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Abstract Let a and b be two given meromorphic functions on a domain D. We
study normality of the family F of meromorphic functions that satisfy f (z) f (k)(z) =
a(z) ⇔ f (k)(z) = b(z) for every f ∈ F on D. Examples are also given to show the
necessity of the conditions in our results.
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1 Introduction and Main Result

Let F be a family of meromorphic functions on a domain D ⊂ C. Then F is said to
be normal on D in the sense of Montel, if each sequence of F contains a subsequence
which converges spherically uniformly on each compact subset of D to ameromorphic
function which may be ∞ identically. See [1–3].

For two functions f and g meromorphic on D, and two complex numbers or
meromorphic functions a and b, we write f (z) = a(z) ⇒ g(z) = b(z) if g(z) = b(z)
whenever f (z) = a(z), and write f (z) = a(z) ⇔ g(z) = b(z) if f (z) = a(z) if and
only if g(z) = b(z). When a is a complex value and f (z) = a ⇔ g(z) = a, we also
say that f and g share the value a or a is a shared value of f and g. For families
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156 X. Liu

of meromorphic functions, the connection between normality and shared values has
been studied frequently following Schwick’s initial paper [4]. Some recent results in
this area appear in [5–9].

The starting point of this paper is the following result.

Theorem A [10, Theorem 2] LetF be a family of meromorphic functions on a domain
D, k be a positive integer, and let a �= 0 and b be two finite values. If, for every f ∈ F ,
all zeros of f have multiplicity at least k and f (z) f (k)(z) = a ⇔ f (k)(z) = b, then
the family F is normal on D.

In this paper, we prove the following result.

Theorem 1.1 Let k be a positive integer, and let a(z)( �≡ 0) and b(z) be two functions
meromorphic on D such that

(i) all zeros of a have multiplicity at most k − 1 and all poles of a have multiplicity
at most k;

(ii) each pole of b that is not a zero of a has multiplicity at most 	 k
2
 − 1; and each

pole of b that is a zero of a with multiplicity m has multiplicity at most 	 k−m
2 
−1.

Then the family F of meromorphic functions on a domain D, all of whose zeros have
multiplicity at least k, such that f (z) f (k)(z) = a(z) ⇔ f (k)(z) = b(z) for every
f ∈ F , is normal on D.

Here, 	x
 denotes the smallest integer that is not less than x . For example, 	2.1
 = 3
and 	2
 = 2.

Example 1.1 Let D = {z : |z| < 1} and F = { fn}, where

fn(z) = enz − 1

n
.

Then f ′
n(z) = nenz , and fn(z) f ′

n(z) = n
(
enz − 1

n

)
enz . It follows that fn(z) f ′

n(z) =
0 ⇔ f ′

n(z) = 1, but F is not normal at 0. This shows that the condition a(z) �≡ 0 is
necessary in Theorem 1.1.

Example 1.2 Let D = {z : |z| < 1} and F = { fn}, where

fn(z) = z + 1

nz
,

and let a(z) = z and b = 1. We see that f ′
n(z) = 1 − 1

nz2
�= 1 and fn(z) f ′

n(z) =
z
(
1 − 1

n2z4

)
�= z. So for every fn ∈ { fn} satisfies that fn(z) f ′

n(z) = a(z) ⇔ f ′
n(z) =

b(z). But F is not normal at 0. This shows that the condition that every zero of a has
multiplicity at most k − 1 (at least for k = 1) is sharp in Theorem 1.1.

Example 1.3 Let D = {z : |z| < 1} and F = { fn}, where fn(z) = nzk+1, and let
a(z) = zk+2 and b(z) = z. We see that f (k)

n (z) = n(k + 1)!z and fn(z) f
(k)
n (z) =

n2(k+1)!zk+2. So for every fn ∈ { fn} satisfies that fn(z) f (k)
n (z) = a(z) ⇔ f (k)

n (z) =
b(z). But F is not normal at 0. This shows that the condition that every zero of a has
multiplicity at most k − 1 is necessary in Theorem 1.1.
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Example 1.4 Let D = {z : |z| < 1} and F = { fn}, where fn(z) = 1/nz, and
let a(z) = 1/zk+2 and b = 1/zk+1. We see that f (k)

n (z) = (−1)kk!/nzk+1 and
fn(z) f ′

n(z) = (−1)kk!/n2zk+2. So for every fn ∈ { fn} satisfies that fn(z) f ′
n(z) =

a(z) ⇔ f ′
n(z) = b(z). But F is not normal at 0. This shows that the condition that

every pole of a has multiplicity at most k is necessary in Theorem 1.1.

2 Some Lemmas

In order to prove our theorem,we require the following results.We assume the standard
notations of value distribution theory, as presented and used in [2]. In particular, we

write fn
χ−−→ f on D to denote that the sequence { fn} converges spherically locally

uniformly to f on D and denote fn → f on D if the convergence is in Euclidean
metric.

Lemma 2.1 ([11, Theorem 2]; [12, Lemma 2]) Let F be a family of functions mero-
morphic on D, all of whose zeros have multiplicity at least k. Then if F is not
normal at some point z0 in D, there exist, for each 0 ≤ α < k, points zn in
D with zn → z0, positive numbers ρn → 0 and functions fn ∈ F such that

gn(ζ ) = ρ−α
n fn(zn + ρnζ )

χ−−→ g(ζ ) on C, where g is a nonconstant mero-
morphic function on C, all of whose zeros have multiplicity at least k, such that
g�(ζ ) ≤ g�(0) = 1. In particular, g has order at most two.

Here, as usual, g�(ζ ) = |g′(ζ )|/(1 + |g(ζ )|2) is the spherical derivative.
Lemma 2.2 [10, Lemmas 9 and 10] Let g be a nonconstant meromorphic function
in C, and a be a nonzero constant. If all zeros of g have multiplicity at least k and
g(k) �= 0, then the equation gg(k) = a has solutions onC, where k is a positive integer.

Lemma 2.3 [13, Lemma 8] Let f be a nonpolynomial rational function such that
f ′(z) �= 1 for z ∈ C. Then

f (z) = z + c + a

(z + b)m
,

where a �= 0, b, c are constants and m is a positive integer.

Lemma 2.4 [14, Theorem 1.1] Let g be a transcendental meromorphic function on
C, and R �≡ 0 be a rational function. If all zeros and poles of g are multiple except
possibly finitely many, then g′ − R has infinitely many zeros on C.

Lemma 2.5 Let k ≥ 2 and m be two integers, and let g be a meromorphic function
on C, all of whose zeros have multiplicity at least k. If g(ζ )g(k)(ζ ) �= γ ζm on C \ {0}
and g(k)(ζ ) �= 0 on C \ {0}, where γ is a given nonzero constant, then m ≥ k or

m ≤ −(k + 2), and g must be a rational function of the form g(ζ ) = Cζ
m+k
2 for some

nonzero constant C.
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Proof Without loss of generality, we may assume that γ = 1. If not, we can use

G(ζ ) = γ − 1
2 g to replace g. The conditions guarantee that all zeros of g, possibly

except ζ = 0, have multiplicity k exactly.
Suppose first that g is transcendental. Then by Nevanlinna’s second fundamental

theorem, we have

T

(

r,
gg(k)

ζm

)

≤ N

(

r,
gg(k)

ζm

)

+ N

⎛

⎝r,
1

gg(k)

ζm

⎞

⎠ + N

⎛

⎝r,
1

gg(k)

ζm
− 1

⎞

⎠ + S(r, g)

= N (r, g) + N

(
r,

1

g

)
+ S(r, g). (2.1)

where S(r, g) = o(T (r, g)) as r → ∞, possibly outside a set of finite measure. On
the other hand, we have by Nevanlinna’s first fundamental theorem

T

(

r,
gg(k)

ζm

)

≥ N

(

r,
gg(k)

ζm

)

≥ N (r, g) + N (r, g(k)) + S(r, g)

= 2N (r, g) + kN (r, g) + S(r, g)

≥ (k + 2)N (r, g) + S(r, g) (2.2)

and

T

(

r,
gg(k)

ζm

)

≥ N

(
r,

ζm

gg(k)

)
≥ N

(
r,

1

g

)
+ N

(
r,

1

g(k)

)
+ S(r, g)

= kN

(
r,

1

g

)
+ S(r, g). (2.3)

Then by (2.1)–(2.3), we have

T

(

r,
gg(k)

ζm

)

≤
(

1

k + 2
+ 1

k

)
T

(

r,
gg(k)

ζm

)

+ S(r, g). (2.4)

Since k ≥ 2, we see from (2.4) that

T

(

r,
gg(k)

ζm

)

= S(r, g). (2.5)

Then by (2.2) and (2.3), we have

N (r, g) = S(r, g), N

(
r,

1

g

)
= S(r, g).
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Thus

T

(
r,

g

g(k)

)
= T

(

r,
g(k)

g

)

+ O(1) = N

(

r,
g(k)

g

)

+ S(r, g) = S(r, g), (2.6)

and hence by (2.5) and (2.6),

2T (r, g) = T

(

r, ζm · gg
(k)

ζm
· g

g(k)

)

= S(r, g).

This is a contradiction. Hence there is no transcendental function that satisfies the
conditions of the lemma. ��

Now we consider the case that g is a rational function.

Case 1. g has at least one nonzero pole. We denote by ζi (i = 1, 2, . . . , n) all distinct
poles of g onC\{0}, and pi (i = 1, 2, . . . , n) their corresponding multiplicities. Since
g(k)(ζ ) �= 0 on C \ {0}, g(Ak) has the form

g(k)(ζ ) = λζ s
∏n

i=1(ζ − ζi )pi+k
, (2.7)

where s ∈ Z is an integer and λ is a nonzero constant. And since g(ζ )g(k)(ζ ) �= ζm

on C \ {0}, we have

g(ζ )g(k)(ζ ) = ζm + μζ l
∏n

i=1(ζ − ζi )2pi+k
= ζm ∏n

i=1(ζ − ζi )
2pi+k + μζ l

∏n
i=1(ζ − ζi )2pi+k

(2.8)

for some integer l ∈ Z and nonzero constant μ. So, by (2.7) and (2.8),

g(ζ ) = ζm ∏n
i=1(ζ − ζi )

2pi+k + μζ l

λζ s
∏n

i=1(ζ − ζi )pi
. (2.9)

Next, we consider three cases according to m > l, m = l and m < l.

Case 1.1. Suppose that m > l. Then as all zeros of g, possibly except ζ = 0, have
multiplicity k exactly, we see from (2.9) that all zeros of the polynomial

P1(ζ ) = ζm−l
n∏

i=1

(ζ − ζi )
2pi+k + μ

on C \ {0}, and hence on C since P1(0) = μ �= 0, have exact multiplicity k ≥ 2. This
shows that P1 has

τ1 = deg P1
k

= m − l + ∑n
i=1(2pi + k)

k
> n

123



160 X. Liu

distinct zeros, and each zero of P1 is a zero of P ′
1 with multiplicity k − 1. By compu-

tation, we have

P ′
1(ζ ) = ζm−l−1

n∏

i=1

(ζ − ζi )
2pi+k−1

[
(m − l)

n∏

i=1

(ζ − ζi ) + ζ

n∑

i=1

(2pi + k)

×
∏

j �=i

(ζ − ζ j )

]
.

Since P1(ζi ) �= 0 and P1(0) �= 0, it follows that the polynomial

Q1(ζ ) = (m − l)
n∏

i=1

(ζ − ζi ) + ζ

n∑

i=1

(2pi + k)
∏

j �=i

(ζ − ζ j )

has at least τ1 distinct zeros with multiplicity k − 1. Thus,

n = deg Q1 ≥ (k − 1)τ1 > (k − 1)n.

This is impossible, since k ≥ 2.

Case 1.2. Suppose thatm = l. Then as showed in Case 1.1, all zeros of the polynomial

P2(ζ ) =
n∏

i=1

(ζ − ζi )
2pi+k + μ

on C \ {0} have exact multiplicity k ≥ 2. Denote by α the multiplicity if 0 is a zero of
P2, and say α = 0 if P2(0) �= 0. This shows that P2 has

τ2 = deg P2 − α

k
=

∑n
i=1(2pi + k) − α

k

distinct zeros onC\{0}, and each zero of P2 onC\{0} is a zero of P ′
2 with multiplicity

k − 1. By computation, we have

P ′
2(ζ ) =

n∏

i=1

(ζ − ζi )
2pi+k−1Q2(ζ ), where Q2(ζ ) =

n∑

i=1

(2pi + k)
∏

j �=i

(ζ − ζ j ).

Since P2(ζi ) �= 0, the polynomial Q2 has at least τ2 distinct zeros on C \ {0} with
multiplicity k − 1. Further, if α ≥ 2, then 0 is a zero of Q2 with multiplicity α − 1.
Let β = α − 1 if α ≥ 2, and β = 0 if α = 0 or α = 1. Thus, we see that

n − 1 = deg Q2 ≥ (k − 1)τ2 + β = k − 1

k

n∑

i=1

(2pi + k) + β − k − 1

k
α
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≥ (k − 1)(k + 2)n

k
+ β − α.

Then we have

α − 1 ≥ k2 − 2

k
n + β > β,

which is a contradiction.

Case 1.3. Suppose thatm < l. Then as showed in Case 1.1, all zeros of the polynomial

P3(ζ ) =
n∏

i=1

(ζ − ζi )
2pi+k + μζ l−m

onC\ {0} have exact multiplicity k ≥ 2. Note that P3(0) �= 0. This shows that P3 has

τ3 = deg P3
k

distinct zeros on C \ {0}, and each zero of P3 is a zero of P ′
3 with multiplicity k − 1.

By computation, we have

(
ζm−l P3(ζ )

)′ = ζm−l−1
n∏

i=1

(ζ − ζi )
2pi+k−1Q3(ζ ),

where

Q3(ζ ) = (m − l)
n∏

i=1

(ζ − ζi ) + ζ

n∑

i=1

(2pi + k)
∏

j �=i

(ζ − ζ j ).

Since P3(ζi ) �= 0 and P3(0) �= 0, it follows that the polynomial Q3 has at least τ3
distinct zeros with multiplicity k − 1. Thus,

deg Q3 ≥ (k − 1)τ3. (2.10)

If deg P3 ≥ ∑n
i=1(2pi +k), then τ3 ≥ ∑n

i=1(2pi +k)/k ≥ (k+2)n/k. This, together
with (2.10) and the fact deg Q3 ≤ n, leads to a contradiction.

Thus deg P3 <
∑n

i=1(2pi + k). Since deg P3 = max{∑n
i=1(2pi + k), l − m} if∑n

i=1(2pi + k) �= l − m, we see that

n∑

i=1

(2pi + k) = l − m (2.11)
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162 X. Liu

and μ = −1. Hence deg Q3 ≤ n − 1, so that by (2.10)

τ3 ≤ n − 1

k − 1
. (2.12)

Now since P3 has τ3 distinct zeros with exact multiplicity k, we can obtain that

n∏

i=1

(ζ − ζi )
2pi+k − ζ l−m = c

[
τ3∏

i=1

(ζ − wi )

]k

(2.13)

for some nonzero constant c and τ3 distinct nonzero points wi . It follows from (2.13)
with the transformation ζ → 1/z that

R(z) :=
n∏

i=1

(1 − ζi z)
2pi+k − 1 = czl−m−τ3k

[
τ3∏

i=1

(1 − wi z)

]k

.

Thus 0 is a zero of R with multiplicity l − m − τ3k. Since

R′(z) =
n∏

i=1

(1 − ζi z)
2pi+k−1

⎡

⎣
n∑

i=1

(2pi + k)(−ζi )
∏

j �=i

(1 − ζ j z)

⎤

⎦ ,

we see that 0 is a zero of R′ with multiplicity at most n − 1. Hence

l − m − τ3k ≤ n.

This with (2.11) and (2.12) shows that

(k + 2)n ≤
n∑

i=1

(2pi + k) = l − m ≤ τ3k + n ≤ k(n − 1)

k − 1
+ n,

which is impossible.

Case 2. g has no nonzero poles. Then as g(k)(ζ ) �= 0 onC\{0}, we have g(k)(ζ ) = cζ s

for some constant c �= 0 and integer s ∈ Z.
If s ≥ 0, then g is a polynomial with deg g = s + k. And since g(ζ )g(k)(ζ ) �= ζm

onC\{0}, we also have g(ζ )g(k)(ζ ) = ζm +λζ t for some constant λ �= 0 and integer
t . Thus

g(ζ ) = 1

c
ζm−s + λ

c
ζ t−s .

If m �= t , then it can be seen that g has at least one simple zero on C \ {0}, which
contradicts that all zeros of g on C \ {0} have multiplicity k ≥ 2. Thus m = t , then
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λ + 1 �= 0 and g(ζ ) = (λ + 1)ζm−s/c. Thus m − s = deg g = s + k, and hence

m − s = (m + k)/2, so that g(ζ ) = Cζ
m+k
2 for some nonzero constant C and m ≥ k.

If s < 0, then 0 is the pole of g with multiplicity −s − k > 0. And since
g(ζ )g(k)(ζ ) �= ζm on C \ {0}, we also have g(ζ )g(k)(ζ ) = ζm + λζ t for some
constant λ �= 0 and integer t . Thus

g(ζ ) = 1

c
ζm−s + λ

c
ζ t−s .

If m �= t , then it can be seen that g has at least one simple zero on C \ {0}, which
contradicts that all zeros of g on C \ {0} have multiplicity k ≥ 2. Thus m = t ,
then λ + 1 �= 0 and g(ζ ) = (λ + 1)ζm−s/c. Thus −m + s = −s − k, and hence

m − s = (m + k)/2 < 0, so that g(ζ ) = Cζ
m+k
2 for some nonzero constant C . Note,

m = 2s + k ≤ −2(k + 1) + k ≤ −(k + 2).
The lemma is proved. ��

Lemma 2.6 Let g be a meromorphic function on C. If g′(ζ ) �= 0 on C \ {0}, then
the equation g(ζ )g′(ζ ) = γ ζ−1 has solutions on C \ {0}, where γ is a given nonzero
constant.

Proof Without loss of generality, we may assume that γ = 1.
Suppose first that g is transcendental. Then by Lemma 2.4, 1

2 (g
2)′ − ζ−1 has

infinitely many zeros on C, hence g(ζ )g′(ζ ) = ζ−1 has infinitely many zeros on
C \ {0}.

Next we suppose that g is a polynomial. Since g′(ζ ) �= 0 on C \ {0}, we have
g(ζ ) = aζ n + b, where a �= 0. Then g(ζ )g′(ζ )− ζ−1 = nζ−1(aζ 2n + bζ n + 1) must
have zero on C \ {0}. ��

Finally, we suppose that g is non-polynomial rational function.

Case 1. If g′(ζ ) �= 0 on C, then by Lemma 2.3, g(ζ ) = B + A/(z + a)n , where
A �= 0, B are two constants. Then

g(ζ )g′(ζ ) − ζ−1 = −An[A + B(ζ + a)n]ζ − (ζ + a)2n+1

ζ(ζ + a)2n+1 .

If a �= 0, we see that g(ζ )g′(ζ ) − ζ−1 must have zeros on C \ {0}. If a = 0, then

g(ζ )g′(ζ ) − ζ−1 = −An(A + Bζ n) − ζ 2n

ζ 2n+1

also has zeros on C \ {0}.
Case 2. If g′(ζ ) �= 0 on C \ {0} and g′(0) = 0, then we can suppose that

g′(ζ ) = μζ l
∏n

i=1(ζ − ζi )pi+1
, (2.14)
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where ζi �= 0(i = 1, 2, . . . , n) are all distinct poles of g, μ is a nonzero constant and
l ∈ Z is a positive integer. If g(ζ )g′(ζ ) �= ζ−1 on C \ {0}, then we can suppose that

g(ζ )g′(ζ ) = ζ−1 + λζ s
∏n

i=1(ζ − ζi )2pi+1
,

where λ is a nonzero constant. We see that s = −1, otherwise ζ = 0 would be a pole
of gg′, hence of g, which contradicts that g′(0) = 0. Then we have

g(ζ )g′(ζ ) =
∏n

i=1(ζ − ζi )
2pi+1 + λ

ζ
∏n

i=1(ζ − ζi )2pi+1
,

hence

g(ζ ) = Q(ζ )

μζ l+1
∏n

i=1(ζ − ζi )pi
, where Q(ζ ) =

n∏

i=1

(ζ − ζi )
2pi+1 + λ.

Case 2.1. If g(0) = 0, then ζ = 0 is a zero of Q(ζ ) with multiplicity 2(l + 1) and

g(ζ ) = ζ l+1P(ζ )

μ
∏n

i=1(ζ − ζi )pi
,

where P(ζ ) is a monic polynomial and

deg P = deg Q − 2(l + 1) =
n∑

i=1

(2pi + 1) − 2(l + 1) ≥ 0.

Then we have

g′(ζ ) = ζ l P1(ζ )

μ
∏n

i=1(ζ − ζi )pi+1,
(2.15)

where P1(ζ ) = [(l+1)P(ζ )+ζ P ′(ζ )]∏n
i=1(ζ −ζi )−ζ P(ζ )

∑n
i=1 pi

∏
j �=i (ζ −ζ j ).

We see that the polynomial P1(ζ ) is not a constant, since the first coefficient of P1(ζ )

is

l + 1 + deg P −
n∑

i=1

pi =
n∑

i=1

(pi + 1) − (l + 1) ≥ n

2
> 0.

Hence comparing with (2.15) and (2.14), it is a contradiction.

Case 2.2. If g(0) �= 0, then ζ = 0 is a zero of Q(ζ ) with multiplicity l + 1 and

g(ζ ) = P(ζ )

μ
∏n

i=1(ζ − ζi )pi
,
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where P(ζ ) is a monic polynomial and

deg P = deg Q − (l + 1) =
n∑

i=1

(2pi + 1) − (l + 1) ≥ 0.

Then we have

g′(ζ ) = P2(ζ )

μ
∏n

i=1(ζ − ζi )pi+1 , (2.16)

where P2(ζ ) = P ′(ζ )
∏n

i=1(ζ − ζi ) − P(ζ )
∑n

i=1 pi
∏

j �=i (ζ − ζ j ). We see that the
leading term of P2(ζ ) is

(

deg P −
n∑

i=1

pi

)

ζ deg P+n−1 =
[

n∑

i=1

(pi + 1) − (l + 1)

]

ζ
∑n

i=1(2pi+2)−(l+2).

If
∑n

i=1(pi + 1) − (l + 1) �= 0, then
∑n

i=1(2pi + 2) − (l + 2) �= l. Hence comparing
with (2.16) and (2.14), it is a contradiction.

If
∑n

i=1(pi +1)−(l+1) = 0, then
∑n

i=1(2pi +2)−(l+2) = l. Hence comparing
with (2.16) and (2.14), it is also a contradiction.

The lemma is proved.

3 Proof of Theorem 1.1

In this section, we first prove the following theorem.

Theorem 3.1 Let { fn}be a sequence ofmeromorphic functions on D whose zeros have
multiplicity at least k, where k is a positive integer. Let {an} and {hn} be two sequences
of meromorphic functions on D such that an(z)

χ−−→ a(z) and hn(z)
χ−−→ h(z) on D,

where a(z) �= 0,∞, h(z) �= 0,∞ on D, and let l ∈ Z be an integer such that 2l < k.
Then the family { fn} is normal on D provided that fn(z) f

(k)
n (z) = an(z) ⇔ f (k)

n (z) =
z−l hn(z) for every fn ∈ { fn}.
Proof Suppose that { fn} is not normal at some point z0 ∈ D. Then by Lemma 2.1,
there exist points zn → z0, a subsequence of { fn} (we still denote { fn}) and positive
numbers ρn → 0, such that

gn(ζ ) = ρ
− k

2
n fn(zn + ρnζ )

χ−−→ g(ζ )

on D, where g a nonconstant meromorphic function with bounded spherical derivative
(and hence of order at most two), all of whose zeros are of multiplicity at least k. We
denote a0 = a(z0)( �= 0,∞). ��

Case 1. l ≤ 0, or l > 0 with z0 �= 0.
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We claim that (i) gg(k) �≡ a0, and (ii) g(k) �≡ 0.
In fact, if gg(k) ≡ a0, then g is a nonconstant entire function (and hence of expo-

nential type) and g �= 0. Hence g(ζ ) = ecζ+d , where c( �= 0), d ∈ C. But then
g(ζ )g(k)(ζ ) = cke2cζ+2d �≡ a0 , a contradiction. Similarly, if g(k) ≡ 0, then g is a
nonconstant polynomial of degree less than k. This contradicts that all zeros of g have
multiplicity at least k.

We further claim that (iii) gg(k) �= a0, and (iv) g(k) �= 0.
To prove (iii), suppose that g(ζ0)g(k)(ζ0) = a0 for some ζ0 ∈ C. Then g is holomor-

phic on some close neighborhoodU of ζ0, and hence gn(ζ )g(k)
n (ζ )−an(zn +ρnζ ) →

g(ζ )g(k)(ζ )−a0 onU uniformly. Since gg(k) �≡ a0, by Hurwitz’s theorem, there exist
points ζn → ζ0 such that (for n sufficiently large)

an(zn + ρnζn) = gn(ζn)g
(k)(ζn) = fn(zn + ρnζn) f

(k)
n (zn + ρnζn).

Hence by the condition, f (k)
n (zn + ρnζn) = (zn + ρnζn)

−l hn(zn + ρnζn), so that

g(k)
n (ζn) = ρ

k
2
n f (k)

n (zn + ρnζn) = ρ
k
2
n (zn + ρnζn)

−l hn(zn + ρnζn). Thus g(k)(ζ0) =
limn→∞ g(k)(ζn) = 0, which contradicts that g(ζ0)g(k)(ζ0) = a0 �= 0. This proves
(iii).

Next we prove (iv). Suppose that g(k)(ζ0) = 0 for some ζ0 ∈ C. Then g is holomor-

phic on some close neighborhoodU of ζ0, and hence g
(k)
n (ζ )−ρ

k
2
n (zn+ρnζn)

−l hn(zn+
ρnζ ) → g(k)(ζ ) onU uniformly. Since g(k)(ζ ) �≡ 0, by Hurwitz’s theorem, there exist
points ζn → ζ0 such that (for n sufficiently large)

g(k)
n (ζn) − ρ

k
2
n (zn + ρnζn)

−l hn(zn + ρnζn) = 0.

It follows that f (k)
n (zn + ρnζn) = (zn + ρnζn)

−l hn(zn + ρnζn), and hence by the
condition, we have

an(zn + ρnζn) = fn(zn + ρnζn) f
(k)
n (zn + ρnζn) = gn(ζn)g

(k)
n (ζn).

This leads to a contradiction that

a0 = a(z0) = lim
n→∞ gn(ζn)g

(k)
n (ζn) = g(ζ0)g

(k)(ζ0) = 0.

(iv) is also proved.
However, by Lemma 2.2, there is no nonconstant meromorphic function g on C

with the properties (iii) and (iv) such that all zeros have multiplicity at least k.

Case 2. l ≥ 1 and z0 = 0. Then we have k > 2 for the condition 2l < k. In this part,
we consider two cases.

Case 2.1. Suppose that zn
ρn

→ ∞. Let

Gn(ζ ) = z
− k

2
n fn(zn + znζ ).
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Then we see that

Gn(ζ )G(k)
n (ζ ) = an(zn + znζ ) ⇐⇒ G(k)

n (ζ ) = z
k
2−l
n (1 + ζ )−l hn(zn + znζ ).

By Case 1, we see that {Gn} is normal on 
(0, 1). Say Gn
χ−−→ G on 
(0, 1). We

claim that G(0) = 0 and hence G �≡ ∞. Suppose G(0) �= 0, then by zn
ρn

→ ∞, we
have

gn(ζ ) = ρ
− k

2
n fn(zn + ρnζ ) =

(
zn
ρn

) k
2

Gn

(
ρn

zn
ζ

)
χ−−→ ∞

on C. This is a contradiction. Hence G(0) = 0, so that G(k)
n → G(k) in some neigh-

borhood of 0. It follows that

g(k)
n (ζ ) =

(
ρn

zn

) k
2

G(k)
n

(
ρn

zn
ζ

)
χ−−→ 0

on C. Thus g(k) ≡ 0, which contradicts that all zeros of g have multiplicity at least k
and g is nonconstant.

Case 2.2. So we may assume that zn
ρn

→ c, a finite complex number. Then we have

Hn(ζ ) = ρ
− k

2
n fn(ρnζ ) = gn

(
ζ − zn

ρn

)
χ−−→ g(ζ − c) := H(ζ )

on C, and all zeros of H(ζ ) have multiplicity at least k. And since g is nonconstant,
we see that H is also nonconstant. We see from the condition that

Hn(ζ )H (k)
n (ζ ) = an(ρnζ ) ⇐⇒ H (k)

n (ζ ) = ρ
k
2−l
n ζ−l hn(ρnζ ). (3.1)

We claim that (i) HH (k) �≡ a0 and (ii) H (k) �≡ 0.
If HH (k) ≡ a0, then H is a zero-free entire function of finite order and H is

not a polynomial. Thus H(ζ ) = eQ(ζ ), where Q is a nonconstant polynomial, then
H (k)(ζ ) = P(ζ )eQ(ζ ), where P is a polynomial. It follows that H(ζ )H (k)(ζ ) =
P(ζ )e2Q(ζ ) �≡ a0, which is a contradiction. So HH (k) �≡ a(0). If H (k) ≡ 0, H would
be a polynomial of degree less than k. Since H is nonconstant, H has at least one
zero. The multiplicity of the zero cannot be larger than the degree of the polynomial
H . This contradicts that all zeros of H have multiplicity at least k.

We further claim that (iii) HH (k) �= a0 on C \ {0}, and (iv) H (k) �= 0 on C \ {0}.
Suppose that H(ζ0)H (k)(ζ0) = a0 at some point ζ0 �= 0. Then H(ζ0) �= ∞, and

hence H is holomorphic on some close neighborhood U of ζ0. Thus

Hn(ζ )H (k)
n (ζ ) − an(ρnζ ) → H(ζ )H (k)(ζ ) − a0

123



168 X. Liu

on U uniformly. Since H(ζ )H (k)(ζ ) �≡ a0, by Hurwitz’s theorem, there exist points
ζn, ζn → ζ0, such that (for n sufficiently large)

Hn(ζn)H
(k)
n (ζn) − an(ρnζn) = 0.

By (3.1), we have H (k)
n (ζn) = ρ

k
2−l
n ζ−l

n hn(ρnζn) and hence

H (k)(ζ0) = lim
n→∞ H (k)

n (ζn) = lim
n→∞ ρ

k
2−l
n ζ−l

n hn(ρnζn) = 0,

which contradicts that H(ζ0)H (k)(ζ0) = a0 �= 0. The claim (iii) is proved.
Next we suppose that H (k)(ζ0) = 0 at some point ζ0 �= 0. Then H(ζ0) �= ∞, so

that H is holomorphic on some close neighborhood U of ζ0, and hence

H (k)
n (ζ ) − ρ

k
2−l
n ζ−l hn(ρnζ ) → H (k)(ζ )

onU uniformly. Since H (k)(ζ ) �≡ 0, byHurwitz’s theorem, there exist points ζn, ζn →
ζ0, such that (for n sufficiently large)

H (k)(ζn) − ρ
k
2−l
n ζ−l

n hn(ρnζn) = 0.

Then by (3.1), we have Hn(ζn)H
(k)
n (ζn) = an(ρnζn), and hence

H(ζ0)H
(k)(ζ0) = lim

n→∞ Hn(ζn)H
(k)
n (ζn) = lim

n→∞ an(ρnζn) = a0.

This contradicts the claim (iii). The claim (iv) is also proved.

Thus, by Lemma 2.5 with m = 0, H(ζ ) = Cζ
k
2 . This contradicts that all zeros of

H have multiplicity at least k.
Hence F is normal on D. The proof is completed. ��

Proof of Theorem 1.1. By the proof of Theorem 3.1, we have showed thatF is normal
on D \ a−1(0)

⋃
a−1(∞), where a−1(0) stands for the set of zeros of a and a−1(∞)

stands for the set of poles of a. Next, we prove that F is also normal at every zero or
pole of a in D.

Suppose thatF is not normal at z0 ∈ D, where z0 is a zero or a pole ofa.Without loss
of generality, wemay say z0 = 0 and assume that a(z) = zmh(z) and b(z) = z−lb1(z),
where m, l ∈ Z, h(z), and b1(z) are holomorphic and zero free on 
(0, δ) ⊂ D. We
assume that h(0) = 1. We note by the condition that −k ≤ m ≤ k − 1,m �= 0 and
l < k−m

2 if l > 0. In particular, 0 ≤ m+k
2 < k.

Then by Lemma 2.1, there exist points zn → 0, functions fn ∈ F , and positive
numbers ρn → 0 such that

gn(ζ ) = ρ
−m+k

2
n fn(zn + ρnζ )

χ−−→ g(ζ )
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on C, where g is a nonconstant meromorphic function of finite order, and all zeros of
g have multiplicity at least k.

Case 1. Suppose that zn
ρn

→ ∞. Let

Gn(ζ ) = z
−m+k

2
n fn(zn + znζ ).

Then by the condition f (z) f (k)(z) = a(z) ⇔ f (k)(z) = b(z), we have

Gn(ζ )G(k)
n (ζ ) = (1 + ζ )mh(zn + znζ ) ⇐⇒ G(k)

n (ζ ) = z
k−m
2 −l

n (1 + ζ )−lb1(zn + znζ ).

Since zn → 0 and h(0), b1(0) �= 0,∞, by Theorem 3.1, we see that {Gn} is normal

on 
(0, 1). Say Gn
χ−−→ G on 
(0, 1). We claim that G(0) = 0 and hence G �≡ ∞.

Suppose G(0) �= 0, then by zn
ρn

→ ∞, we have

gn(ζ ) = ρ
−m+k

2
n fn(zn + ρnζ ) =

(
zn
ρn

)m+k
2

Gn

(
ρn

zn
ζ

)
χ−−→

{
∞, m + k > 0

G(0), m + k = 0

on C. This is a contradiction. Hence G(0) = 0, so that G(k)
n → G(k) in some neigh-

borhood of 0. It follows that

g(k)
n (ζ ) =

(
ρn

zn

) k−m
2

G(k)
n

(
ρn

zn
ζ

)
χ−−→ 0

on C. Thus g(k) ≡ 0, which contradicts that all zeros of g have multiplicity at least k
and g is nonconstant.

Case 2. So we may assume that zn
ρn

→ c, a finite complex number. Then we have

Hn(ζ ) = ρ
−m+k

2
n fn(ρnζ ) = gn

(
ζ − zn

ρn

)
χ−−→ g(ζ − c) := H(ζ )

on C, and all zeros of H(ζ ) have multiplicity at least k. And since g is nonconstant,
we see that H is also nonconstant. We see from the condition that

Hn(ζ )H (k)
n (ζ ) = ζmh(ρnζ ) ⇐⇒ H (k)

n (ζ ) = ρ
k−m
2 −l

n ζ−lb1(ρnζ ). (3.2)

We claim that (i) H(ζ )H (k)(ζ ) �≡ ζm and (ii) H (k)(ζ ) �≡ 0.
In fact, if H(ζ )H (k)(ζ ) ≡ ζm , then ζ = 0 is the only possible zero or pole of

H . If H is a transcendental function, then H(ζ ) = ζ αeQ(ζ ) for some α ∈ Z and
polynomial Q. Thus H (k)(ζ ) = P(ζ )eQ(ζ ), where P(ζ )( �≡ 0) is a rational function.
It follows that HH (k) is also a transcendental function, which is a contradiction. If H
is a rational function and ζ = 0 is a pole of H , then ζ = 0 is the pole of HH (k) with
multiplicity at least k + 2, which contradicts H(ζ )H (k)(ζ ) ≡ ζm,−k ≤ m ≤ k − 1.
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If H is a rational function and ζ = 0 is not a pole of H , then H is a polynomial. If
deg H ≥ k, then deg(HH (k)) ≥ k. Otherwise, HH (k) ≡ 0. Both cases contradict that
H(ζ )H (k)(ζ ) ≡ ζm . So H(ζ )H (k)(ζ ) �≡ ζm .

If H (k) ≡ 0, H would be a polynomial of degree less than k. Since H is nonconstant,
H has at least one zero. The multiplicity of the zero cannot be larger than the degree
of the polynomial H . This contradicts that all zeros of H have multiplicity at least k.

We further claim that (iii) H(ζ )H (k)(ζ ) �= ζm on C \ {0}, and (iv) H (k)(ζ ) �= 0 on
C \ {0}.

Suppose that H(ζ0)H (k)(ζ0) = ζm
0 , ζ0 �= 0. Then H(ζ0) �= ∞. H is holomorphic

on some close neighborhood U of ζ0, and hence

Hn(ζ )H (k)
n (ζ ) − ζmh(ρnζ ) → H(ζ )H (k)(ζ ) − ζm

on U uniformly. Since H(ζ )H (k)(ζ ) �≡ ζm , by Hurwitz’s theorem, there exist points
ζn, ζn → ζ0, such that (for n sufficiently large)

Hn(ζn)H
(k)
n (ζn) − ζm

n h(ρnζn) = 0.

By (3.2), we have

H (k)
n (ρnζn) = ρ

k−m
2 −l

n ζ−l
n b1(ρnζn).

By the condition k−m
2 − l > 0 and ζn → ζ0 �= 0, we have

H (k)(ζ0) = lim
n→∞ H (k)

n (ζn) = lim
n→∞ ρ

k−m
2 −l

n ζ−l
n b1(ρnζn) = 0,

which contradicts that H(ζ0)H (k)(ζ0) = ζm
0 �= 0. Then (iii) is proved.

Next we suppose that H (k)(ζ0) = 0, ζ0 �= 0. Thus H(ζ0) �= ∞. H is holomorphic
on some close neighborhood U of ζ0, and hence

H (k)
n (ζ ) − ρ

k−m
2 −l

n ζ−lb1(ρζ ) → H (k)(ζ )

onU uniformly. Since H (k)(ζ ) �≡ 0, byHurwitz’s theorem, there exist points ζn, ζn →
ζ0, such that (for n sufficiently large )

H (k)(ζn) − ρ
k−m
2 −l

n ζ−l
n b1(ρζn) = 0.

Then by (3.2) we have Hn(ζn)H
(k)
n (ζn) = ζm

n h(ρnζn), thus

H(ζ0)H
(k)(ζ0) = lim

n→∞ Hn(ζn)H
(k)
n (ζn) = lim

n→∞ ζm
n h(ρnζn) = ζm

0 .

This contradicts to claim (iii). So (iv) is proved.
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If k ≥ 2, then byLemma2.5 and claims (iii) and (iv),we getm ≥ k orm ≤ −(k+2),
which are ruled out by the assumption.

If k = 1, thenm = −1. By Lemma 2.6, there is nomeromorphic function satisfying
claims (iii) and (iv).

The proof of Theorem 1.1 is completed. ��
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