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Abstract In this paper, we study Chen ideal submanifolds Mn of dimension n in
Euclidean spaces En+m (n ≥ 4, m ≥ 1) satisfying curvature conditions of pseudo-
symmetry type of the form: the difference tensor R · C − C · R is expressed by
some Tachibana tensors. Precisely, we consider one of the following three conditions:
R ·C−C ·R is expressed as a linear combination of Q(g, R) and Q(S, R), R ·C−C ·R
is expressed as a linear combination of Q(g,C) and Q(S,C) and R · C − C · R is
expressed as a linear combination of Q(g, g∧S) and Q(S, g∧S).We then characterize
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12, Kragujevac 34000, Serbia

3 Departement Wiskunde, Fakulteit Wetenschappen, Katholieke Universiteit Leuven,
Celestijnenlaan 200B, 3001 Heverlee, Belgium

4 Laboratoire LAMAV - ISTV2, Université de Valenciennes et du Hainaut-Cambrésis,
59313 Valenciennes Cedex 9, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0164-7&domain=pdf


104 R. Deszcz et al.

Chen ideal submanifoldsMn of dimension n in Euclidean spacesEn+m (n ≥ 4,m ≥ 1)
which satisfy one of the following six conditions of pseudo-symmetry type: R·C−C ·R
and Q(g, R) are linearly dependent, R ·C−C · R and Q(S, R) are linearly dependent,
R ·C−C ·R and Q(g,C) are linearly dependent, R ·C−C ·R and Q(S,C) are linearly
dependent, R ·C −C · R and Q(g, g∧ S) are linearly dependent and R ·C −C · R and
Q(S, g ∧ S) are linearly dependent. We also prove that the tensors R · R − Q(S, R)

and Q(g,C) are linearly dependent at every point of Mn at which its Weyl tensor C
is non-zero.

Keywords Submanifold · Condition of pseudo-symmetry type · Generalized
Einstein metric condition · Chen ideal submanifold · Roter space · Tachibana tensor

Mathematics Subject Classification Primary 53B20, 53B25, 53B30, 53B50 ·
Secondary 53C25, 53C40

1 Some Generalized Einstein Metric Conditions

As it was presented in [61]: Elie Cartan in his book [5] defined the axiom of r -planes as
follows: a RiemannianmanifoldM of dimension n > 3 satisfies the axiom of r -planes,
where r is a fixed integer 2 < r < n, if for each point p of M and any r -dimensional
subspace S of the tangent space Tp(M) there exists an r -dimensional totally geodesic
submanifold V containing p such that Tp(V ) = S. He proved that if M satisfies
the axiom of r -planes for some r , then M has constant sectional curvature [5]. In
[61] it was proposed the following axiom called axiom of r-spheres: for each point
p of M and any r -dimensional subspace S of Tp(M), there exists an r -dimensional
umbilical submanifold V with parallel mean curvature vector field such that p ∈ V
and Tp(V ) = S. In [61] (Theorem) it was proved that a Riemannian manifold M of
dimension n > 3 satisfies the axiom of r -spheres for some r , 2 < r < n, then M
has constant sectional curvature. Further, axioms of this kind (i.e. related to properties
of submanifolds) were introduced and investigated by several authors, e.g. see [67].
Reference [7, Chap. 3, Sect. 20] contains a survey related to this subject. For recent
results we refer to [59] and [66] and references therein.

Other kind of investigations on submanifolds in Riemannian manifolds was pro-
posed by Bang-Yen Chen in the early 1990s, introducing a family of Riemannian
invariants δ(n1, . . . , nk), known also as the δ-invariants, δ-curvatures or Chen invari-
ants. At the same time he established for arbitrary Riemannian submanifolds general
optimal inequalities involving those new intrinsic invariants (cf. [16]). As it was stated
in [12]: the δ-curvatures are very different in nature from the standard scalar and Ricci
curvatures; simply due to the fact that both scalar and Ricci curvatures are the “total
sum” of sectional curvatures on a Riemannian manifold. In contrast, the δ-curvature
invariants are obtained from the scalar curvature by throwing away a certain amount of
sectional curvatures. In this way we can obtain other invariants also called δ-invariants
[9, p. 253]: Kählerian δ-invariants (see, e.g. [13]), affine δ-invariants [14], contact δ-
invariants [16], submersion δ-invariant [8,11], etc. We mention that in [15], by an
application of some δ-invariants, a characterizations of Einstein spaces and confor-
mally flat spaces were found, generalizing two well-known results of I.M. Singer -
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J.A. Thorpe and of R.S. Kulkarni. δ-invariants were investigated by several authors.
We refer to [6,8] and [9] as fundamental works on δ-invariants. We also refer to recent
survey articles [10] and [11] related to that subject.

Our paper is related to the above-mentioned Chen’s theory. Namely, we investi-
gate curvature properties of pseudo-symmetry type of submanifolds Mn in Euclidean
ambient spaces En+m , n ≥ 4, m ≥ 1, which realizes an optimal equality between
their squared mean curvature, i.e. the extrinsic scalar-valued curvature, and their δ-
curvature, more precisely, δ(2)-curvature of Chen, which is one of the main intrinsic
scalar-valued curvature invariants. Submanifolds having that property are called Chen
ideal submanifolds.

Let (M, g), dim M = n ≥ 3, be a semi-Riemannian manifold and let ∇ be its
Levi-Civita connection. The manifold (M, g) is said to be an Einstein manifold [3] if
at every point of M its Ricci tensor S is proportional to the metric tensor g, i.e.

S = τ

n
g (1)

on M , where τ is the scalar curvature of (M, g). In particular, if S vanishes on M then
(M, g) it is called a Ricci-flat manifold. According to [3, p. 432], the condition (1)
is called the Einstein metric condition. Evidently, if a manifold (M, g), n ≥ 3, is a
non-Einstein manifold then the set US of all points at which S is not proportional to g
is an open and non-empty subset of M . Further, (M, g) is said to be a quasi-Einstein
manifold if at every point p ∈ US we have rank (S − α g) = 1, for some α ∈ R, i.e.
S = α g + ε w ⊗ w, for some α ∈ R, where ε = ±1 and w is a non-zero covector at
p. It is known that quasi-Einstein manifolds arose during the study of exact solutions
of the Einstein field equations and investigation on quasi-umbilical hypersurfaces of
conformally flat spaces (e.g. see [18,26], and references therein).

An extension of the class of Einstein semi-Riemannian manifolds form manifolds
with parallel Ricci tensor S, i.e. ∇S = 0. Such manifolds are called Ricci-symmetric.
A very important subclass of the class of Ricci-symmetric manifolds forms locally
symmetric manifolds, i.e. manifolds with parallel Riemann–Christoffel curvature ten-
sor R, i.e. ∇R = 0. This implies the following integrability condition

R(X,Y ) · R = 0, (2)

where R(X,Y )· denotes the derivation obtained from the curvature endomorphism
R(X,Y ) and X,Y are vector fields on M . From (2) we get immediately

R(X,Y ) · C = 0, (3)

where C is the Weyl conformal curvature tensor of (M, g). We refer to Sect. 2
for precise definitions of the symbols used. Manifolds satisfying (2), resp. (3), are
called semi-symmetric manifolds [64], resp. Weyl-semi-symmetric manifolds [23].
We denote by UC the set of all points of a semi-Riemannian manifold (M, g), n ≥ 4,
at which its Weyl conformal curvature tensor C is non-zero. In [52] it was proved that
(2) and (3) are equivalent at every point of UC of a manifold (M, g), n ≥ 5. That result
is not true when n = 4 [20,71]. We also mention that hypersurfaces satisfying (3) or
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C(X,Y ) · R = 0, (4)

were investigated in [4]. C(X,Y )· denotes the derivation obtained from the Weyl
conformal curvature endomorphism C(X,Y ).

An extension of the class of semi-symmetric, resp. Weyl-semi-symmetric, mani-
folds form pseudo-symmetric, resp. Weyl-pseudo-symmetric, manifolds.

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudo-symmetric [23,
26,34,35] if the tensorsR(X,Y ) · R and (X ∧g Y ) · R are linearly dependent at every
point of M . This is equivalent to

R(X,Y ) · R = LR (X ∧g Y ) · R (5)

on UR = {x ∈ M | R − (κ/((n − 1)n))G �= 0 at x}, where LR is some function on
this set and the (0, 4)-tensor G is defined by G(X,Y,W, Z) = g((X ∧g Y )Z ,W ).
It is easy to see that the function LR is uniquely determined on UR . We note that
US ∪ UC = UR .

In [46] it was shown that hypersurfaces in spaces of constant curvature, with exactly
two distinct principal curvatures at every point, are pseudo-symmetric. Thus in par-
ticular, Cartan’s and Schouten’s investigations of quasi-umbilical hypersurfaces in
spaces of constant curvature are closely related to pseudo-symmetric manifolds (see
[35]). It is clear that every semi-symmetric manifold is pseudo-symmetric. However,
the converse statement is not true. For instance, the Schwarzschild spacetime, the
Kottler spacetime and the Reissner–Nordström spacetime satisfy (5) with non-zero
function LR [45] (see also [53]). The Schwarzschild spacetime was discovered in
1916 by K. Schwarzschild, during his study on solutions of Einstein’s equations.
It seems that the Schwarzschild spacetime is the “oldest” example of a non-semi-
symmetric, pseudo-symmetricwarped product (see [35]).A similar remark is related to
Friedmann–Lemaître–Robertson–Walker spacetimes (cf. [35]).We refer to [23,35,54]
and [55] for a more detailed presentation on the class of pseudo-symmetric manifolds.
A geometric interpretation of the notion of the pseudo-symmetry is given in [54], see
also [55].

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be Weyl-pseudo-symmetric
[23,26,35] if the tensorsR(X,Y ) ·C and (X ∧g Y ) ·C are linearly dependent at every
point of M . This is equivalent to

R(X,Y ) · C = L (X ∧g Y ) · C (6)

on UC , where L is some function on this set. The function L is uniquely determined on
UC . A geometric interpretation of the notion of the Weyl-pseudo-symmetry is given
in [58]. Every pseudo-symmetric manifold is Weyl-pseudo-symmetric. The converse
statement is not true. Precisely, (5) and (6) are equivalent at every point of UC of a
manifold (M, g), n ≥ 5, and that result is not true when n = 4, see [35] and references
therein.

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold with pseudo-
symmetric Weyl tensor [23,26,35,47] if the tensors C(X,Y ) ·C and (X ∧g Y ) ·C are
linearly dependent at every point of M . This is equivalent to
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C(X,Y ) · C = LC (X ∧g Y ) · C (7)

on UC , where LC is some function on this set. The function L is uniquely determined
on UC . It is clear that (7) is invariant under the conformal deformations of the metric
tensor g. We say that (5), (6) and (7) are pseudo-symmetry-type curvature condi-
tions [23,26,35,55]. In Sect. 3 we present more information on pseudo-symmetric
manifolds, as well as manifolds with pseudo-symmetric Weyl tensor.

In what follows, for a (0, k)-tensor T and a symmetric (0, 2)-tensor A on amanifold
(M, g)we will denote the tensorsR(X,Y ) ·T , C(X,Y ) ·T and (X ∧A Y ) ·T by R ·T ,
C · T and Q(A, T ), respectively. The tensor Q(A, T ) is called the -Tachibana tensor
(e.g. see [33]). In particular, we have the following (0, 6)-tensors: R · R, R ·C , C · R,
C ·C and R ·C−C · R, and the (0, 6)-Tachibana tensors: Q(g, R), Q(S, R), Q(g,C),
Q(S,C), Q(g, g∧S) and Q(S, g∧S). The tensor R ·C−C ·R is called the difference
tensor. Now we can present (5) and (7) in the form

R · R = LR Q(g, R), (8)

C · C = LC Q(g,C), (9)

respectively. We also note that Q(g, g∧ S) and Q(S, g∧ S) can be expressed by some
other Tachibana tensors (e.g. see [33], p. 228)

Q(g, g ∧ S) = −Q(S,G),

Q(S, g ∧ S) = −1

2
Q(g, S ∧ S).

(10)

Let (M, g), n ≥ 4, be a semi-Riemannian manifold. Trivially, if R · C = C · R = 0
then R ·C−C ·R = 0.Conversely, if R·C−C ·R is a zero tensor onU = US ∩UC ⊂ M
then C · R = 0 and R · R = 0 (and in a consequence R · C = 0) on U [41, Corollary
4.1]. It is also clear that the difference tensor R ·C −C · R vanishes identically on any
Ricci-flat manifold. However, R ·C−C ·R is a non-zero tensor on every non-Ricci-flat
Einstein manifold. This is a consequence of the fact that, on every Einstein manifold
(M, g), n ≥ 4, the following identity is satisfied [41, Theorem 3.1]

R · C − C · R = τ

(n − 1)n
Q(g, R). (11)

We note that on any Einstein manifold (M, g), n ≥ 4, we have

τ

n
Q(g, R) = Q(S, R) = Q(S,C) = τ

n
Q(g,C),

Q(g, g ∧ S) = Q(S, g ∧ S) = 0. (12)

Now from (11) and (12) it follows that on every Einstein manifold (M, g), n ≥ 4, we
have

R · C − C · R = τ

(n − 1)n
Q(g,C) = 1

n − 1
Q(S, R) = 1

n − 1
Q(S,C).
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We also can investigate curvature properties of non-Einstein and non-conformally flat
semi-Riemannian manifolds of dimension ≥4 satisfying the following condition.

(∗) the difference tensor R · C − C · R is a linear combination of the Tachibana
tensors: Q(g, R), Q(g,C), Q(S, R), Q(S,C), Q(g, g ∧ S) and Q(S, g ∧ S).

A survey of results on semi-Riemannian manifolds satisfying (∗) is given in [26].
Furthermore, results of [28] show that some particular cases of (∗) are realized on
hypersurfaces in space forms. For instance

R · C − C · R = 1

n − 2
Q(S, R) − 2

n − 1
Q(g, R)

on the Cartan hypersurfaces in Sn+1(1), n = 6, 12, 24 (see [28], Theorem 1.3, and
references therein). For recent results on hypersurfaces in space forms satisfying par-
ticular cases of (∗) we refer to [42]. We also mention that hypersurfaces in space forms
for which the tensor R · C or the tensor C · R is a linear combinatin of the tensors
Q(S, R), Q(g, R), Q(g, g∧ S) and Q(S, g∧ S) and were investigated in [33,50] and
[63].

As we presented above, some particular cases of (∗) are realized on Einstein man-
ifolds. Therefore (∗) is called a generalized Einstein metric condition. Clearly, (∗) is
also a condition of pseudo-symmetry type. A presentation of results on Riemannian
manifolds satisfying certain generalized Einstein metric conditions is given in [3].

We present now some results on semi-Riemannian manifolds satisfying the follow-
ing conditions:

(i) R · C − C · R and Q(g, R) are linearly dependent,
(ii) R · C − C · R and Q(S, R) are linearly dependent,
(iii) R · C − C · R and Q(g,C) are linearly dependent,
(iv) R · C − C · R and Q(S,C) are linearly dependent,
(v) R · C − C · R and Q(g, g ∧ S) are linearly dependent,
(vi) R · C − C · R and Q(S, g ∧ S) are linearly dependent.

Manifolds satisfying (i) and (ii) were investigated in [38] and [41], respectively.
Examples ofwarped productmanifolds satisfying (i), resp., (ii), are given in [27], resp.,
in [38] and [60]. Further, it seems that there is no essential result onmanifolds satisfying
(vi) with non-zero tensors R · C − C · R, Q(g, g ∧ S) and Q(S, g ∧ S). Manifolds
satisfying (iii) or (vi) were investigated in [29]. Next, manifolds satisfying (v) were
investigated in [1] and [57]. In particular, examples of warped product manifolds
satisfying that condition are given in [1]. Section 6 of [26] contains some results on
manifolds satisfying (iv). An example of a warped product manifold satisfying (iv) is
given in [39, Example 5.1]. For further results on manifolds satisfying (iv) we refer to
[29]. We also mention that warped product manifolds satisfying (i), (ii), (iv) and (v)
are quasi-Einstein or not. Recently some curvature properties of manifolds satisfying
these conditions were obtained in [30].

Pseudo-symmetricChen ideal submanifoldsMn of dimensionn inEuclidean spaces
E
n+m , n ≥ 4, m ≥ 1, were investigated in [32] and [43]. In particular, in Sect. 3 of

[32] it was stated that non-Einstein and non-conformally flat pseudo-symmetric Chen
ideal submanifolds M are Roter spaces. The difference tensor R ·C −C · R of a Roter
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space is a linear combination of the tensors Q(g, g ∧ S) and Q(S, g ∧ S) (e.g. see
[28, Proposition 4.2]). In Sects. 3 and 4 we present more facts related to Chen ideal
submanifolds and Roter spaces. In Sect. 3 we also recall that Chen ideal submanifolds
Mn of codimension m in E

n+m , n ≥ 4, m ≥ 1, satisfy (7) [32,43]. Moreover, in that
section we prove that on the setUC of every Chen ideal submanifold Mn of dimension
n in En+m , n ≥ 4, m ≥ 1, we have

R · R − Q(S, R) = L Q(g,C),

where L is some function on this set. We mention that the last equation is satisfied
on any hypersurface in space forms (e.g. see [28, Eq. (22)]). In particular, the tensor
R · R − Q(S, R) vanishes on any hypersurface in a semi-Euclidean space.

With respect to the above presentation, in this paper we investigate Chen ideal
submanifolds satisfying some particular cases of (∗). Precisely, we investigate Chen
ideal submanifolds Mn in En+m , n ≥ 4, m ≥ 1, satisfying:

R · C − C · R = L1Q(g, R) + L2Q(S, R),

R · C − C · R = L3Q(g,C) + L4Q(S,C),

R · C − C · R = L5Q(g, g ∧ S) + L6Q(S, g ∧ S),

for some functions L1, L2, . . . , L6 : Mn → R. Then we characterize Chen ideal
submanifolds Mn of dimension n in E

n+m , n ≥ 4, m ≥ 1, satisfying conditions (i)–
(vi). Our main results are presented in Sect. 5. Finally, in Sect. 6 we give proofs of
those results.

2 Notations

Let (M, g) be a connected Riemannian C∞-manifold of dimension n ≥ 3 and let ∇
be its Levi-Civita connection, X (M) the Lie algebra of vector fields on M . For vector
fields X , Y , Z on M , we define the endomorphism R(X,Y ) on X (M) by:

R(X,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z .

The Riemann–Christoffel curvature (0, 4)-tensor R is defined as follows: R(X,Y, Z ,

W ) = g (R (X,Y ) Z ,W ). The Ricci (0, 2)-tensor S and the Ricci operator S
are related by: S(X,Y ) = g (SX,Y ). With respect to an orthonormal framefield
{e1, · · · , en}, one has: S(X,Y ) = ∑n

i=1 R(X, ei , ei ,Y ). The scalar curvature τ is
given by τ = tr(S). With respect to an orthonormal framefield {e1, . . . , en}, one has:
τ = ∑n

i=1 S(ei , ei ).
Let A be a symmetric (0, 2)-tensor. To every couple (X,Y ) of vector fields on M ,

one can associate an endomorphism X ∧A Y on X (M) by putting:

(X ∧A Y ) (Z) = A(Y, Z)X − A(X, Z)Y.
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110 R. Deszcz et al.

In particular, when A = g,

(
X ∧g Y

)
(Z) = g(Y, Z)X − g(X, Z)Y.

Let A, B be two symmetric (0, 2)-tensors on M . Their Kulkarni–Nomizu product
A ∧ B is defined on (X (M))4 by:

(A ∧ B) (X,Y, Z ,W ) = A(X,W )B(Y, Z) + A(Y, Z)B(X,W )

−A(X, Z)B(Y,W ) + A(Y,W )B(X, Z).

In particular, when A = B = g, we have the Kulkarni–Nomizu squared g ∧ g:

(g ∧ g) (X,Y, Z ,W ) = 2 [g(X,W )g(Y, Z) − g(X, Z)g(Y,W )] .

We notice that

(g ∧ g) (X,Y, Z ,W ) = 2g
(
(X ∧g Y )(Z),W

)
.

This leads to the (0, 4)-tensor G = (1/2) (g ∧ g); it is defined as follows:

G(X,Y, Z ,W ) = g(X,W )g(Y, Z) − g(X, Z)g(Y,W ).

It is well-known that M is of constant curvature c if and only if R = cG.
For every vector fields X , Y on M , the endomorphism C(X,Y ) on X (M) is given

by:

C(X,Y ) = R(X,Y ) − 1

n − 2

[
X ∧g (SY ) + (SX) ∧g Y

]+ τ

(n − 1)(n − 2)
X ∧g Y.

The Weyl conformal curvature (0, 4)-tensor C associated with C is defined by:

C(X,Y, Z ,W ) = g (C(X,Y )Z ,W ) .

This gives the following relation:

C = R − 1

n − 2
(g ∧ S) + τ

(n − 1)(n − 2)
G. (13)

For every vector fields X , Y on M , we consider a skew-symmetric endomorphism
B(X,Y ) on X (M). We define the (0, 4)-tensor B associated with B by:

B(X,Y, Z ,W ) = g (B(X,Y )Z ,W ) .

This tensor B is called a generalized curvature tensor if the following two conditions
are fulfilled:
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B (X1, X2, X3, X4) = B (X3, X4, X1, X2) ;
B (X1, X2, X3, X4) + B (X2, X3, X1, X4) + B(X3, X1, X2, X4) = 0.

Now let us extend the endomorphism B(X,Y ) to a derivation B(X,Y )· of the algebra
of tensor fields onM , assuming that it commuteswith contractions andB(X,Y )· f = 0
for any smooth real-valued function f on M . Furthermore consider a (0, k)-tensor T ,
for k ≥ 1. We define the (0, k + 2)-tensor B · T by putting:

(B · T ) (X1, . . . , Xk; X,Y ) = −T (B(X,Y )X1, . . . , Xk)

−T (X1,B(X,Y )X2, . . . , Xk)

− · · · − T (X1, X2, . . . ,B(X,Y )Xk) .

Substituting B = R or B = C, and T = C or T = R in the above formulas, we
get the tensors: R · R, C · C , R · C and C · R. The two latest lead to the difference
tensor R · C − C · R. Further, let A be a symmetric (0, 2)-tensor. Denote by A
the endomorphism associated with A by: g (AX,Y ) = A(X,Y ). Now we consider
a (0, k)-tensor T , for k ≥ 2. The Tachibana tensor of A and T (or for short, the
Tachibana tensor) Q(A, T ) is defined on (X (M))k × (X (M))2 by:

Q(A, T ) (X1, . . . , Xk; X,Y ) = ((X ∧A Y ) · T ) (X1, . . . , Xk)

= −T ((X ∧A Y ) X1, . . . , Xk)

−T (X1, (X ∧A Y ) X2, . . . , Xk)

− · · · − T (X1, X2, . . . , (X ∧A Y ) Xk) .

Substituting A = g or A = S, and T = C or T = R or T = g ∧ S in the above
formulas, we get one of the following (0, 6)-Tachibana tensors [33] which may not
vanish identically: Q(g,C), Q(g, R), Q(g, g∧S), Q(S,C), Q(S, R) and Q(S, g∧S).
We also have the following identity (e.g. see [26]):

(n − 2) (R · C − C · R) = Q

(

S − τ

n − 1
g, R

)

− g ∧ (R · S) + P

where the (0, 6)-tensor P is defined by:

P (X1, X2, X3, X4; X,Y ) = g(X, X1)R (S(Y ), X2, X3, X4)

− g(Y, X1)R (S(X), X2, X3, X4)

+ g(X, X2)R (X1,S(Y ), X3, X4)

− g(Y, X2)R (X1,S(X), X3, X4)

+ g(X, X3)R (X1, X2,S(Y ), X4)

− g(Y, X3)R (X1, X2,S(X), X4)

+ g(X, X4)R (X1, X2, X3,S(Y ))

− g(Y, X4)R (X1, X2, X3,S(X)) .
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It is well-known that the conharmonic curvature tensor conh(R) of a semi-Riemannian
manifold (M, g), n ≥ 4, is defined by

conh(R) = R − 1

n − 2
g ∧ S.

Evidently, conh(R) is a generalized curvature tensor. In addition (13) yields

conh(R) = C − τ

(n − 1)(n − 2)
G. (14)

It is clear that

conh(R) = 0 ⇐⇒ (C = 0 and τ = 0) .

We also have

Proposition 1 [25] For any semi-Riemannian manifold (M, g), n ≥ 4, the following
identities hold good:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

conh(R) · S = C · S − τ

(n − 2)(n − 1)
Q(g, S);

R · conh(R) = R · C;
conh(R) · R = C · R − τ

(n − 1)(n − 2)
Q(g, R);

conh(R) · conh(R) = C · C − τ

(n − 1(n − 2)
Q(g,C).

(15)

��
Using the above-presented relations, we get immediately

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R · conh(R) − conh(R) · R = R · C − C · R + τ

(n − 1)(n − 2)
Q(g, R),

C · conh(R)−conh(R) · C=C ·
(

conh(R)+ τ

(n−1)(n−2)
G

)

−
(

C− τ

(n−1)(n−2)
G

)

· C

= τ

(n − 1)(n − 2)
Q(g,C).

(16)
We mention that quasi-Einstein manifolds satisfying some curvature conditions were
investigated by several authors (e.g. see [18,26,27,38,42,51,65,70], and references
therein). In particular, [65] contains results on quasi-Einstein manifolds satisfying
curvature conditions involving the conharmonic tensor conh(R).

We will use the following

Proposition 2 [21, Proposition 4.1], [37, Lemma 3.4] Let (M, g), n ≥ 3, be a semi-
Riemannian manifold. Let a non-zero symmetric (0, 2)-tensor A and a generalized
curvature tensor B, defined at p ∈ M, satisfy at this point Q(A, B) = 0. In addition,
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let Y be a vector at p such that the scalar ρ = w(Y ) is non-zero, wherew is a covector
defined by w(X) = A(X,Y ), X ∈ Tp(M). Then we have:

(i) A − ρ w ⊗ w �= 0 and B = λ A ∧ A, λ ∈ R, or (ii) A = ρ w ⊗ w and

w(X) B(Y, Z , X1, X2) + w(Y ) B(Z , X, X1, X2)

+w(Z) B(X,Y, X1, X2) = 0, X,Y, Z , X1, X2 ∈ TpM. (17)

Moreover, in both cases the following condition holds at p:

B · B = Q (Ric(B), B) , (18)

where Ric(B) is the Ricci tensor of B. ��
As an immediate consequence of Proposition 2, using the definition of the tensors

R and Q(g, R), resp.,C and Q(g,C), we can easily check that Q(g, R) = 0 at a point
of a manifold (M, g), n ≥ 4, if and only if R = (τ/ ((n − 1)n)) G at this point, resp.,
Q(g,C) = 0 at a point of M if and only if C = 0 at this point. On another hand, it is
also easy to check that Q(g, g ∧ S) vanishes at a point of a manifold (M, g), n ≥ 4,
if and only if S is proportional to g, i.e. S = (τ/n) g holds at this point.

It is clear that Q(S, g∧ S) vanishes at all points at which S = (τ/n) g. Proposition
1.1, Lemma 3.1 of [49] and (10) lead to the following: Q(S, g∧ S) vanishes at a point
of US ⊂ M of a manifold (M, g), n ≥ 4, if and only if rank S = 1 at this point.

With respect to the above-presented material, we restrict our investigation to the
set U = US ∩ UC ⊂ M of a manifold (M, g), n ≥ 4. Further, if Q(S,C) is a
zero tensor on U ⊂ M then R · R = (τ/(n − 1)) Q(g, R) (and in consequence
R ·C = (τ/(n − 1)) Q(g,C)) hold on U [36, Theorem 3.1]. Moreover, if n = 4 then
R · R = 0 and τ = 0 hold on U [40, Theorem 3.1]. If Q(S, R) is a zero tensor on
U ⊂ M then R · R = 0 hold on U [21, Theorem 4.1].

3 On Chen Ideal Submanifolds

3.1 Introduction

Let M be a submanifold of dimension n in the Euclidean space En+m , n ≥ 2, m ≥ 1.
Let g be theRiemannianmetric induced onM from the standardmetric onEn+m ,∇ the
corresponding Levi-Civita connection on M , and R, S, τ respectively the Riemann–
Christoffel curvature tensor, the Ricci tensor and the scalar curvature of M .

For the scalar curvature τ of (M, g) we use the calibration

τ(p) :=
∑

i< j

K
(
p, ei (p) ∧ e j (p)

)
,

where K (p, π) denotes the Riemannian sectional curvature of (M, g) at the point p
for a plane section π in the tangent space TpM . For each point p in M , considering
the number

(inf K ) (p) := inf
{
K (p, π)|π is a plane section in TpM

}
,
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B.-Y. Chen (see [6,9]) introduced the δ(2)-curvature by

(δ(2)) (p) = δ(p) := τ(p) − (inf K ) (p).

This δ(2)-, for short, δ-curvature of Chen thus is a well-defined real function on M
which clearly is a Riemannian invariant of (M, g). From [9] (see also [6,8,16]), we
have the following basic result which, in particular, answered a question raised by S.S.
Chern [17] long before, concerning intrinsic obstructions on Riemannian manifolds
in view of minimal immersibility in Euclidean spaces.

Theorem 1 [6] For any submanifold M of dimension n in the Euclidean space En+m,
n ≥ 2, m ≥ 1,

δ ≤ n2(n − 2)

2(n − 1)
H2, (∗)

and in (*) equality holds at a point p ∈ M if and only if, with respect to some suitable
adapted orthonormal frame {ei , ξα} around p on M in En+m, the shape operators are
given by

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 b 0 · · · 0
0 0 z · · · 0
...

...
...

. . .
...

0 0 0 · · · z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β > 1,

where z = a + b and (inf K ) = ab −
∑

β>1

(
c2β + d2β

)
: M → R. ��

Evidently, if m = 1 then inf K = ab.
With respect to the above theorem, one has the following definition (see [6,8,32,

43,69]).

Definition 1 Let M be a submanifold of dimension n in the Euclidean space En+m ,
n ≥ 2,m ≥ 1. It is called a Chen ideal submanifold if, at each of its points, the Chen’s
basic inequality (*) in the Theorem 1 is actually an equality.

Let M be a Chen ideal submanifold of dimension n in the Euclidean space En+m ,
n ≥ 4, m ≥ 1. We use the notations as in Theorem 1. The Riemann–Christoffel
curvature tensor R satisfies:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R (e1, e2, e2, e1) = inf K = ab −
m∑

β=2

(
c2β + d2β

)
;

R (e1, ei , ei , e1) = az for i ≥ 3;
R (e2, ei , ei , e2) = bz for i ≥ 3;
R
(
ei , e j , e j , ei

) = z2 for 3 ≤ i < j ≤ n.

(19)
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The other values of R (eu, ev, ew, et ) are null. The Ricci tensor S satisfies:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S (e1, e1) = inf K + (n − 2)az;
S (e2, e2) = inf K + (n − 2)bz;
S (ei , ei ) = (n − 2)z2 for 3 ≤ i ≤ n;
S (eu, ev) = 0 for 1 ≤ u < v ≤ n.

(20)

The scalar curvature τ is given by:

τ =
n∑

i=1

S(ei , ei ) = 2 inf K + (n − 1)(n − 2)z2. (21)

The Weyl conformal curvature tensor C is determined by the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C (e1, e2, e2, e1) = (n − 3)(inf K )

n − 1
;

C (e1, ei , ei , e1) = − (n − 3)(inf K )

(n − 1)(n − 2)
for i ≥ 3;

C (e2, ei , ei , e2) = − (n − 3)(inf K )

(n − 1)(n − 2)
for i ≥ 3;

C
(
ei , e j , e j , ei

) = 2(inf K )

(n − 1)(n − 2)
for 3 ≤ i < j ≤ n.

(22)

From (22) it follows (cf. [32,43], Theorem F) that every Chen ideal submanifold M
of dimension n in the Euclidean space En+m , n ≥ 4, m ≥ 1, has a pseudo-symmetric
Weyl conformal curvature C , i.e. it satisfies the identity:

C · C = LC Q(g,C), LC = − (n − 3)(inf K )

(n − 1)(n − 2)
. (23)

Very recently semi-Riemannianmanifolds satisfying (23) were investigated in [24].
It is known that at every point of a hypersurface N in a space forms Ñ n+1(c), n ≥ 4,

the tensors R · R − Q(S, R) and Q(g,C) are linearly dependent. Precisely, we have
on N [44]

R · R − Q(S, R) = −(n − 2)c Q(g,C).

Thus, in particular, R · R−Q(S, R) = 0 on every Chen ideal hypersurface N inEn+1,
n ≥ 4.

Now let us compute the difference R · R− Q(S, R) on the Chen ideal submanifold
M of codimensionm inEn+m , n ≥ 4,m ≥ 1.With respect to the notations in Theorem
1 and from the equalities (19), (20) and (22), we can prove the following.
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Theorem 2 The identity

R · R − Q(S, R) = ab − inf K

inf K
(n − 2)z2 Q(g,C) (24)

holds on the subset UC (see Sect. 1) of every Chen ideal submanifold M of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. In addition, at each point p ∈ M
where C vanishes (inf K = 0), the following equalities hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(R · R − Q(S, R)) (e1, e2, Z ,W ; e1, ei ) = (n − 3)abz2
〈(
e2 ∧g ei

)
(Z),W

〉
,

(R · R − Q(S, R))
(
e1, e j , Z ,W ; e1, ei

) = −abz2
〈(
e j ∧g ei

)
(Z),W

〉
,

(R · R − Q(S, R)) (e1, e2, Z ,W ; e2, ei ) = −(n − 3)abz2
〈(
e1 ∧g ei

)
(Z),W

〉
,

(R · R − Q(S, R))
(
e2, e j , Z ,W ; e2, ei

) = −abz2
〈(
e j ∧g ei

)
(Z),W

〉

(25)

the other values of (R · R − Q(S, R)) (eu, ev, Z ,W ; ew, et ) being null. ��

As itwas proved in [31], everywarped productmanifoldM×F Ñ of a 2-dimensional
base manifold (M, g) and an (n − 2)-dimensional fibre, which is a space of constant
curvature (Ñ , g̃), n ≥ 4, with the warping function F , satisfies

C · C = − (n − 3)ρ

(n − 2)(n − 1)
Q(g,C), ρ = τ

2
+ τ̃

(n − 3)(n − 2)F
+ �F

2F
− �1F

2F2 ,

(26)
where�F = gab∇bFa ,�1F = gabFaFb, and τ , τ̃ are the scalar curvatures of the base
and the fibre, respectively, see to [31] for details. According to [19], every non-trivial
and non-minimal Chen ideal submanifold M of dimension n in the Euclidean space
E
n+m , n ≥ 4, m ≥ 1 is isometric to an open subset of a warped product M ×F S

n−2

of a 2-dimensional base manifold (M, g) and an (n − 2)-dimensional unit sphere
S
n−2, where the warping function F is a solution of some second-order quasilinear

elliptical partial differential equation in the plane. Thus we see that (26) holds on M .
Furthermore, from (23) and (26) it follows that inf K is expressed on M by

inf K = τ

2
+ 1

F
+ �F

2F
− �1F

2F2 .

Since the scalar curvature τ of M is given by (21) and satisfies (e.g. see [31]):

τ = τ + (n − 3)(n − 2)

F
− (n − 2)�F

F
− (n − 2)(n − 5)�1F

4F2 ,

we get:

(n − 2)z2 = n − 4

F
− �F

F
− (n − 6)�1F

4F2 .
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3.2 On Pseudo-symmetric Chen Ideal Submanifolds

Semi-symmetric spaces have been investigated first by E. Cartan in 1946 [5]. In 1982
[64], Z.I. Szabó established the classification of semi-symmetric spaces. In 1997 [48],
F. Dillen and two of the present authors classified all Chen ideal submanifolds which
are semi-symmetric.

Theorem 3 [48] A Chen ideal submanifold M of dimension n in the Euclidean space
E
n+m, n ≥ 3, m ≥ 1, is semi-symmetric if and only if M is minimal (in which case M

is (n − 2)-ruled)) or M is a round hypercone in some totally geodesic subspace En+1

of En+m. ��
In [32] and [43], Chen ideal pseudo-symmetric submanifolds were classified.

Theorem 4 [32,43] A Chen ideal submanifold M of codimension m in En+m (n ≥ 3,
n ≥ 1) is pseudo-symmetric if and only if:

(i) either M is semi-symmetric (see Theorem 3),
(ii) or at every point p of M where R · R �= 0, the 2D normal section 2

π̃
⊂ E

2+m of
Mn at p in the direction of the tangent plane π̃ ⊂ TpMn for which the sectional
curvature function K (p, π) at p attains its minimal value (inf K ) (p) is pseudo-

umbilical at p, or equivalently, if p is a spherical point of the projection
2
π̃ ⊂ E

3

of this 2D normal section 
2
π̃ on the space E3 spanned by π̃ and the mean curva-

ture vector
→
H (p) of Mn in En+m at p (and in this case LR = (

n2/
(
2(n − 1)2

))
,

where H is the mean curvature of Mn in En+m). ��

4 On Chen Ideal Submanifolds and Roter Manifolds

A Riemannian manifold (M, g) of dimension n, n ≥ 4, is said to be a Roter manifold
or a Roter space (e.g. see [26,32] and references therein) if

R = φ

2
S ∧ S + μ g ∧ S + ηG (27)

holds on U = US ∩ UC ⊂ M , where φ, μ and η are some functions on this set.
According to [32], from a geometric point of view, the pseudo-symmetric Rie-

mannian manifolds can be seen as the most natural symmetric spaces after the real
space forms, i.e. the spaces of constant Riemannian sectional curvature. From an
algebraic point of view, the Roter manifolds can be seen as the Riemannian manifolds
whose Riemann–Christoffel curvature tensor R has the most simple expression after
the real space forms, the latter ones being characterisable as the Riemannian spaces
(Mn, g) for which the (0, 4)-tensor R is proportional to the Nomizu–Kulkarni square
of their (0, 2)-metric tensor g. As it was stated in [32], every Chen ideal submanifold
M of dimension n in the Euclidean space En+m , n ≥ 4, m ≥ 1, is a Roter manifold if
and only if it is pseudo-symmetric.

As we already mentioned, in this paper we investigate Chen ideal submanifolds
(in Euclidean spaces) satisfying some curvature conditions of pseudo-symmetry type.
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We prove that those submanifolds are pseudo-symmetric and, as a consequence, Roter
manifolds too [32].

Using (27), (10) and Theorem 6.7 of [26] we can easy check that the difference
tensor R · C − C · R of every Roter manifold (M, g), n ≥ 4, can be expressed on
U = US ∩ UC as a linear combination of the tensors Q(g, g ∧ S) and Q(S, g ∧ S),
precisely on this set we have

R · C − C · R = Q

((
1

n − 2
− μ − φτ

n − 1

)

S +
(

μτ

n − 1
+ η

)

g, g ∧ S

)

.(28)

We note that if (M, g), n ≥ 4, is a Roter manifold then at every point of U ⊂ M we
must have rank (S − α g) > 1, for any real number α ∈ R.

5 Main Results

Now we give our main results about Chen ideal submanifolds in Euclidean spaces
whose difference tensor R · C − C · R can be expressed in terms of some of the
Tachibana tensors Q(g, R), Q(S, R), Q(g,C), Q(S,C), Q(g, g ∧ S), Q(S, g ∧ S).

Theorem 5 Let M be a non-conformally flat Chen ideal submanifold of codimension
m in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exist two real-valued
functions L1, L2 on M such that

R · C − C · R = L1Q(g, R) + L2Q(S, R),

if and only if there exists an orthonormal tangent framefield {e1, . . . , en} and an
orthonormal normal framefield {ξ1, . . . , ξm} such that the shape operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 εa 0 · · · 0
0 0 (1 + ε)a · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + ε)a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where ε = ±1, a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
=εa2 − inf K , 2 inf K − (1 + ε)a2 �= 0, inf K �= (n − 2)(1 + ε)a2
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and

L1 = (n − 3) inf K − (n − 2)(1 + ε)a2

(n − 1)(n − 2)

2 inf K

2 inf K − (1 + ε)a2
,

(1 + ε)a2
[

L2 − 1

(n − 2)

inf K

2 inf K − (1 + ε)a2

]

= 0.

In this case, M is a Roter space. In addition one has one of the following two
situations.

(i) Either ε = −1 and M is a semi-symmetric andminimal submanifold (see Theorem
3) such that

R · C − C · R = (n − 3) inf K

(n − 1)(n − 2)
Q(g, R).

(ii) Or ε = +1 and M is a properly pseudo-symmetric and non-minimal submanifold
(see Theorem 4) such that

R · C − C · R = (n − 3) inf K − 2(n − 2)a2

(n − 1)(n − 2)

inf K

inf K − a2
Q(g, R)

+ 1

2(n − 2)

inf K

inf K − a2
Q(S, R).

��
Corollary 1 Let M be a non-conformally flat Chen ideal submanifold of dimension n
in the Euclidean space En+m, n ≥ 4, m ≥ 1. Then there exists a real-valued function
L on M such that

R · C − C · R = LQ(g, R)

if and only if M is minimal and there exists an orthonormal tangent framefield
{e1, . . . , en} and an orthonormal normal framefield {ξ1, . . . , ξm} such that the shape
operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 −a 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,
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where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= −a2 − inf K

and

L = (n − 3)(inf K )

(n − 1)(n − 2)
.

In this case, M is semi-symmetric (see Theorem 3). ��
Corollary 2 Let M be a Chen ideal submanifold of dimension n in the Euclidean
space E

n+m, n ≥ 4, m ≥ 1. Then the difference tensor R · C − C · R and the
Tachibana tensor Q(S, R) are linearly dependent if and only if M is conformally flat
(inf K = 0). ��
Theorem 6 Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exists two real-valued
functions L3, L4 on M such that

R · C − C · R = L3Q(g,C) + L4Q(S,C),

if and only if there exists an orthonormal tangent framefield {e1, . . . , en} and an
orthonormal normal framefield {ξ1, . . . , ξm} such that the shape operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 εa 0 · · · 0
0 0 (1 + ε)a · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + ε)a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where ε = ±1, a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= εa2 − inf K

and

L3 = −2 inf K + 2(n − 1)(n − 2)(1 + ε)a2

n − 1
, L4 = −1.
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In this case, M is a Roter space. In addition one has one of the following two
situations.

(i) Either ε = −1 and M is a semi-symmetric andminimal submanifold (see Theorem
3) such that

R · C − C · R = 2 inf K

n − 1
Q(g,C) − Q(S,C).

(ii) Or ε = +1 and M is a properly pseudo-symmetric and non-minimal submanifold
(see Theorem 4) such that

R · C − C · R = −2 inf K + 4(n − 1)(n − 2)a2

n − 1
Q(g,C) − Q(S,C).

��
Corollary 3 Let M beaChen ideal submanifold of dimension n in theEuclidean space
E
n+m, n ≥ 4, m ≥ 1. Then the difference tensor R · C − C · R and the Tachibana

tensor Q(g,C) are linearly dependent if and only if M is conformally flat. ��
Corollary 4 Let M be a non-conformally flat Chen ideal submanifold of dimension n
in the Euclidean space En+m, n ≥ 4, m ≥ 1. Then there exists a real-valued function
L on M such that

R · C − C · R = LQ(S,C),

if and only if M is not minimal, and there exists an orthonormal tangent framefield
{e1, . . . , en} and an orthonormal normal framefield {ξ1, . . . , ξm} such that the shape
operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that
m∑

β=2

(
c2β + d2β

)
=

(
2n2 − 6n + 5

)
a2 > 0 and

L = −1.

In this case, Mn is properly pseudo-symmetric (see Theorem 4). ��
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Theorem 7 Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exists two real-valued
functions L5, L6 on M such that

R · C − C · R = L5Q(g, g ∧ S) + L6Q(S, g ∧ S),

if and only if there exists an orthonormal tangent framefield {e1, . . . , en} and an
orthonormal normal framefield {ξ1, . . . , ξm} such that the shape operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 εa 0 · · · 0
0 0 (1 + ε)a · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + ε)a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where ε = ±1, a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= εa2 − inf K , inf K �= (n − 2)(1 + ε)a2

and moreover

L5 = −2(n − 2)(1 + ε)a2

n − 1

inf K
[
inf K + (n − 2)(1 + ε)a2

]

[
inf K − (n − 2)(1 + ε)a2

]2 ,

L6 = − 1

(n − 1)(n − 2)

inf K
[
(n − 3) inf K + (n − 1)(n − 2)(1 + ε)a2

]

[
inf K − (n − 2)(1 + ε)a2

]2 .

In this case, M is a Roter space. In addition one has one of the following two
situations.

(i) Either ε = −1 and M is a semi-symmetric andminimal submanifold (see Theorem
3) such that

R · C − C · R = − n − 3

(n − 1)(n − 2)
Q(S, g ∧ S).

(ii) Or ε = +1 and M is a properly pseudo-symmetric and non-minimal submanifold
(see Theorem 4) such that
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R · C − C · R = −4(n − 2)a2

n − 1

inf K
[
inf K + 2(n − 2)a2

]

[
inf K − 2(n − 2)a2

]2 Q(g, g ∧ S)

− 1

(n − 1)(n − 2)

inf K
[
(n − 3) inf K + 2(n − 1)(n − 2)a2

]

[
inf K − 2(n − 2)a2

]2 Q(S, g ∧ S).

��
Corollary 5 Let M be a non-conformally Chen ideal submanifold of dimension n in
the Euclidean space En+m, n ≥ 4, m ≥ 1. Then there exists a real-valued function L
on M such that

R · C − C · R = LQ(g, g ∧ S),

if and only if M is not minimal, and there exists an orthonormal tangent framefield
{e1, . . . , en} and an orthonormal normal framefield {ξ1, . . . , ξm} such that the shape
operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= 2n2 − 5n + 1

n − 1
a2 > 0

and

L = − 2a2

n − 2
.

In this case, Mn is a properly pseudo-symmetric manifold (see Theorem 4). ��
Corollary 6 Let M be a non-conformally flat Chen ideal submanifold of dimension n
in the Euclidean space En+m, n ≥ 4, m ≥ 1. Then there exists a real-valued function
L on M such that

R · C − C · R = LQ(S, g ∧ S),

if and only if one has one of the two cases which follow.
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(i) Either M is minimal, and there exists an orthonormal tangent framefield
{e1, · · · , en} and an orthonormal normal framefield {ξ1, . . . , ξm} such that the
shape operators

Aα := Aξα , 1 ≤ α ≤ m,

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 −a 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= −a2 − inf K

and

L = − n − 3

(n − 1)(n − 2)
.

(ii) Or M is not minimal, and there exists an orthonormal tangent framefield
{e1, · · · , en} and an orthonormal normal framefield {ξ1, . . . , ξm} such that the
shape operators

Aα := Aξα , 1 ≤ α ≤ m

are given by:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 · · · 0
0 a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Aβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that
m∑

β=2

(
c2β + d2β

)
= (2n − 3)a2 and

L = 1

2 (n − 1) (n − 2)
.
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In the first case, M is a semi-symmetric manifold (see Theorem 3). In the second case,
M is a properly pseudo-symmetric manifold (see Theorem 4). ��
Corollary 7 Let M be a non-conformally Chen ideal submanifold of dimension n in
the Euclidean space En+m, n ≥ 4, m ≥ 1. If M is minimal, then:

R · C − C · R = − n − 3

(n − 1)(n − 2)
Q(S, g ∧ S).

��
Corollary 8 A Chen ideal submanifold M of dimension n ≥ 4 in the Euclidean space
E
n+m satisfies the curvature condition

R · C − C · R = 0

if and only if M is conformally flat. ��
With respect to (28), as an immediate consequence of Theorem 7, for Chen ideal

and Roter submanifolds, we express the difference tensor R · C − C · R as a linear
combination of the Tachibana tensors Q(g, g∧ S), Q(S, g∧ S), in terms of inf K (the
infimum of all of its sectional curvatures) and the scalar curvature τ .

Corollary 9 Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space En+m, n ≥ 4, m ≥ 1. If M is a Roter space, then:

R · C − C · R = −2 [τ − 2 inf K ] [τ + 2(n − 2) inf K ]

(n − 1) [τ − 2n(inf K )]2
Q(g, g ∧ S)

−2(n − 1)(inf K ) [τ + 2(n − 4) inf K ]

(n − 2) [τ − 2n(inf K )]2
Q(S, g ∧ S).

��
Finally, in addition to (16), as an immmediate consequence of (23), (15) and (14),

we get the following theorem:

Theorem 8 Every Chen ideal submanifold M of codimension m in E
n+m, n ≥ 4,

m ≥ 1, satisfies:

conh(R) · conh(R) = −τ + (n − 3)(inf K )

(n − 1)(n − 2)
Q(g,C)

= −τ + (n − 3)(inf K )

(n − 1)(n − 2)
Q(g, conh(R)).

��
We refer to [56] and [62] for further results on Chen ideal submanifolds satisfying

curvature conditions involving the conharmonic curvature tensor.
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6 Proofs of Main Results

In this section, we consider a Chen ideal submanifold M of codimension m in the
Euclidean space En+m . We use the notations as in Theorem 1. To prove all our main
results on M , we begin by computing the Tachibana tensor Q(A, T ) on M , for any
symmetric (0, 2)-tensor A and for any generalized curvature (0, 4)-tensor T . We then
determine the properties of the difference tensor R · C − C · R.
Proposition 3 Let M be a Chen ideal submanifold of codimension m in the Euclidean
spaceEn+m. Consider a symmetric (0, 2)-tensor A and a generalized curvature (0, 4)-
tensor T defined on M. With respect to the notations of Definition 1, we put

Tαβγ δ = T
(
eα, eβ, eγ , eδ

)
, Aαβ = A

(
eα, eβ

)

for any different indices α, β, γ , δ ∈ {1, . . . , n}. Then, for any tangent vector field X,
Y on M and for any different indices u, v, s, t , β ∈ {1, . . . , n}, one has the following
three identities:

Q(A, T ) (eu, es, X,Y ; eu, ev)

= Tussu

[

Auv

〈 (
es ∧g eu

)
(X), Z

〉
+

n∑

α=1

Aαv

〈 (
es ∧g eα

)
(X),Y

〉
]

−TvssvAuu

〈 (
es ∧g ev

)
(X),Y

〉
+ Tuvvu Asu

〈 (
eu ∧g ev

)
(X),Y

〉
;

Q(A, T ) (eu, ev, X,Y ; eu, ev) = 0;
Q(A, T ) (es, et , X,Y ; eu, ev) = 0.

��
Proof of Proposition 3 Let X , Y be two tangent vector fields on M . It is useful to
recall here that, for any tangent vector fields U and V on M , one has:

Q(A, T ) (U, V, X,Y ; eu, ev)

= −T ((eu ∧A ev) (U ), V, X,Y ) − T (U, (eu ∧A ev) (V ), X,Y )

−T (U, V, (eu ∧A ev) (X),Y ) − T (U, V, X, (eu ∧A ev) (Y )) .

Then for any three different indicesu,v, s, t ∈ {1, . . . , n} and substituting (U, V, X,Y )

successively by (eu, es, X,Y ), (eu, ev, X,Y ) and (es, et , X,Y ) in the above formula,
we get straightforwardly all the formulas in Proposition 3. ��
Proposition 4 For all tangent vector field X, Y , Z, W and for all different indices u,
v ∈ {1, . . . , n},

(R · C − C · R) (X,Y, Z ,W ; eu, ev)

= [RuvvuQ(g,C) − CuvvuQ(g, R)] (X,Y, Z ,W ; eu, ev) .

��
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Proof of Proposition 4 Let X , Y , Z ,W be four tangent vector fields and u, v different
indices such that 1 ≤ u ≤ n and 1 ≤ v ≤ n. On the one hand,

(R · C) (X,Y, Z ,W ; eu, ev) = RuvvuQ(g,C) (X,Y, Z ,W ; eu, ev) ;
(C · R) (X,Y, Z ,W ; eu, ev) = CuvvuQ(g, R) (X,Y, Z ,W ; eu, ev) .

Then the difference gives directly the required equality. ��

6.1 Proof of Theorem 5

To deduce Theorem 5, one can use directly the notations of Theorem 1 and the fol-
lowing Lemma 1.

Lemma 1 Let M be a Chen ideal and non-conformally flat submanifold of dimension
n ≥ 4 in the Euclidean space En+m. There exists two real-valued functions L1, L2 on
M such that

L1Q(g, R) + L2Q(S, R) = R · C − C · R

if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b = εa

(1 + ε) a2L1 + 2 (1 + ε) a2 (inf K ) L2 = 2 (1 + ε) a2 inf K

n − 1

(inf K ) L1 +
[
(2n − 3) (1 + ε) a2 (inf K ) − 2(n − 2) (1 + ε) a4

]

L2 =
(inf K )

[
(n − 3) (inf K ) + (n − 1)(n − 2) (1 + ε) a2

]

(n − 1)(n − 2)
,

where ε = ±1. ��
Proof of Lemma 1 Using the relations given in Propositions 3 and 4, we obtain
straightforwardly the required equivalences. ��

6.2 Proof of Theorem 6

To deduce Theorem 6, one can use directly the notations of Theorem 1 and the fol-
lowing Lemma 2.

Lemma 2 Let M be a Chen ideal and non-conformally flat submanifold of dimension
n ≥ 4 in the Euclidean space En+m. There exists two real-valued functions L3, L4 on
M such that

L3Q(g,C) + L4Q(S,C) = R · C − C · R
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if and only if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b = εa

L3 + inf K + (n − 2)(2n − 3) (1 + ε) a2

n − 1
L4 = inf K + (n − 2) (1 + ε) a2

n − 1

L3 + 2 inf K + 2(n − 2)2 (1 + ε) a2

n − 1
L4 = 2(n − 2) (1 + ε) a2

n − 1
,

where ε = ±1. ��
Proof of Lemma 2 Using the relations given in Propositions 3 and 4, we obtain
straightforwardly the required equivalences. ��

6.3 Proof of Theorem 7

To deduce Theorem 7, one can use directly the notations of Theorem 1 and the fol-
lowing Lemma 3.

Lemma 3 Let M be a Chen ideal and non-conformally flat submanifold of dimension
n ≥ 4 in the Euclidean space En+m. There exists two real-valued functions L5, L6 on
M such that

L5Q(g, g ∧ S) + L6Q(S, g ∧ S) = R · C − C · R

if and only if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b = εa

L5−
[
inf K+(n−2) (1+ε) a2

]
L6=(inf K )

n−3

(n−1)(n−2)

inf K+(n−2) (1+ε) a2

inf K−(n−2) (1+ε) a2

L5 −
[
2(n − 2) (1 + ε) a2

]
L6 = −2a2 (1 + ε)

n − 1

inf K

inf K − (n − 2) (1 + ε) a2

where ε = ±1 . ��
Proof of Lemma 3 Using the relations given in Propositions 3 and 4, we obtain
straightforwardly the required equivalences. ��
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