z) fn(k) (2) =a,(z) & fn(k) () =
27 (2) for every fu € { fu).

Proof Suppose that {f,} is not normal at some point zo € D. Then by Lemma 2.1,
there exist points z,, — zg, a subsequence of { f,,} (we still denote { f,}) and positive
numbers p, — 0, such that

_k
8n(0) = pn 2 fuln + pu) =5 g(0)

on D, where g a nonconstant meromorphic function with bounded spherical derivative
(and hence of order at most two), all of whose zeros are of multiplicity at least k. We
denote ap = a(zp)(# 0, 00). O

Case 1./ <0,or! > 0 with zg # 0.
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166 X. Liu

We claim that (i) gg® % ag, and (i) g© = 0.

In fact, if gg®) = ap, then g is a nonconstant entire function (and hence of expo-
nential type) and g # 0. Hence g(¢) = e““*?, where c(# 0),d € C. But then
g(0)gW () = ket +2d £ 44 | a contradiction. Similarly, if g® = 0, then g is a
nonconstant polynomial of degree less than k. This contradicts that all zeros of g have
multiplicity at least .

We further claim that (iii) gg® # a, and (iv) g® # 0.

To prove (iii), suppose that g (&) g(k) (o) = ag for some ¢y € C. Then g is holomor-

phic on some close neighborhood U of ¢y, and hence g, (¢) g,(,k) &) —an(zn+pns) —
2(2)g® () —ag on U uniformly. Since gg® # ag, by Hurwitz’s theorem, there exist
points &, — ¢o such that (for n sufficiently large)

an(Zn + Pnln) = gn({n)g(k)(;n) = fulzn + pné'n)fn(k)(zn + onln)-

Hence by the condition, fn )(Zn + ;On;n) = (Zn + Pn&n)” h (zn + Puln), so that

2 (@) = i 210+ pa) = 02 G+ Pua) g (2 + pate). Thus g¥) () =
hm,,_mo g% (z,) = 0, which contradicts that g({o)g(k) (¢o) = ag # 0. This proves
(iii).

Next we prove (iv). Suppose that g (Zg) = 0 for some ¢y € C. Then g is holomor-

k
phic on some close neighborhood U of ¢y, and hence g,gk) (&)= pi2 (zn+pn {,1)’1 hy(z,+
pn¢) = g®(¢) on U uniformly. Since g®(¢) % 0, by Hurwitz’s theorem, there exist
points &, — ¢o such that (for n sufficiently large)

g9 — P2 o+ Putn) G + pu) = 0.

It follows that fn(k) (zn + puln) = (2 + ,o,,;,,)_lh,, (zn + pn&n), and hence by the
condition, we have

an(Zn + Puln) = fu(@Zn + Puln) f(k)(zn + onln) = gn({n)g(k)(gn)'

This leads to a contradiction that
ao = a(zo) = lim g,(&)g () = g(L0)g™ (20) = 0.
n—oo n

(iv) is also proved.
However, by Lemma 2.2, there is no nonconstant meromorphic function g on C
with the properties (iii) and (iv) such that all zeros have multiplicity at least k.

Case 2./ > 1 and zgp = 0. Then we have k > 2 for the condition 2/ < k. In this part,
we consider two cases.

Case 2.1. Suppose that ;—’; — o0. Let

_k
Gn(¢) =zp an(Zn + 2u8).
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Then we see that
k_
Gn(©)GR(2) = an(zn + ) = GO @) = 22 (1 + &) huzn + 200).

By Case 1, we see that {G,} is normal on A(0, 1). Say G, X G on A0, 1). We
claim that G(0) = 0 and hence G # oo. Suppose G(0) # 0, then by % — 00, we
have

k
_k 2
gn(é‘) = Pn 2fn(Zn + pné‘) = (Z_n) G, (&f) i) oo

n Zn

on C. This is a contradiction. Hence G(0) = 0, so that Gg‘) — G® in some neigh-
borhood of 0. It follows that

k
@) = (p—) 61 (@4) -0
Zn Zn

on C. Thus g® = 0, which contradicts that all zeros of g have multiplicity at least k
and g is nonconstant.

Case 2.2. So we may assume that ;—" — ¢, a finite complex number. Then we have

_k
Hy(§) = pn ° fa(pnl) = gn (c -~ Z—) 2 g(¢ —¢):= H(Z)

n

on C, and all zeros of H(¢) have multiplicity at least k. And since g is nonconstant,
we see that H is also nonconstant. We see from the condition that

k
kg

Hy(O)HP (@) = an(pnt) &= HP () = 07 ¢ halpn). (3.1)

We claim that (i) HH® = ag and (ii) H® # 0.

If HH® = qg, then H is a zero-free entire function of finite order and H is
not a polynomial. Thus H(¢) = 2, where Q is a nonconstant polynomial, then
H(k)(z) = P(;‘)eQ(C), where P is a polynomial. It follows that H(;)HU‘)@) =
P(2)e?2®) = g4, which is a contradiction. So HH® = a(0). If H® = 0, H would
be a polynomial of degree less than k. Since H is nonconstant, H has at least one
zero. The multiplicity of the zero cannot be larger than the degree of the polynomial
H . This contradicts that all zeros of H have multiplicity at least k.

We further claim that (iii) HH® # ag on C \ {0}, and (iv) H® # 0 on C \ {0}.

Suppose that H(;O)H(">(§O) = ap at some point {y # 0. Then H(¢p) # oo, and
hence H is holomorphic on some close neighborhood U of ¢y. Thus

Hy () H® (£) — an(pat) — HOH® (¢) — ap
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on U uniformly. Since H({)H <")(§) % ag, by Hurwitz’s theorem, there exist points
&n, &n — o, such that (for n sufficiently large)

Hy (&) HP (80) — an(pntn) = 0.

k_
By (3.1), we have H\"(¢,) = pg? l;“{lhn(pn;“n) and hence
. . L
HP o) = lim HP(¢,) = lim p7 & hu(putn) = 0,
n—oo n—o0

which contradicts that H (20) H® (z9) = ag # 0. The claim (iii) is proved.
Next we suppose that H® (o) = 0 at some point ¢y # 0. Then H (o) # 00, s0
that H is holomorphic on some close neighborhood U of ¢y, and hence

HO@) = pi ¢ ha(pug) — HO@)

on U uniformly. Since H® (¢) # 0, by Hurwitz’s theorem, there exist points &, £, —
Zo, such that (for n sufficiently large)

k
HO @) = i~ &7 hu(onta) = 0.
Then by (3.1), we have Hy,(¢,) H\X (¢4) = an(pn&n), and hence
H(co)H" (o) = lim Hy (&) H,¥ () = 1im_an(pntn) = av.

This contradicts the claim (iii). The claim (iv) is also proved.

Thus, by Lemma 2.5 withm = 0, H(¢) = C¢ % This contradicts that all zeros of
H have multiplicity at least k.
Hence F is normal on D. The proof is completed. O

Proof of Theorem 1.1. By the proof of Theorem 3.1, we have showed that F is normal
on D\ a~'(0) U a1 (00), where a~!(0) stands for the set of zeros of ¢ and a ' (c0)
stands for the set of poles of a. Next, we prove that F is also normal at every zero or
pole of a in D.

Suppose that F isnotnormal atzg € D, where z is azero or a pole of a. Without loss
of generality, we may say zo = 0 and assume thata(z) = z"h(z) and b(z) = z b (2),
where m,l € Z, h(z), and by (z) are holomorphic and zero free on A(0, §) C D. We
assume that #(0) = 1. We note by the condition that —k <m < k — 1,m # 0 and
| < /% if I > 0. In particular, 0 < ’"T+k < k.

Then by Lemma 2.1, there exist points z,, — 0, functions f,, € F, and positive
numbers p, — 0 such that

m+k

80 =00 7 fuGn+ pul) > g(2)
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on C, where g is a nonconstant meromorphic function of finite order, and all zeros of
g have multiplicity at least k.

Case 1. Suppose that % — 00. Let

m+k

G,(¢) = Z;T.fn(zn +2n0).

Then by the condition f(z) f®(z) = a(z) & f®(z) = b(z), we have

k—m

Ga()GR (@) = (1 4+ " h(zn + 208) = GR@) = 2,7 (1 + )by (zn + 200).

Since z, — 0 and 2(0), b1(0) # 0, oo, by Theorem 3.1, we see that {G,,} is normal

on A(0, 1). Say G, = G on A(0, 1). We claim that G(0) = 0 and hence G # oc.
Suppose G(0) # 0, then by f)_’:. — 00, we have

m+k

_ ot S(2) o (Ze) L
G @ =pn = SaGat o) ={) G\ T 1 G0y ma k=0

on C. This is a contradiction. Hence G(0) = 0, so that Gf,k) — G® in some neigh-
borhood of 0. It follows that

k—m
2
2 (0) = (p—) G® (&4) 0
in Zn

on C. Thus g® = 0, which contradicts that all zeros of g have multiplicity at least k
and g is nonconstant.

Case 2. So we may assume that ;i — ¢, a finite complex number. Then we have
n

_mtk n
Hy (&) = pn : Su(onl) = gn ({ - Z_) i> g(& —c):=H(®)

n

on C, and all zeros of H(¢) have multiplicity at least k. And since g is nonconstant,
we see that H is also nonconstant. We see from the condition that

—m
2

k
Hy (O HP @) = ¢"hipat) &= HO@ = p,” ¢ bi(ond).  (.2)
We claim that (i) H(¢)H® (¢) # ¢™ and (i) H® (¢) # 0.

In fact, if H(¢)H® () = ¢™, then ¢ = 0 is the only possible zero or pole of
H.If H is a transcendental function, then H(¢) = ¢%e2© for some o € Z and
polynomial Q. Thus H® (¢) = P(£)e2®, where P(¢)(z 0) is a rational function.
It follows that H H® is also a transcendental function, which is a contradiction. If H
is a rational function and ¢ = 0 is a pole of H, then ¢ = 0 is the pole of HH® with
multiplicity at least k 4+ 2, which contradicts H(§)H(k)(§) =" —k<m<k-1.
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If H is a rational function and ¢ = 0 is not a pole of H, then H is a polynomial. If
deg H > k, then deg(H H®)) > k. Otherwise, H H®) = 0. Both cases contradict that

H@©)HM (@) =" So HOHY (@) # ¢

If H® = 0, H would be a polynomial of degree less than k. Since H is nonconstant,
H has at least one zero. The multiplicity of the zero cannot be larger than the degree
of the polynomial H. This contradicts that all zeros of H have multiplicity at least .

We further claim that (iii) H(¢)H® (¢) # ¢ on C\ {0}, and (iv) H® () # 0 on
C\ {0}.

Suppose that H (o) H® (o) = &y's Lo # 0. Then H(gp) # oo. H is holomorphic
on some close neighborhood U of ¢, and hence

Hy(O)HP (&) = ¢"h(ppt) — HEYHP () — ¢

on U uniformly. Since H(¢)H™ (¢) # ¢™, by Hurwitz’s theorem, there exist points
&n, &n — o, such that (for n sufficiently large)

Hy (6) H®P (8) = ¢ h(pntn) = 0.
By (3.2), we have

kem g
H,fk)(Pn{n) = Pn : &y lbl()ongn)'

By the condition ]% —1>0and ¢, — ¢ # 0, we have

. . By _
H® (o) = lim H (@) = lim pu” ¢, b1(ontn) =0,

which contradicts that H (o) H® (¢9) = ¢y # 0. Then (iii) is proved.
Next we suppose that H® (z9) = 0, ¢o # 0. Thus H (¢y) # oo. H is holomorphic
on some close neighborhood U of ¢y, and hence

HOC) = pn? e bi(o0) - HO (@)

on U uniformly. Since H® (¢) # 0, by Hurwitz’s theorem, there exist points &, £, —
o, such that (for n sufficiently large )

Emy
HO@) = pu? ¢y b1(pg) = 0.
Then by (3.2) we have Hy (50) HyY (1) = ¢ h(pnty). thus
H@o)H® (20) = lim H, (&) HP (&) = Tim " h(patn) = ¢5"
n—oo n—o0
This contradicts to claim (iii). So (iv) is proved.
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Ifk > 2,then by Lemma 2.5 and claims (iii) and (iv), we getm > korm < —(k+2),
which are ruled out by the assumption.

Ifk = 1,thenm = —1. By Lemma 2.6, there is no meromorphic function satisfying
claims (iii) and (iv).
The proof of Theorem 1.1 is completed. O
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