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Abstract Metabelian algebras are introduced and it is shown that an algebra A is
metabelian if and only if A is a nilpotent algebra having the index of nilpotency at
most 3, i.e. xyzt = 0, for all x , y, z, t ∈ A. We prove that the Itô’s theorem for
groups remains valid for associative algebras. A structure theorem for metabelian
algebras is given in terms of pure linear algebra tools and their classification from
the view point of the extension problem is proven. Two border-line cases are worked
out in detail: all metabelian algebras having the derived algebra of dimension 1 (resp.
codimension 1) are explicitly described and classified. The algebras of the first family
are parameterized by bilinear forms and classified by their homothetic relation. The
algebras of the second family are parameterized by the set of all matrices (X,Y, u) ∈
Mn(k)2 × kn satisfying X2 = Y 2 = 0, XY = Y X and Xu = Yu.

Keywords Metabelian algebras · Congruence of bilinear forms · Classification of
algebras

Mathematics Subject Classification 15A21 · 16D70 · 16Z05

1 Introduction

The concept of a metabelian group goes back to Fite [8] and since then they became
a very important topic of study within group theory [14]. At the level of Lie, or more
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1640 G. Militaru

general Leibniz algebras, the corresponding concept of metabelian Lie/Leibniz alge-
bra, as 2-step solvable algebra, is also well known [2,6,7]. In this paper, we introduce
the associative algebra counterpart of a metabelian group by defining a metabelian
algebra over a field k as an extension of an abelian algebra by an abelian algebra—the
word ‘abelian’ is borrowed from Lie algebras, i.e. an algebra A having the trivial mul-
tiplication: xy = 0, for all x , y ∈ A. At first sight, such a restrictive definition seems
to have limited chances of leading to an interesting theory of these associative alge-
bras and, moreover, few of them can be expected to exist. We shall prove the contrary
and, to begin with, we shall introduce the following argument: the classification of all
metabelian associative algebras having the derived algebra of dimension 1 (hence only
a small and apparently unattractive class of algebras) is equivalent to the classification
of bilinear forms on a vector space up to the homothetic relation on bilinear forms—a
relation that generalizes the classical isometric relation on bilinear forms [17]. On the
other hand, the class of all (n+1)-dimensional metabelian associative algebras having
the derived algebra of dimension n is parameterized by an interesting set of matrices,
namely the matrices (X,Y, u) ∈ Mn(k)2 × kn satisfying X2 = Y 2 = 0, XY = Y X
and Xu = Yu. We prove that an algebra A is metabelian if and only if A is a nilpotent
algebra having the index of nilpotency at most 3. The classification of all nilpotent
algebras of a given dimension is a classical problem in the theory of associative alge-
bras: see [13, ChapterVI] where the classification of nilpotent algebras of dimension
3 and 4 is obtained. The classification of nilpotent algebras of a dimension higher
than 4 is a difficult problem since the complexity of the computations increases very
rapidly with the dimension [9]. Thus, one has higher chances to succeed in classifying
metabelian algebras of a given dimension instead of nilpotent ones. The first bridge to
solving the problem is given by Theorem 3.3, where a structure theorem is proposed.
We show that any metabelian algebra A is isomorphic to an algebra of the form P � V
associated to a system (P, V, �, �, θ) consisting of two vector spaces P , V and three
bilinear maps � : V × P → V , � : P × V → V , θ : P × P → V satisfying the
following compatibility conditions for any p, q, r ∈ P and x ∈ V :

p � (x � q)=(p � x) � q, (x � p) � q= p � (q � x)=0, p � θ(q, r)=θ(p, q) � r.

We denoted P �V := P ×V with the multiplication given for any p, q ∈ P , x , y ∈ V
by

(p, x) � (q, y) := (0, θ(p, q) + p � y + x � q)

Based on this, the classification of all metabelian algebras that are extensions of a given
abelian algebra P0 by an abelian algebra V0 is obtained in Theorem 3.6, where the
explicit description of the classifying object Ext(P0, V0) is given. Ext(P0, V0) classi-
fies all metabelian algebras from the viewpoint of the extension problem [10], i.e. up
to an isomorphism of algebras that stabilizes V0 and co-stabilizes P0. In Theorem 3.8,
all metabelian algebras having the derived algebra of dimension 1 are explicitly
described, classified and the automorphism groups of these algebras are determined.
The algebras of this family are classified by bilinear forms on a vector space P up
to the following equivalence relation: two bilinear forms θ and θ ′ ∈ Bil (P × P, k)
are called homothetic [15] if there exists a pair (u, ψ) ∈ k∗ × Autk(P) such that
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Metabelian Associative Algebras 1641

u θ(p, q) = θ ′(ψ(p), ψ(q)
)
, for all p, q ∈ P . If k = k2, this relation is equiv-

alent to the classical classification of bilinear forms [17]. Examples are given in
Corollary 3.10. Theorem 3.11 and Example 3.12 address the dual case: all (n + 1)-
dimensional metabelian algebras having the derived algebras of codimension 1 are
explicitly described and classified by the set of all matrices (X,Y, u) ∈ Mn(k)2 × kn

satisfying X2 = Y 2 = 0, XY = Y X and Xu = Yu.

2 Preliminaries

All vector spaces, algebras, linear or bilinear maps are over an arbitrary field k. For
a vector space V , we denote by Bil (V × V, k) all bilinear forms on V . Two bilinear
forms θ and θ ′ ∈ Bil (V ×V, k) are called isometric, and we denote this by θ ≈ θ ′, if
there exists an automorphism ϕ ∈ Autk(V ) such that θ(x, y) = θ ′(ϕ(x), ϕ(y)), for all
x , y ∈ V . If V is finite dimensional having {e1, . . . , en} as a basis, we also denote by
θ = (θ(ei , e j )) ∈ Mn(k) the matrix associated to a bilinear form θ ∈ Bil (V × V, k).
Then θ ≈ θ ′ if and only if there exists an invertible matrix C ∈ gl(n, k), such that θ =
CT θ ′ C—where CT is the transposed of C . For future references to the classification
problem of bilinear forms up to an isometry, see [11,16] and the references therein.
Twobilinear forms θ and θ ′ ∈ Bil (V×V, k) are called homothetic [15], andwedenote
this by θ ≡ θ ′, if there exists a pair (u, ψ) ∈ k∗ × Autk(P) such that u θ(p, q) =
θ ′(ψ(p), ψ(q)

)
, for all p, q ∈ P . Any isometric bilinear forms are homothetic and

if k = k2 := {x2 | x ∈ k}, then any homothetic bilinear forms are isometric.
By an algebra we alwaysmean an associative algebra, i.e. a pair (A, MA) consisting

of a vector space A and a bilinear map MA : A × A → A, called the multiplication
on A and denoted by MA (x, y) = xy, such that x(yz) = (xy)z, for all x , y, z ∈ A.
Any vector space V is an algebra with the trivial multiplication xy = 0, for all x ,
y ∈ V—such an algebra is called abelian and will be denoted by V0. AutAlg (A) will
denote the group of algebra automorphisms of A. An algebra A is called nilpotent
if there exists a positive integer n such that x1x2 . . . xn = 0, for all x1, . . . , xn ∈ A.
If there is a non-zero product of n − 1 elements of A, then n is called the index of
nilpotency of A. For an algebra A, we denote by A′ the derived subalgebra of A, i.e.
the subspace of A generated by all xy, for any x , y ∈ A. Let P and V be two given
algebras. An extension of P by V is triple (A, i, π) consisting of an algebra A and
two morphisms of algebras i : V → A, π : A → P such that

0 �� V
i �� A

π �� P �� 0

is an exact sequence. Two extensions (A, i, π) and (A′, i ′, π ′) of P by V are called
equivalent, and we denote this by (A, i, π) ≈ (A′, i ′, π) if there exists a morphism of
algebras ϕ : A → A′ that stabilizes V and co-stabilizes P , i.e. the following diagram

V
i ��

I d
��

A
π ��

ϕ

��

P

Id
��

V
i ′ �� A′ π ′

�� P
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1642 G. Militaru

is commutative. Any suchmorphism ϕ is an isomorphism and thus≈ is an equivalence
relation on the class of all extensions of P by V . We denote by Ext (P, V ) the set of
all equivalence classes of all extensions of P by V via ≈.

3 Metabelian Algebras

We introduce the concept of metabelian associative algebras having in mind one of
the equivalent definitions of metabelian groups.

Definition 3.1 An algebra A is called metabelian if it is an extension of an abelian
algebra by an abelian algebra, that is there exist two vector spaces V , P and an exact
sequence of morphisms of algebras1

0 �� V0
i �� A

π �� P0 �� 0 (1)

Explicit examples will be provided at the end of the paper. In order to proceed with
the characterization and structure theorem for metabelian algebras, some preparatory
work is needed.

Definition 3.2 Let V be a vector space. A discrete bimodule over V is a bimodule over
the abelian algebra V0, i.e. a triple (P, �, �) consisting of a vector space P and two
bilinear maps � : V × P → V , � : P×V → V satisfying the following compatibility
conditions for any p, q ∈ P and x ∈ V :

(x � p) � q = p � (q � x) = 0, p � (x � q) = (p � x) � q (2)

For a discrete bimodule (P, �, �) over V , a bilinear map θ : P × P → V is called a
discrete (�, �)-cocycle if for any p, q and r ∈ P we have

p � θ(q, r) = θ(p, q) � r. (3)

A system (P, V, �, �, θ) consisting of a vector space V , a discrete bimodule (P, �, �)

over V and a discrete (�, �)-cocycle θ : P × P → V is called a metabelian datum
of P by V . We denote by DZ2

(
(P, �, �), V

)
the space of all discrete (�, �)-cocycles

and by Met (P, V ) the set of all metabelian datums (P, V, �, �, θ) of P by V .

Let (P, V, �, �, θ) ∈ Met (P, V ) and P � V = P �(�, �, θ) V be the vector space
P × V with the multiplication given for any p, q ∈ P , x , y ∈ V by

(p, x) � (q, y) := (0, θ(p, q) + p � y + x � q). (4)

As a special case of [3, Proposition 1.2], we can easily see that P � V with the
multiplication given by (4) is an associative algebra. In fact, we can easily show
that the multiplication given by (4) is associative if and only if (P, V, �, �, θ) is a

1 We recall that for a vector space V , we denote V0 = V with the abelian algebra structure.
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metabelian datum. P � V is a metabelian algebra since we have the following exact
sequence of algebra maps

0 �� V0
iV �� P � V

πP �� P0 �� 0 , (5)

where iV (x) = (0, x) and πp(p, x) := p, for all x ∈ V and p ∈ P . The algebra
P � V is called the metabelian product of P over V associated to (P, V, �, �, θ) ∈
Met (P, V ). The next characterization and structure theorem for metabelian algebras
shows that any metabelian algebra A is isomorphic to some P � V .

Theorem 3.3 For an associative algebra A the following statements are equivalent:

(1) A is metabelian;
(2) A is a nilpotent algebra having the index of nilpotency at most 3, i.e. xyzt = 0,

for all x, y, z, t ∈ A;
(3) The derived algebra A′ is an abelian subalgebra of A;
(4) There exists an isomorphism of algebras A ∼= P � V , for some vector spaces P

and V and for some (P, V, �, �, θ) ∈ Met (P, V ).

Proof (3) is just an equivalent rephrasing of (2), i.e. (2) ⇔ (3). The exactness of
the sequence (5) proves that P � V is metabelian, that is (4) ⇒ (1). Now, if A′ is an
abelian subalgebra of A, we have an exact sequence of algebra maps

0 �� A′ = A′
0

i �� A
π �� (A/A′)0 �� 0 , (6)

where i is the inclusion map and π the canonical projection. This proves (3) ⇒ (1).
We prove now that (1) ⇒ (2). Assume that (1) is an exact sequence of algebra maps.
We can assume that V is a subspace of A. The fact that i is an algebra map shows that
xy = 0, for all x , y ∈ V . On the other hand, the fact that π is a morphism of algebras
and the exactness of the sequence (1) translates to π(ab) = 0, i.e. ab ∈ Ker(π) = V ,
for all a, b ∈ A. Thus, the product xyzt = 0, for all x , y, z and t ∈ A since the product
of any two elements of V is zero. If we show (1) ⇒ (4), the proof is finished. Since
k is a field, we can pick a k-linear section s : P → A of π , i.e. π ◦ s = IdP . Using
the section s, we define three bilinear maps �s : V × P → V , �s : P × V → V and
θs : P × P → V by the following formulas:

x � p := xs(p), p � x := s(p)x, θ(p, q) := s(p)s(q)

for all p, q ∈ P and x ∈ V . Then, by a straightforward computation (or as a special
case of [3, Proposition 1.4]) we can show that (P, V, �s, �s, θs) ∈ Met (P, V ) and
the map

ϕ : P � V → A, ϕ(p, x) := s(p) + x (7)

is an isomorphism of algebras with ϕ−1(y) = (π(y), y − s(π(y))), for all y ∈ A. ��
One of the fundamental results in the factorization theory for groups is the famous Itô’s
theorem [12] which has been the key ingredient in proving many structural theorems
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for finite groups [4]: if G is a group such that G = AB, for two abelian subgroups
A and B, then G is metabelian. As a special case of Theorem 3.3, we obtain the
counterpart of Itô’s theorem for associative algebras:

Corollary 3.4 (Itô’s theorem for associative algebras) Let A be an associative algebra
such that A = P0 + V0, for two abelian subalgebras P0 and V0 of A. Then A is
metabelian.

Proof Using Theorem 3.3 we have to prove that a1 a2 a3 a4 = 0, for all ai ∈ A,
i = 1, . . . , 4. Indeed, since ai ∈ A = P0 + V0 we can find vi ∈ V0 and pi ∈ P0
such that ai = vi + pi , for all i = 1, . . . , 4. Let v5, v6 ∈ V0 and p5, p6 ∈ P0 such
that p2 v3 = v5 + p5 and v2 p3 = v6 + p6. Using intensively that P0 and V0 are both
abelian, we obtain

a1 a2 a3 a4 =
(
v1 v2 + v1 p2 + p1 v2 + p1 p2

) (
v3 v4 + v3 p4 + p3 v4 + p3 p4

)

= (v1 p2 + p1 v2) (v3 p4 + p3 v4)

= v1 p2 v3 p4 + v1 p2 p3 v4 + p1 v2 v3 p4 + p1 v2 p3 v4

= v1 p2 v3 p4 + p1 v2 p3 v4 = v1 (v5 + p5) p4 + p1 (v6 + p6) v4

= v1 v5 p4 + v1 p5 p4 + p1 v6 v4 + p1 p6 v4 = 0

as needed. ��
Remark 3.5 There is more to be said related to the proof of Theorem 3.3: if A is a
metabelian algebra, extension of P0 by V0, then the isomorphism ϕ : P � V → A
given by (7) stabilizes V and co-stabilizes P , i.e. the diagram

V0
iV ��

I d
��

P � V
πp ��

ϕ

��

P0

I d
��

V0
i �� A

π �� P0

is commutative. Hence, the extension (A, i, p) of P0 by V0 is equivalent to the exten-
sion (P � V, iV , πP ) of P0 by V0 given by (5). Thus the classification of metabelian
algebras is reduced to the classification of all metabelian products of P � V associ-
ated to all (P, V, �, �, θ) ∈ Met (P, V ). This will be given below by indicating the
explicit description of the classifying object Ext(P0, V0).

Let (P, �, �) be a fixed discrete bimodule over a vector space V . Two discrete (�, �)-
cocycles θ , θ ′ : P × P → V are called cohomologous and we denote this by θ ≡ θ ′
if there exists a linear map r : P → V such that

θ(p, q) = θ ′(p, q) + p � r(q) + r(p) � q (8)

for all p, q ∈ P . As a special case of [3, Lemma 1.5 and Definition 1.6], we can prove
that ≡ is an equivalence relation on DZ2

(
(P, �, �), V

)
and denote by

DH2 (
(P, �, �), V

) := DZ2 (
(P, �, �), V

)
/ ≡
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the quotient set via≡, called the discrete cohomological group. In fact, [3, Lemma1.5],
applied for the abelian case, shows that two extensions of P0 by V0 of the form
(P �(�, �, θ) V, iV , πP ) and (P �(�′, �′, θ) V, iV , πP ) are equivalent if and only if �′ = �,
�′ = � and θ ′ ≡ θ . All these considerations lead to the following classification
result that gives the decomposition of Ext(P0, V0) as the co-product of all discrete
cohomological groups.

Theorem 3.6 Let V and P be two vector spaces. Then there exists a bijection

Ext(P0, V0) ∼= �(�,�) DH
2 (

(P, �, �), V
)
, (9)

where �(�,�) is the co-product in the category of sets over all possible discrete
bimodule structures (P, �, �) over V . The explicit bijection sends an element θ ∈
DH2

(
(P, �, �), V

)
to the metabelian product P �(�, �, θ) V , where θ denotes the

equivalence class of the discrete (�, �)-cocycle θ via ≡.

Remarks 3.7 (1) The formula (9) highlights an algorithm that breaks up the problem
of computing Ext(P0, V0) into three steps: (1) first, all discrete bimodule structures
(P, �, �) over V are described; (2) then, for a given structure (P, �, �), we compute
the space DZ2

(
(P, �, �), V

)
of all discrete (�, �)-cocycles; (3) in the last step all

quotient spaces DH2
(
(P, �, �), V

) = DZ2
(
(P, �, �), V

)
/ ≈ are described and

their co-product is computed. Specific examples are given below.
(2) If we are interested in the classification of all metabelian algebras A of a given

dimension, then the key object is the derived algebra A′ since Theorem 3.3 shows
that A ∼= P � A′, where P := A/A′, the quotient vector space viewed as an abelian
algebra. Thus, there are two numbers involved in the problem of classifying finite-
dimensional metabelian algebras: n, the dimension of the metabelian algebras
that we are looking for, and m := dimk(A′) ≤ n. Two border-line cases are
immediately settled: if m = n, then A′ = A, and thus we obtain, using (3) of
Theorem 3.3, that A is the abelian algebra kn0 . On the other hand, if m = 0, that
is A′ = 0, then A is also the abelian algebra kn0 , by the definition of A′. The next
two steps cover the cases when m = 1 (resp. m = n − 1).

First we shall describe and classify metabelian algebras having the derived algebra of
dimension 1; the group of algebra automorphisms of such algebras is also determined.

Theorem 3.8 Let P be a vector space. Then

(1) Ext (P0, k0) ∼= Bil (P × P, k) and the equivalence classes of all metabelian
algebras that are extensions of P0 by k0 are represented by the extensions of the
form

0 �� k0 �� Pθ := P �θ k �� P0 �� 0 (10)

for any θ ∈ Bil (P × P, k); the multiplication on the algebra Pθ is given by:
(p, x) � (q, y) = (0, θ(p, q)), for all p, q ∈ P, x, y ∈ k.
Any metabelian algebra having the derived algebra of dimension 1 is isomorphic
to a Pθ , for some vector space P and θ ∈ Bil (P × P, k).
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1646 G. Militaru

(2) Two algebras Pθ and Pθ ′ are isomorphic if and only if the bilinear forms θ and θ

are homothetic, i.e. there exists a pair (u, ψ) ∈ k∗ ×Autk(P) such that for all p,
q ∈ P

u θ(p, q) = θ ′(ψ(p), ψ(q)
)
. (11)

In particular, if k = k2 then, Pθ
∼= Pθ ′ if and only if θ and θ ′ are isometric.

(3) The group of algebra automorphisms AutAlg (Pθ ) is isomorphic to

G(P, θ) := {
(u, λ, ψ) ∈ k∗ × P∗ × Autk(P) | u θ(p, q)

= θ
(
ψ(p), ψ(q)

)
, ∀ p, q ∈ P

}
,

where G(P, θ) is a group with respect to the following multiplication:

(u, λ, ψ) · (u′, λ′, ψ ′) := (uu′, λ ◦ ψ ′ + uλ′, ψ ◦ ψ ′) (12)

for all (u, λ, ψ) and (u′, λ′, ψ ′) ∈ G(P, θ).

Proof (1) The proof is based on Theorems 3.3 and 3.6 following the three steps
described in Remark 3.7 applied in the case that V := k. Using the first compatibility
of (2) we can easily prove that P has only one structure of a discrete bimodule over
k, namely the trivial one: x � p = p � x := 0, for all x ∈ k and p ∈ P . Hence, the
set of all discrete (�, �)-cocycles θ : P × P → k is precisely the space of all bilinear
forms of P since (3) holds trivially. Moreover, the equivalence relation (8) is just the
equality between the two bilinear maps. Thus, using the decomposition formula given
by (9), we obtain that Ext (P0, k0) ∼= Bil (P × P, k). The last statement follows from
Theorem 3.3.

(2) If θ = 0 (the trivial bilinear form), then Pθ=0 is the abelian algebra; thus, if
Pθ=0 ∼= Pθ ′ , then θ ′ = 0 and there is nothing to prove. We will assume that θ �= 0.
We prove a more general statement which shall also provide the proof of (3). More
precisely, for two non-trivial bilinear forms θ and θ ′ on P we shall prove that there
exists a bijection between the set of all isomorphisms of algebras ϕ : Pθ → Pθ ′ and
the set of all triples (u, λ, ψ) ∈ k∗ × Homk(P, k) × Autk(P) satisfying the com-
patibility condition (11). Moreover, the bijection is given such that the isomorphism
ϕ = ϕ(u,λ,ψ) : Pθ → Pθ ′ corresponding to (u, λ, ψ) is given by

ϕ(p, x) = (ψ(p), λ(p) + u x) (13)

for all p ∈ P and x ∈ k. Indeed, any k-linear map ϕ : P × k → P × k is uniquely
determined by a quadruple (u, λ, ψ, p0) ∈ k × Homk(P, k) × Endk(P) × P such
that

ϕ(p, x) = ϕ(u, λ, ψ, p0) (p, x) = (ψ(p) + x p0, λ(p) + x u)

for all p ∈ P and x ∈ k. Now, we can easily see that ϕ(u, λ, ψ, p0) : Pθ → Pθ ′ is an
algebra map if and only if the following two compatibilities hold

θ(p, q) p0 = 0, u θ(p, q) = θ ′(ψ(p) + x p0, ψ(q) + y p0
)
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for all p, q ∈ P . Since θ �= 0, we obtain that ϕ(u, λ, ψ, p0) is an algebra map if and
only if p0 = 0 and (11) holds. In what follows we denote by ϕ(u, λ, ψ) the algebra map
corresponding to a quadruple (u, λ, ψ, p0) with p0 = 0. It remains to be proven that
such a morphism ϕ = ϕ(u, λ, ψ) is bijective if and only if ψ is bijective and u �= 0.
Assume first that ϕ is bijective: then its inverse ϕ−1 is an algebra map and thus has
the form ϕ−1(q, y) = (ψ ′(q), λ′(q) + yu′), for some triple (u′, λ′, ψ ′). If we write
ϕ−1 ◦ ϕ(0, 1) = (0, 1), we obtain that uu′ = 1 i.e. u is invertible. In the same way,
ϕ−1 ◦ ϕ(p, 0) = (p, 0) = ϕ ◦ ϕ−1(p, 0) gives that ψ is bijective and ψ ′ = ψ−1.
Conversely, if (u, ψ) ∈ k∗×Autk(P), thenwe can see that ϕ(u, λ, ψ) is bijective having
the inverse given by ϕ−1

(u, λ, ψ) := ϕ(u−1,−λ◦ψ−1, ψ−1) as needed. For the last statement

we remark that if θ ≈ θ ′, then (11) holds for u = 1. Conversely, if k = k2, then we can
write u = v2, for some v ∈ k∗. Multiplying the equation (11) by v−2 and substituting
ψ with v−1ψ we obtain that θ ≈ θ ′.

(3) Follows the proof of (2) once we observe that for two triples (u, λ, ψ)

and (u′, λ′, ψ ′) ∈ k∗ × P∗ × Autk(P) we have that ϕ(u, λ, ψ) ◦ ϕ(u′, λ′, ψ ′) =
ϕ(uu′, λ◦ψ ′+uλ′, ψ◦ψ ′). ��
Theorem 3.8 reduces the classification of all (n+1)-dimensional metabelian algebras
having the derived algebra of dimension 1 to the classification of bilinear forms on
kn up to the equivalence relation given by (11). If k = k2 this is just the classical
classification of bilinear forms solved in [11] for algebraically closed or real closed
fields.

Example 3.9 Let {e1, . . . , en} be the canonical basis of kn . Applying Theorem 3.8 for
P = kn we obtain that any (n+1)-dimensional metabelian algebra having the derived
algebra of dimension 1 is isomorphic to an algebra denoted by kn+1

θ := kn�θ k, for some
non-trivial bilinear form θ ∈ Bil (kn × kn, k). Explicitly, kn+1

θ is the algebra having
{E, F1, . . . , Fn} as a basis and the multiplication defined for any i , j = 1, . . . , n by

Fi � Fj := θ(ei , e j ) E

undefined multiplications on the elements of the basis are 0. Two such algebras kn+1
θ

and kn+1
θ ′ are isomorphic if and only if there exists a pair (u, C) ∈ k∗ × gl(n, k) such

that u θ = CT θ ′ C , where we write θ = (θ(ei , e j )) and θ ′ = (θ ′(ei , e j )) ∈ Mn(k).
Assume that k is algebraically closed of characteristic �= 2. Then, kn+1

θ and kn+1
θ ′

are isomorphic if and only if θ ≈ θ ′. If n = 2 the equivalence classes of all bilinear
forms on k2 are given by the following two families of matrices [11]:

θa, b =
(
1 a
b 0

)
, θ =

(
0 1

−1 0

)

for all a, b ∈ k. On the other hand, for n = 3 the equivalence classes of all bilinear
forms on k3 are given by the following six families of matrices [11] for any a, b ∈ k:

θ1a, b =
⎛

⎝
1 0 0
0 1 a
0 b 0

⎞

⎠ , θ2a, b =
⎛

⎝
0 0 0
0 1 a
0 b 0

⎞

⎠ , θ3 =
⎛

⎝
1 0 0
0 0 1
0 −1 0

⎞

⎠
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θ4 =
⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ , θ5 =
⎛

⎝
0 1 0
0 0 1
0 −1 0

⎞

⎠ , θ6 =
⎛

⎝
1 1 0
0 1 1
0 1 0

⎞

⎠

To conclude, we obtain the following classification results:

Corollary 3.10 Let k be an algebraically closed field of characteristic �= 2. Then

(1) The isomorphismclasses of3-dimensionalmetabelianalgebras having the derived
algebra of dimension 1 are the following two families of algebras defined for any
a, b ∈ k:

k3a, b : F1 � F1 = E, F1 � F2 = a E, F2 � F1 = b E

k3−1 : F1 � F2 = −F2 � F1 = E

(2) The isomorphismclasses of4-dimensionalmetabelianalgebras having the derived
algebra of dimension 1 are the following six families of algebras defined for any
a, b ∈ k:

k4,1a, b : F1 � F1 = F2 � F2 = E, F2 � F3 = a E, F3 � F2 = b E

k4,2a, b : F2 � F2 = E, F2 � F3 = a E, F3 � F2 = b E

k4,3 : F1 � F1 = F2 � F3 = −F3 � F2 = E

k4,4 : F2 � F3 = −F3 � F2 = E

k4,5 : F1 � F2 = F2 � F3 = −F3 � F2 = E

k4,6 : F1 � F1 = F1 � F2 = F2 � F2 = F2 � F3 = F3 � F2 = E .

Nowwe shall describe themetabelian algebras having the derived algebra of codimen-
sion 1. For a vector space V , we denote by T (V ) ⊆ Endk(V )2 the set of all pairs of
endomorphisms (λ,�) ∈ Endk(V )×Endk(V ) satisfying the following compatibility
condition

λ2 = �2 = 0, � ◦ λ = λ ◦ �. (14)

Theorem 3.11 Let V be a vector space. Then

(1) There exists a bijection

Met (k, V ) ∼= { (λ, �, ζ ) ∈ T (V ) × V | ζ ∈ Ker(� − λ)}

given such that the metabelian datum (k, V, �, �, θ) of k by V associated to a
triple (λ, �, ζ ) is given for any x ∈ V and p, q ∈ k by

x � p := p λ(x) p � x := p�(x), θ(p, q) := pq ζ. (15)

(2) There exists a bijection

Ext (k0, V0) ∼= �(λ,�)∈T (V )

(
Ker(� − λ)/Im(� + λ)

)
. (16)
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that sends an element ζ ∈ Ker(� − λ)/Im(� + λ)
)
to the metabelian product

k �(λ,�,ζ ) V = k×V , with the multiplication given for any p, q ∈ k and x, y ∈ V
by

(p, x) � (q, y) = (0, pq ζ + p�(y) + q λ(x)) (17)

(3) Anymetabelianalgebrahaving thederivedalgebraof codimension1 is isomorphic
to an algebra k �(λ,�,ζ ) V , for some vector space V , (λ, �) ∈ T (V ) and ζ ∈
Ker(� − λ).

Proof (1) We apply the definitions of the metabelian datum for P := k. First of all we
show that there exists a bijection between the set of all discrete bimodule structures
over V on k and T (V ). Indeed, since P = k then any bilinear map � : V × k → V
(resp. � : k × V → V ) is uniquely implemented by a linear map λ : V → V (resp.
� : V → V ) via the formulas

x � p := pλ(x) p � x := p�(x) (18)

for all x ∈ V and p ∈ k. We can easily see that the pair (� = �λ, � = ��) satisfies the
compatibility condition (2) if and only if (14) holds. Let now (λ,�) ∈ Endk(V ) be
a pair satisfying (14) and consider (k, �λ, ��) with the discrete bimodule structures
over V implemented by (λ,�) via (18). Then we can see that DZ2

(
(k, �λ, ��), V

) ∼=
Ker(� − λ), and the bijection sends any ζ ∈ Ker(� − λ) to the associated discrete
(�λ, ��)-cocycle θζ given by θζ (p, q) := pq ζ , for all p, q ∈ P . Thus, we have
proved that there exists a one-to-one correspondence between Met (k, V ) and the set
of all triples (λ, �, ζ ) ∈ T (V ) × V such that ζ ∈ Ker(� − λ), as needed.

(2) We fix a pair (λ,�) ∈ T (V ); using (14), we observe first that Im(� + λ) ≤
Ker(� − λ). Hence, the quotient vector space from the right-hand side of (16) is
defined. Let ζ ∈ Ker(� − λ) and θ = θζ be the associated discrete (�λ, ��)-cocycle.
Then, we can see that θζ ≡ θζ ′ in the sense of (8) if and only if ζ − ζ ′ ∈ Im(� + λ).
This shows that

DH2 (
(k, �λ, ��), V

) ∼= Ker(� − λ)/Im(� + λ)

and the conclusion follows from Theorems 3.6 and 3.3. ��.
Example 3.12 By taking V := kn in Theorem 3.11 we obtain the explicit description
of all (n+1)-dimensionalmetabelian algebras having the derived algebra of dimension
n. Indeed, we denote by

T (n) := { (X,Y ) ∈ Mn(k) | X2 = Y 2 = 0, XY = Y X}.

For a pair of matrices (X,Y ) ∈ T (n) we denote by E(X,Y ) := { u ∈ kn | Xu = Yu}
the equalizer of X and Y . Then we have

Ext (k0, k
n
0 )

∼= �(X,Y )∈T (n)

(
E(X,Y )/ ≡)

,

where ≡ is the following equivalence relation on E(X,Y ): u ≡ u′ if and only if
there exists r ∈ kn such that u − u′ = (X + Y )r . For (X = (xi j ),Y = (xi j ), u =
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(u1, . . . , un)) ∈ T (n) × E(X,Y )/ ≡, we denote by kn+1
X,Y,u the associated metabelian

product k � kn . Then kn+1
X,Y,u is the algebra having {F, E1, . . . , En} as a basis and the

multiplication defined for any i , j = 1, . . . , n by

F � F :=
n∑

j=1

u j E j , F � Ei :=
n∑

j=1

y ji Ei , Ei � F :=
n∑

j=1

x ji Ei .

Any (n + 1)-dimensional metabelian algebra having the derived algebra of codi-
mension 1 is isomorphic to such an algebra kn+1

X,Y,u , for some (X,Y, u) ∈ T (n) ×
E(X,Y )/ ≡. Classifying these algebras for an arbitrary n is a very difficult task.

Final comments.Theorem3.6 classifiesmetabelian algebras from the viewpoint of the
extension problem [10]: for two given vector spaces P and V , Ext(P0, V0) classifies
all metabelian algebras that are extensions of P0 by V0 up to an isomorphism of
algebras that stabilizes V0 and co-stabilizes P0. Even if the explicit computation of
the classifying object Ext(P0, V0) offers important information, it is not enough to
classify up to an isomorphism all metabelian algebras of a given dimension. Based on
Theorem 3.3, the next step is to ask when two arbitrary metabelian products P �V and
P ′ � V ′ are isomorphic as algebras. Mutatis-mutandis, this is the associative algebra
version of the isomorphism problem from metabelian groups, which is a very difficult
question that seems to be connected to Hilbert’s Tenth problem, i.e. the problem
is algorithmically undecidable (cf. [5]). Theorem 3.8 gives the full answer in the
particular case V = V ′ := k: the isomorphism of two algebras P � k and P ′ � k is
equivalent to classifying the bilinear forms as stated there. Unfortunately, a similar
result offering a necessary and sufficient criterion for twometabelian products k�V and
k′�V ′ fromTheorem 3.11 to be isomorphic could not be obtained: direct computations
lead to a system of compatibilities that is very technical and impossible to apply in
practice.

We end the paper with an open question. A classical and very difficult problem in
the theory of groups is the following ([4, p. 18]): for two given abelian groups A and
B describe and classify all groups G which can be written as a product G = AB.
Having this question in mind as well as Corollary 3.4 we might ask as follows:

Question Let V0 and P0 be two abelian algebras. Describe and classify all algebras
A containing V0 and P0 as subalgebras such that A = V0 + P0.

A particular case of the question, corresponding to the additional condition P0 ∩ V0 =
{0}, is the following: for two given abelian algebras V0 and P0, describe and classify
all bicrossed products P0 �� V0 of algebras—for details and the construction of the
bicrossed product associated to a matched pair of associative algebras we refer to
[1].
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