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Abstract In this paper, ourmain remark is that proper totally contact umbilical integral
manifolds of screen integrable null hypersurfaces in indefinite Kenmotsu manifolds
admit η-Weyl structures. Its geometry is closely related to the one of a normal sub-
bundle over the indefinite Kenmotsu manifold.

Keywords Indefinite Kenmostu manifold · Null hypersurface ·
Conformal connection

Mathematics Subject Classification Primary 53C15 · Secondary 53C05, 53C25,
53C50

1 Introduction

The manifolds of indefinite signature play a special role in geometry and physics.
They generate models of spacetime of general relativity. For instance, in the tangent
space at a point of a manifold with Lorentzian signature, a real isotropic cone is
invariantly defined, and from physical point of view, this cone is the light cone. Null
hypersurfaces are also studied in the theory of electromagnetism. This is the reason
that there are many papers [11–15], and books [4–6,10] and references therein, in
which null hypersurfaces are investigated.
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1560 F. Massamba

Many objects of general relativity are invariant under conformal transformations
of a metric, and a null hypersurface is an example of the objects that are invariant
under conformal transformations of a metric (see [1] for more details). Hence it is
appropriate to study null hypersurfaces not only on a Kenmostu manifold of indefinite
signature but also on an integral manifold endowed with a conformal structure.

A Weyl structure on a smooth manifold is a torsion-free affine connection D pre-
serving a conformal structure [g] [7]. The Ricci tensor of aWeyl connection is usually
non-symmetric. This paper is devoted to the geometry of integralmanifolds of the class
of almost contact metric manifolds of Kählerian type known as Kenmotsu manifolds
[8] with specific attention to its null subspace.

As is well known, contrary to timelike and spacelike submanifolds, the geometry
of null submanifolds [5] is different because of the fact that their normal vector bundle
intersects with the tangent bundle. To deal with this anomaly, the null submanifolds
were introduced and presented in a book by Duggal and Bejancu [5]. They introduced
a non-degenerate screen distribution to construct a non-intersecting null transversal
vector bundle of the tangent bundle. Several authors have studied those spaces. Con-
cerning the null contact geometry, some specific discussions can be found in [4,11–15]
and references therein.

In this paper, we investigate conformal connection on integral manifolds of null
hypersurfaces in indefinite Kenmotsu manifolds, tangent to the structure vector field.
Note that, being null manifold is invariant under conformal change of themetric, along
with many geometric objects.

The paper is organized as follows. In Sect. 2, we give basic definition on indefinite
Kenmotsu manifolds and null hypersurfaces of semi-Riemannian manifolds. In Sect.
3, we prove that a proper totally contact umbilical leaf of a screen integrable null
hypersuface admits η-conformal structures. A geometric configuration of such a leaf
is also established. By Theorem 3.11, we prove that, under some conditions, the local
triviality implies that a locally symmetric integral manifolds of screen integrable null
hypersurface turns out to be locally semi-Riemannian.

2 Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact structure
(φ, ξ, η), i.e., φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form
satisfying

φ
2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (2.1)

Then (φ, ξ, η, g) is called an indefinite almost contact metric structure on M if
(φ, ξ, η) is an almost contact structure on M and g is a semi-Riemannian metric
on M such that [3], for any vector field X , Y on M

g(φ X , φ Y ) = g(X ,Y ) − η(X) η(Y ). (2.2)

It follows that η(·) = g(ξ, ·). If, moreover, (∇Xφ)Y = g(φ X ,Y )ξ − η(Y )φ X ,

where ∇ is the Levi-Civita connection for the semi-Riemannian metric g, we call
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M an indefinite Kenmotsu manifold. Without loss of generality, ξ is assumed to be
spacelike, that is, g(ξ, ξ) = 1. The Kenmotsu structure defined in [8] differs to the
indefinite Kenmotsu one only by the positiveness of the metric involved and so, the
results in [8] remain unchanged for the indefinite case.�(�) denotes the set of smooth
sections of the vector bundle �.

A plane section σ in TpM is called a φ-section if it is spanned by X and φ X ,
where X is a unit tangent vector field orthogonal to ξ . The sectional curvature of a
φ-section σ is called a φ-sectional curvature. If an indefinite Kenmotsu manifold M
has constant φ-sectional curvature c, then, by virtue of the Proposition 12 in [8], the
curvature tensor R of M is given by the relation (5.6) in [8] with c = H .

A Kenmotsu manifold M of constant φ-sectional curvature c will be called Ken-
motsu space form and denoted by M(c).

If M is an indefinite Kenmotsu space, then, M is an Einstein one and c = −1 [13]
and the curvature tensor R of M(c) is given by

R(X ,Y )Z = g(X , Z)Y − g(Y , Z)X , X , Y , Z ∈ �(T M). (2.3)

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with index s, 0 <

s < 2n+1, endowedwith an almost contactmetric structure (φ, ξ, η), and let (M, g)be
a null hypersurface of M with g = g|M . It is well known that the normal bundle T M⊥
of the null hypersurface M is a vector subbundle of T M of rank 1. A complementary
vector bundle S(T M) of T M⊥ in T M is a rank (2n − 1) non-degenerate distribution
over M , called a screen distribution on M , such that

T M = S(T M) ⊕orth T M⊥, (2.4)

where ⊕orth denotes the orthogonal direct sum. Existence of S(T M) is secured pro-
vided M is paracompact. A null hypersurface with a specific screen distribution is
denoted by (M, g, S(T M)). We know [5] that for such a triplet, there exists a unique
rank 1 vector subbundle tr(T M) of T M over M , such that for any non-zero section
E of T M⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of
tr(T M) on U satisfying

g(N , E) = 1, and g(N , N ) = g(N ,W ) = 0, ∀W ∈ �(S(T M)|U ). (2.5)

Then, T M is decomposed as follows:

T M = T M ⊕ tr(T M) = (T M⊥ ⊕ tr(T M)) ⊕orth S(T M). (2.6)

We call tr(T M) and N the transversal vector bundle and the null transversal vector
field of M with respect to S(T M), respectively. The local Gauss and Weingarten
formulas are, for any X,Y ∈ �(T M |U ),

∇XY = ∇XY + B(X,Y )N , ∇X N = −AN X + τ(X)N , (2.7)

∇X PY = ∇∗
X PY + C(X, PY )E, ∇X E = −A∗

E X − τ(X)E, (2.8)
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where ∇ is the Levi-Civita connection of M , P is the projection morphism of �(T M)

on �(S(T M)) with respect to the decomposition (2.4). Also, ∇ and ∇∗ are the linear
connections, B and C are the local second fundamental forms, AN and A∗

E are the
shape operators on T M and S(T M), respectively, and τ is a 1-form on TM.

From the fact that B(X,Y ) = g(∇XY, E), we know that B is independent of the
choice of a screen distribution and satisfies B(·, E) = 0. Unfortunately, the induced
connection ∇ on T M is not metric and satisfies

(∇X g)(Y, Z) = B(X,Y )θ(Z) + B(X, Z)θ(Y ), (2.9)

where θ is a differential 1-form locally defined on M by θ(·) := g(N , ·). However, the
connection ∇∗ on S(T M) is metric. The above two local second fundamental forms
of M and S(T M) are related to their shape operators by B(X, PY ) = g(A∗

E X, PY ),
g(A∗

E X, N ) = 0, C(X, PY ) = g(AN X, PY ), g(AN X, N ) = 0.

Now consider (M
2n+1

, φ, ξ, η, g) to be an indefinite Kenmotsu manifold and
(M, g) a null hypersurface of (M, g) with ξ ∈ �(T M). If E is a local section of
T M⊥, it is easy to check that φE �= 0 and g(φE, E) = 0, then φE is tangent to M .
Thus φ(T M⊥) is a distribution on M of rank 1 such that φ(T M⊥) ∩ T M⊥ = {0}.
This enables us to choose a screen distribution S(T M) such that it contains φ(T M⊥)

as a vector subbundle. If we consider a local section N of tr(T M), we have φ N �= 0.
Since g(φ N , E) = −g(N , φ E) = 0, we deduce that φ E ∈ �(S(T M)) and φ N
is also tangent to M . At the same time, φ N has no component with respect to E .
Thus φ N ∈ �(S(T M)), that is, φ(tr(T M)) is also a vector subbundle of S(T M) of
rank 1. From (2.1), we have g(φ N , φE) = 1. Therefore, φ(T M⊥)⊕φ(tr(T M)) is a
non-degenerate vector subbundle of S(T M) of rank 2. If ξ ∈ �(T M), we may choose
S(T M) so that ξ belongs to S(T M). Using this, and since g(φE, ξ) = g(φN , ξ) = 0,
there exists a non-degenerate distribution D0 of rank 2n − 4 on M such that

S(T M) =
{
φ(T M⊥) ⊕ φ(tr(T M))

}
⊕orth D0⊕orth < ξ >, (2.10)

where 〈ξ 〉 is the distribution spanned by ξ . D0 is invariant under φ, i.e., φ(D0) = D0.
Moreover, from (2.4), we have the decomposition

T M =
{
φ(T M⊥) ⊕ φ(tr(T M))

}
⊕orth D0⊕orth < ξ > ⊕orthT M⊥. (2.11)

Now, we consider the distributions on M , D := T M⊥ ⊕orth φ(T M⊥) ⊕orth D0,
D′ := φ(tr(T M)). Then, D is invariant under φ and

T M = (D ⊕ D′) ⊕orth 〈ξ 〉. (2.12)

Let us consider the local null vector fieldsU := −φN , V := −φE . Then, from (2.12),
any X ∈ �(T M) is written as X = RX + QX + η(X)ξ , QX = u(X)U , where R
and Q are the projection morphisms of T M into D and D′, respectively, and u is a
differential 1-form locally defined on M by u(·) := g(V, ·). In addition, we have,
∇Xξ = X − η(X)ξ , B(X, ξ) = 0 and C(X, ξ) = θ(X).
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3 Main Results

In this section, we deal with totally contact umbilicity of some foliations of null
hypersurface of an indefinite Kenmotsu manifold (M, g).

First of all, a submanifold M is said to be a totally umbilical null hypersurface of
a semi-Riemannian manifold M if its local second fundamental form B satisfies

B(X,Y ) = ρg(X,Y ), ∀X, Y ∈ �(T M), (3.1)

where ρ is a smooth function onU ⊂ M . If we assume thatM is a totally umbilical null
hypersurface of an indefinite Kenmotsu manifold M with ξ ∈ �(T M), we have 0 =
B(ξ, ξ) = ρ. HenceM is totally geodesic. It follows that an indefinite Kenmotsu space
formM(c) does not admit any non-totally geodesic totally umbilical null hypersurface.
From this point of view, Bejancu [2] considered the concept of totally contact umbilical
semi-invariant submanifolds.

The notion of totally contact umbilical submanifolds was first defined by Kon [9].
We follow Bejancu’s definition of totally contact umbilical submanifolds and state the
following definition for null hypersurfaces.

A null hypersurface M is said to be totally contact umbilical if its second funda-
mental form h = B ⊗ N satisfies ([11]),

h(X,Y ) = {g(X,Y ) − η(X)η(Y )} H + η(X)h(Y, ξ) + η(Y )h(X, ξ), (3.2)

for any X , Y ∈ �(T M), where H is a normal vector field to M . It is easy to check
that a totally contact umbilical null hypersurface of an indefinite Kenmotsu manifold
is η-totally umbilical. If the function λ is nowhere vanishing on M , then the latter is
said to be proper totally contact umbilical. It is easy to check that this is an intrinsic
notion that is independent, on U , of the choice of a screen distribution, E , and hence
N as in Sect. 2.

Let Ŵ be an element of T M⊥ ⊕ tr(T M) which is a non-degenerate distribution of
rank 2. Then there exist non-zero functions α and β such that

Ŵ = α E + β N , (3.3)

where α and β are defined as α = g(Ŵ , N ) and β = g(Ŵ , E). Note that g(Ŵ , Ŵ ) =
||Ŵ ||2g = αβ �= 0.

The Lie derivative LŴ of g with respect to the vector field Ŵ is given by, for any
X, Y ∈ �(T M),

(LŴ g)(X,Y ) = − 2αB(X,Y ) − β {C(X,Y ) + C(Y, X)}
+ β {τ(X)θ(Y ) + τ(Y )θ(X)} + X (β)θ(Y ) + Y (β)θ(X). (3.4)

LetAŴ be a tensor field of type (1, 1) locally defined by the combination of the shape
operators A∗

E and AN , that is,

AŴ X = αA∗
E X + βAN X, ∀X ∈ �(T M). (3.5)
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Lemma 3.1 Let (M, g, S(T M)) be a null hypersurface of an indefinite Kenmostu
manifold (M, g) with ξ ∈ �(T M). Then AŴ X = 0, ∀ X ∈ �(T M) if and only if
A∗
E X = 0 and AN X = 0, ∀ X ∈ �(T M).

Proof Suppose that AŴ X = 0, ∀ X ∈ �(T M). Then, α A∗
E X + β AN X = 0. So,

for any Y ∈ �(T M), αg(A∗
E X,Y ) + βg(AN X,Y ) = 0, i.e., g(Ŵ ,C(X,Y )E +

B(X,Y )N ) = 0 which implies that B(X,Y ) = 0 and C(X,Y ) = 0, since T M⊥ ⊕
N (T M) is a non-degenerate distribution of rank 2. By Theorem 2.2 and Proposition
2.7 in [5] (pp. 88 and 89, respectively), A∗

E and AN vanish identically on M . The
converse is obvious. ��

Let (M, g, S(T M)) be a screen integrable null hypersurface of an indefinite Ken-
mostu manifold (M, g) with ξ ∈ �(T M). Then, (3.4) becomes, for any X, Y ∈
�(T M),

(LŴ g)(X,Y ) = −2αB(X,Y ) − 2βC(X,Y ) + β {τ(X)θ(Y ) + τ(Y )θ(X)}
+ X (β)θ(Y ) + Y (β)θ(X). (3.6)

Let M ′ be a leaf of S(T M). Then, using (2.7) and (2.8), we obtain

∇XY = ∇′
XY + h′(X,Y ), (3.7)

for any X , Y ∈ �(T M ′), where ∇′ and h′ are the Levi-Civita connection and the
second fundamental form of M ′ in M . Thus,

h′(X,Y ) = C(X,Y )E + B(X,Y )N , ∀ X, Y ∈ �(T M ′). (3.8)

Note that, for any X ∈ �(T M ′),

∇′
Xξ = X − η(X)ξ. (3.9)

The relation (3.6) becomes

(LŴ g)(X,Y ) = −2αB(X,Y ) − 2βC(X,Y ), ∀ X, Y ∈ �(T M ′). (3.10)

The action of the Levi-Civita connection ∇ (defined in (3.7)) on the normal bundle
T M⊥ ⊕ N (T M) is given by

∇X Ŵ = −AŴ X + ∇′⊥
X Ŵ , ∀ X, Y ∈ �(T M ′), (3.11)

where ∇′⊥
X Ŵ = {X (α) − ατ(X)} E + {X (β) + βτ(X)} N .

From (3.7), we have

g(h′(X,Y ), Ŵ ) = g(∇XY, Ŵ ) = −g(Y,∇X Ŵ ) = g(AŴ X,Y ). (3.12)
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Lemma 3.2 Let (M, g, S(T M)) be a screen integrable null hypersurface of an indefi-
niteKenmotsumanifold (M, g)with ξ ∈ �(T M). Let M ′ be a leaf of S(T M) immersed
in M as a non-degenerate submanifold. Then,

(LŴ g)(X,Y ) = −2g(h′(X,Y ), Ŵ ), ∀X, Y ∈ �(T M ′).

If the leaf M ′ is totally contact umbilical, then the second fundamental form h′ of
M ′ satisfies

h′(X,Y ) = {g(X,Y ) − η(X)η(Y )} H ′ + η(X)h′(Y, ξ) + η(Y )h′(X, ξ), (3.13)

where H ′ is themean curvature vector ofM ′. As T M⊥⊕tr(T M) is the normal bundle
of M ′, there exist smooth function λ such that H ′ = λŴ . But, for any X ∈ �(T M ′),
h′(X, ξ) = C(X, ξ)E + B(X, ξ)N = 0, the relation (3.13) becomes

h′(X,Y ) = {
g′(X,Y ) − η(X)η(Y )

}
H ′. (3.14)

That is, M ′ is η-totally contact geodesic. Therefore, C(X,Y ) = λα{g′(X,Y ) −
η(X)η(Y )} and B(X,Y ) = λβ{g′(X,Y ) − η(X)η(Y )}, for any X , Y ∈ �(T M ′)
which lead to

AN X = λα{X − η(X)ξ} and A∗
E X = λβ{X − η(X)ξ}.

Consequently, the (1, 1)-tensor field AŴ in (3.5) is deduced to

AŴ X = λ(α2 + β2){X − η(X)ξ}. (3.15)

Note that totally contact umbilicity is the nearest situation from being totally geodesic.
If the leaf M ′ is totally contact umbilical, then, the relation (3.15) may be rewritten
for a given Ŵ in T M⊥ ⊕ tr(T M) as

g(∇XY, Ŵ ) = ω(Ŵ ){g(X,Y ) − η(X)η(Y )}, (3.16)

with ω a 1-form on T M⊥ ⊕ tr(T M) which coincides with the function λ||Ŵ ||2g of

normal vector H ′ = λŴ in (3.14). Therefore, the map

(X,Y ) �−→ g(∇X Ŵ ,Y ) = −ω(Ŵ ){g′(X,Y ) − η(X)η(Y )}, (3.17)

is a bilinear symmetric form on T M ′.

Lemma 3.3 Let (M, g, S(T M)) be a screen integrable null hypersurface of an indefi-
niteKenmotsumanifold (M, g)with ξ ∈ �(T M). Let M ′ be a leaf of S(T M) immersed
in M as a non-degenerate submanifold. Then, M ′ is totally contact umbilical if and
only if T M⊥ ⊕ tr(T M) is an η-conformal Killing distribution, that is, there exists a
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1-form ω on T M⊥ ⊕ tr(T M) such that, for any section Ŵ of T M⊥ ⊕ tr(T M) and
X, Y ∈ �(T M ′),

(LŴ g)(X,Y ) = −2ω(Ŵ ){g′(X,Y ) − η(X)η(Y )}.

Proof The proof follows from the relation LŴ g = 2αB − 2βC . ��

Denote by R and R′ the curvature tensors of∇ and∇′, respectively. Then, by using
(3.7) and (3.11), we obtain,

R(X,Y )Z =R′(X,Y )Z + Ah′(X,Z)Y − Ah′(Y,Z)X

+ (∇′⊥
X h′)(Y, Z) − (∇′⊥

Y h′)(X, Z), (3.18)

for any X , Y , Z ∈ �(T M ′).
Comparing vector fields in M ′ and T M⊥ ⊕ tr(T M), we have

R(X,Y )Z = R′(X,Y )Z + Ah′(X,Z)Y − Ah′(Y,Z)X, (3.19)

(∇′⊥
X h′)(Y, Z) = (∇′⊥

Y h′)(X, Z). (3.20)

Theorem 3.4 Let (M, g, S(T M))bea screen integrable null hypersurface of an indef-
inite Kenmotsu space form (M(c), g) with ξ ∈ �(T M). Let M ′ be a leaf of S(T M)

immersed in M as a non-degenerate submanifold. If M ′ is a totally contact umbilical
leaf, then,

(i) M ′ is η-Einstein.
(ii) The functions αλ and βλ satisfy, respectively, the following partial differential

equations

X (αλ) + αλ{η(X) − τ(X)} = 0, (3.21)

X (βλ) + βλ{η(X) + τ(X)} = 0, (3.22)

for any X ∈ �(T M ′). Moreover, if Ŵ is a unit vector field in T M⊥ ⊕ tr(T M),
the smooth function λ satisfies

X (λ) + λη(X) = 0. (3.23)

Proof Since M ′ is totally contact umbilical, then, by (3.14), h′(X,Y ) = λ{g′(X,Y )−
η(X)η(Y )}Ŵ , and using (2.3) and (3.15), the relation (3.19) becomes,

R′(X,Y )Z = {1 − λ2(α2 + β2)}{g′(X, Z)Y − g′(Y, Z)X}
+ λ2(α2 + β2){g′(X, Z)η(Y ) − g′(Y, Z)η(X)}ξ,
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for any X , Y , X ∈ �(T M ′). Using this, we deduce that the Ricci tensor Ric′ of M ′ is
given by

Ric′(X,Y ) = {−2(n − 1) + (2n − 3)λ2(α2 + β2)}g′(X,Y )

+ λ2(α2 + β2)η(X)η(Y ),

which prove the item (i). The proof of item (ii) follows from (3.20). If Ŵ is a unit
vector field in T M⊥ ⊕ tr(T M), then, αβ = 1 and combining the Eqs. (3.21) and
(3.22), we deduce (3.23). ��

As an example of a screen integrable null hypersurface of an indefinite Kenmotsu
space form (M(c), g) with ξ ∈ �(T M), containing a proper totally contact umbilical
leaf which is η-Einstein leaf, have a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu space form. The concept of screen almost
conformal (SAC), was firstly introduced by the author in [14], which means that the
shape operators AN and A∗

E of M and its screen distribution S(T M), respectively, are
related by AN = ϕA∗

E + θ ⊗ ξ, where ϕ is non-vanishing smooth function and α is a
differential 1-form on U in M .

Next, we introduce the new concept of almost Weyl structures on leaves of screen
integrable null hypersurfaces. In a (pseudo-) Riemannian setting, manifolds M with
conformal structure [g] and torsion-free connection D, such that the parallel translation
induces conformal transformations, are called Weyl manifolds.

A conformal change of the metric leads to a metric which is no more compatible
with the almost contact structure. This can be corrected by a convenient change of
the structure vector field ξ and the 1-form η, which implies rather strong restrictions.
Thus, in case there is an integral manifold of an integrable distribution of M , which
has an indefinite Kenmotsu structure, we may consider a change of the form

φ̃ = φ, ξ̃ = eρξ, η̃ = e−ρη, g̃ = e−2ρg, (3.24)

where ρ is a smooth function in the considered integral manifold, to preserve the
relations given by the Kenmotsu structure. To support this, we have the following.

Proposition 3.5 Let (M, g, S(T M)) be a null hypersurface of an indefinite Kenmotsu
manifold (M, g) with ξ ∈ �(T M). Then, any integral manifold M0 of an integrable
distribution D0 ⊕orth 〈ξ 〉 is totally geodesic in both M and M and has an indefinite
Kenmotsu structure.

Proof Suppose that D0 ⊕orth 〈ξ 〉 is integrable. Let M0 be a leaf of D0 ⊕orth 〈ξ 〉,
then for any p ∈ M0, we have TpM0 = (D0 ⊕orth 〈ξ 〉)p and dim M0 = 2n − 3. If
X0 = X ′

0 + η(X0)ξ ∈ �(T M0), φX0 = φRX ′
0 = φX ′

0 = φX0, R : �(T M) −→
�(D) being the projection morphism and D = T M⊥ ⊕orth φ(T M⊥) ⊕orth D0. We

put
◦
φ= φ|D0⊕orth〈ξ〉 and

◦
η= η|D0⊕orth〈ξ〉, so

◦
φ defines an (1, 1)-type tensor field

on M0 because φ(D0 ⊕orth 〈ξ 〉) ⊂ D0. Now we consider (M0, φ0, ξ, η0, g) and
check that, this is an indefinite Kenmotsu structure. We know that φ2 X = −X +
η(X)ξ + u(X)U , ∀ X ∈ �(T M) and u(X) = 0, ∀ X ∈ �(D0 ⊕orth 〈ξ 〉), so we
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1568 F. Massamba

deduce (
◦
φ)2 X0 = −X0 + η(X0)ξ, for any X0 ∈ �(T M0). Then

◦
η (ξ) = 1 and

(φ0, ξ, η0) is an almost contact structure. Now, we prove the compatibility between

the (φ0, ξ, η0)-structure and the metric g on M0. By
◦
φ= φ|D0⊕orth〈ξ〉, we have, for

any X0, Y0 ∈ �(T M0), g(
◦
φ X0,

◦
φ Y0) = g(X0,Y0) − η(X0)η(Y0). Let

◦∇ be a linear
connection on the bundle D0 ⊕orth 〈ξ 〉. For any X ∈ �(T M), Y0 ∈ �(D0 ⊕orth 〈ξ 〉),
we have ∇XY0 = ◦∇X Y0+

◦
h (X,Y0), where

◦
h: �(T M) × �(D0 ⊕orth 〈ξ 〉) −→ �({φ(T M⊥) ⊕ φ(N (T M))} ⊕orth T M⊥),

is F(M)-bilinear. Let U ⊂ M be a coordinate neighborhood as fixed in Sect. 2.

Then, for any X0, Y0 ∈ �(D0 ⊕orth 〈ξ 〉), ∇X0Y0 = ◦∇X0Y0 + C(X0, φY0)V +
B(X0, φY0)U + C(X0,Y0)E , and the local expression of

◦
h is

◦
h (X0,Y0) =

C(X0, φY0)V + B(X0, φY0)U + C(X0,Y0)E . Since D0 ⊕orth 〈ξ 〉 is integrable,
◦
h is symmetric, i.e., C(X0, φY0) = C(Y0, φX0), B(X0, φY0) = B(Y0, φX0) and

C(X0,Y0) = C(Y0, X0). The Levi-Civita connection ∇ on M and the induced one
◦∇

are related as ∇X0Y0 = ◦∇X0Y0 + B(X0,Y0)N+ ◦
h (X0,Y0). It is easy to check that

◦∇X0Y0 ∈ �(D0 ⊕orth 〈ξ 〉), ∀ X0, Y0 ∈ �(D0 ⊕orth 〈ξ 〉), i.e., D0 ⊕orth 〈ξ 〉 defines a
totally geodesic foliation. Hence M0 is a totally geodesic leaf in both M and M . More-

over,
◦∇ is the Levi-Civita connection on M0. In fact, since D0 ⊕orth 〈ξ 〉 ⊂ S(T M),

we get, (
◦∇X0g)(Y0, Z0) = (∇X0g)(Y0, Z0) = 0, and

(
◦∇X0

◦
φ)Y0 = g(

◦
φ X0,Y0)ξ− ◦

η (Y0)
◦
φ X0,

for any X0, Y0, Z0 ∈ �(D0 ⊕orth 〈ξ 〉). Thus, (M0, φ0, ξ, η0, g) has an indefinite
Kenmotsu structure. ��
Definition 3.6 A connection D′ on a leaf M ′ is said to be η-conformal if the covariant
derivative of g is proportional to g − η ⊗ η, that is, there exists a differential 1-form
β such that the following

D′g′ = −γ ⊗ {g′ − η ⊗ η} (3.25)

holds. Here g′ = g|M ′ . If in addition, D′ is torsion-free, it is said to beWeyl connection
[7] in the direction of the distribution Ker(η). But on M ′, such a connection will be
called η-Weyl connection.

For every metric g∗ ∈ [g′], it is natural to consider the compatible almost contact
structure of an integral manifold M∗ of an integrable distribution of M with ξ ∈ T M
given by (3.24), so that, corresponding to [g], we obtain a conformal class of almost

contact metric structures denoted by [φ∗, ξ, η, g∗], where φ∗2 = φ
2
|M∗ = −I+ η ⊗ ξ

and g∗ = g||M∗ . From this viewpoint, given an η-conformal structure ∇ on (M, [g])
with ξ ∈ T M , its remarkable properties are actually the properties invariant for the
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conformal class [φ, ξ, η, g], where φ is defined by φ2 = −I + η ⊗ ξ + u ⊗ U. This
tells us that (φ, ξ, η, g) is not an almost contact metric structure. But, this structure is
invariant under the change in (3.24).

Consider on M ′ conformal structure of the form (3.24). These metrics endow M ′
with a conformal structure denoting by C′ = [φ′, ξ, η, g′]. Throughout this paper, M ′
endowed with this conformal structure is denoted as (M ′, C′).

Definition 3.7 An integral manifold (M ′, C′, D′) is said to be almost Weyl if it is
endowed with an η-Weyl connection D′ satisfying the relation in (3.25).

Now, assume that the leaf M ′ is proper totally contact umbilical. The 1-form ω

in (3.16) is related to the mean curvature vector H ′ of M ′ as H ′ = λŴ . Hence, the
1-form ω is a section of (T M⊥ ⊕ tr(T M))∗ and then there exists a section ω� of
T M|M ′ such that

g(ω�, Ŵ ) = ω(Ŵ ), ∀ Ŵ ∈ �(T M⊥ ⊕ tr(T M)). (3.26)

In fact, the sectionω� is themetrical dual vector ofω.We also observe that two sections
ω� differ by exactly one section of T M ′. Let β be the differential 1-form on M , locally
defined by

γ (X) = 2g(ω�, X), (3.27)

and we define Dγ as

Dγ

XY = ∇XY + 1

2
γ (X){Y − η(Y )ξ} + 1

2
γ (Y ){X − η(X)ξ}

− {g′(X,Y ) − η(X)η(Y )}ω�, (3.28)

for all X,Y ∈ �(T M ′) and ∇ is the Levi-Civita connection on (M, g).
First of all, we have the following:

Lemma 3.8 Let (M, g, S(T M)) be a screen integrable null hypersurface of an indefi-
nite Kenmotsumanifold (M, g)with ξ ∈ �(T M). Let M ′ be a totally contact umbilical
leaf of S(T M) immersed in M as a non-degenerate submanifold. Then, Dγ in (3.28)
is a torsion-free connection on M ′ and for any X, Y ∈ �(T M ′),

Dγ

XY ∈ �(T M ′).

Proof Dβ is clearly a torsion-free connection on M . Using (3.16) and for any X ,
Y ∈ �(T M ′), we have

g(Dγ

XY, Ŵ ) = g(∇XY, Ŵ ) − ω(Ŵ ){g′(X,Y ) − η(X)η(Y )}
= ω(Ŵ ){g′(X,Y ) − η(X)η(Y )} − ω(Ŵ ){g′(X,Y ) − η(X)η(Y )}
= 0,

which completes the proof. ��

123



1570 F. Massamba

Finally, we show that Dγ is η-conformal connection. Using Lemma 3.8 and (3.28),
and let X , Y , and Z be tangent vector fields to M ′. We have

(Dγ

X g
′)(Y, Z) = X (g′(Y, Z) − g′(Dγ

XY, Z) − g′(Y, Dγ

X Z)

= (∇X g)(Y, Z) − 1

2
γ (X){g′(Y, Z) − η(Y )η(Z)}

− 1

2
γ (Y ){g′(X, Z) − η(X)η(Z)} + 1

2
γ (Z){g′(X,Y ) − η(X)η(Y )}

− 1

2
γ (X){g′(Y, Z) − η(Y )η(Z)} − 1

2
γ (Z){g′(X,Y ) − η(X)η(Y )}

+ 1

2
γ (Y ){g′(X, Z) − η(X)η(Z)}.

That is, (Dγ

X g
′)(Y, Z) = −γ (X){g′(Y, Z) − η(Y )η(Z)}. This means that Dγ is η-

Weyl connection on M ′.
Now suppose that there exists an η-Weyl connection D′ on (M ′, g′), i.e., D′ is

torsion-free and there exists a smooth 1-form γ such that D′g′ = −γ ⊗ {g′ − η ⊗ η}.
Then, one has, for any X , Y ∈ �(T M ′),

D′
XY = ∇XY + 1

2
γ (X){Y − η(Y )ξ} + 1

2
γ (Y ){X − η(X)ξ}

− {g′(X,Y ) − η(X)η(Y )}ω�. (3.29)

From (3.7) and using the fact that the dual vector ω� can be written, in general, as

ω� = Pω� + 1

αβ
ω(Ŵ )Ŵ , αβ �= 0, (3.30)

we have

D′
XY = ∇′

XY + h′(X,Y ) + 1

2
γ (X){Y − η(Y )ξ} + 1

2
γ (Y ){X − η(X)ξ}

− {g′(X,Y ) − η(X)η(Y )}
{
Pω� + 1

αβ
ω(Ŵ )Ŵ

}
. (3.31)

Comparing the elements of M ′ and T M⊥ ⊕ tr(T M), one obtains,

D′
XY = ∇′

XY + 1

2
γ (X){Y − η(Y )ξ} + 1

2
γ (Y ){X − η(X)ξ}

− {g′(X,Y ) − η(X)η(Y )}Pω�, (3.32)

h′(X,Y ) = 1

αβ
ω(Ŵ ){g′(X,Y ) − η(X)η(Y )}Ŵ , (3.33)

which implies that M ′ is totally contact umbilical. Therefore,
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Theorem 3.9 Let (M, g, S(T M))bea screen integrable null hypersurface of an indef-
inite Kenmotsu manifold (M, g)with ξ ∈ �(T M). For M ′, a leaf of S(T M) immersed
in M as a non-degenerate submanifold, to be proper totally contact umbilical, it is
necessary and sufficient that it admits an η-Weyl connection.

Let (M, g, S(T M)) be a screen integrable null hypersurface of an indefinite Ken-
motsu manifold (M, g) with ξ ∈ γ (T M).

Let M ′ be a totally contact umbilical leaf of S(T M). Then, by Theorem 3.9, there
is an η-Weyl connection D′ in M ′ such that, for any X,Y ∈ �(T M ′), we have,

D′
XY = ∇XY + γ̃XY, (3.34)

where

γ̃XY = 1

2
γ (X){Y − η(Y )ξ} + 1

2
γ (Y ){X − η(X)ξ}

− {g′(X,Y ) − η(X)η(Y )}ω�. (3.35)

The Lie derivative of g′ with respect to structure vector field ξ is given by

(Lξ g
′)(X,Y ) = ξ(g′(X,Y )) − g′([ξ, X ],Y ) − g′([ξ,Y ], X)

= 2{g′(X,Y ) − η(X)η(Y )}. (3.36)

By definition of D′ in (3.25), we have, for any X,Y ∈ �(T M ′),

−γ (ξ){g′(X,Y ) − η(X)η(Y )} = (Lξ g
′)(X,Y ) + g′(D′

Xξ,Y ) + g′(X, D′
Y ξ),

which leads to the following identity, for any X,Y ∈ �(T M ′),

g′(D′
Xξ,Y ) + g′(D′

Y ξ, X) = −(γ (ξ) + 2){g′(X,Y ) − η(X)η(Y )}. (3.37)

Using (3.37), one has, γ (ξ) = −2 and D′
Xξ = 0, for any X ∈ �(T M ′).

Now, we want to understand better the position of the vector field ω� in M . As is
mentioned above,ω� is, in general, a vector field onM , that isω� = Pω�+ 1

αβ
ω(Ŵ )Ŵ

with αβ �= 0. Its location, on either in T M ′ or T M , depends on the smooth function
ω(Ŵ ). Therefore,

Lemma 3.10 Let (M, g, S(T M)) be a screen null hypersurface of an indefinite Ken-
motsu space form (M(c), g) with ξ ∈ �(T M). Let M ′ be a totally contact umbilical
leaf of S(T M) immersed in M as a non-degenerate submanifold. Then, the following
assertions are equivalent:

(i) The dual ω� of the differential form ω in (3.26) is a vector field on M ′.
(ii) M ′ is totally geodesic in M.
(iii) T M⊥ ⊕ tr(T M) is a Killing distribution on M ′.
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Moreover,

∇Xω� + 1

2
γ (X)ω� ∈ �(T M ′), ∀ X ∈ �(T M ′). (3.38)

Proof Since M ′ is totally contact umbilical, then, the equivalences follow the follow-
ing. By (3.30), the dual ω� of the differential form ω is a vector field on M ′, i.e.,
g(ω�, Ŵ ) = 0 if and only if ω(Ŵ ) = 0. Now we prove (3.38). The curvature tensor
R of the g-compatible connection ∇ is given by, for any X,Y, Z ∈ �(T M ′),

R(X,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z . (3.39)

Using the relation (3.34), one obtains,

∇X∇Y Z =D′
X D

′
Y Z − 1

2
γ (X){D′

Y Z − η(D′
Y Z)ξ} − 1

2
γ (D′

Y Z){X − η(X)ξ}

+ {g′(X, D′
Y Z) − η(X)η(D′

Y Z)}ω� − 1

2
X (γ (Y )){Z − η(Z)ξ}

− 1

2
γ (Y ){∇X Z − X (η(Z))ξ − η(Z)∇Xξ} − 1

2
X (γ (Z)){Y − η(Y )ξ}

− 1

2
γ (Z){∇XY − X (η(Y ))ξ − η(Y )∇Xξ}

+ {X (g′(Y, Z)) − X (η(Y ))η(Z) − η(Y )X (η(Z))}ω�

+ {g′(Y, Z) − η(Y )η(Z)}∇Xω�, (3.40)

and

∇[X,Y ]Z = D′[X,Y ]Z − 1

2
γ ([X,Y ]){Z − η(Z)ξ} − 1

2
γ (Z){[X,Y ] − η([X,Y ])ξ}

+ {g′([X,Y ], Z) − η([X,Y ])η(Z)}ω�. (3.41)

Putting the pieces (3.40) and (3.41) together into (3.39), we get,

R(X,Y )Z = RD′
(X,Y )Z − 1

4
{γ (Z) + 2η(Z)}{γ (X)(Y − η(Y )ξ)

− γ (Y )(X − η(X)ξ)} − dγ (X,Y ){Z − η(Z)ξ}
+ 1

2
{(D′

X g
′)(Y, Z) − (D′

Y g
′)(X, Z)}ω� − 1

2
(D′

Y γ )Z{X − η(X)ξ}

− 1

2
(D′

Xγ )Z{Y − η(Y )ξ} + 1

2
γ (Z){η(Y )X − η(X)Y }

+ {g′(Y, Z) − η(Y )η(Z)}∇Xω� − {g′(X, Z) − η(X)η(Z)}∇Yω�.

(3.42)
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Since the vector fields X , Y , and Z are all taken in M ′, then, g-doting the relation
(3.42) with Ŵ and using (2.3), one has,

{g′(X, Z) − η(X)η(Z)}{g(ω�,Y )g(ω�, Ŵ ) + g(∇Yω�, Ŵ )}
= {g′(Y, Z) − η(Y )η(Z)}{g(ω�, X)g(ω�, Ŵ ) + g(∇Xω�, Ŵ )},

which implies

g

(
∇Yω� + 1

2
γ (Y )ω�, Ŵ

)
P̂ X = g

(
∇Xω� + 1

2
γ (X)ω�, Ŵ

)
P̂Y, (3.43)

where P̂ is a projection defined by P̂ = P − η ⊗ ξ .
Now suppose that there exists a vector field X0 on some neighborhood of M ′ such

that g(∇X0ω
� + 1

2γ (X0)ω
�, Ŵ ) �= 0 at some point p in the neighborhood. Then, from

(3.43) it follows that all vectors of the fiber (T M ′ − 〈ξ 〉))p are collinear with (P̂ X0)p.
This contradicts dim(T M ′ − 〈ξ 〉)p > 1, since ((T M ′) − 〈ξ 〉)p is a non-degenerate
distribution of rank 2n − 2, n ≥ 2. Therefore, g(∇Xω� + 1

2γ (X)ω�, Ŵ ) = 0. This
completes the assertion (3.38). ��

Let X and Y be vector fields on M ′ satisfying [X,Y ] = 0 at p. Then, we have for
any vector fields Z , W :

X (g(Z ,W )) = −γ (X){g′(Z ,W ) − η(Z)η(W )} + g′(D′
X Z ,W ) + g′(Z , D′

XW ),

which implies

Y (X (g(Z ,W ))) = − Y (γ (X)){g′(Z ,W ) − η(Z)η(W )}
+ γ (X)γ (Y ){g′(Z ,W ) − η(Z)η(W )}
− γ (X)g′(D′

Y Z ,W ) − γ (X)g′(Z , D′
YW )

+ γ (X)η(W )Y (η(Z)) + γ (X)η(Z)Y (η(W ))

− γ (Y ){g′(D′
X Z ,W ) − η(D′

X Z)η(W )}
+ g′(D′

Y D
′
X Z ,W ) + g′(D′

X Z , D′
YW )

− γ (Y ){g′(Z , D′
XW ) − η(Z)η(D′

XW )}
+ g′(D′

Y Z , D′
XW ) + g′(Z , D′

Y D
′
XW ), (3.44)

and obtain the formula for X (Y (g(Z ,W ))) by exchanging X and Y in (3.44). Sub-
tracting Y (X (g(Z ,W ))) from X (Y (g(Z ,W ))) yields

dγ (X,Y ){g′(Z ,W ) − η(Z)η(W )} = g′(RD′
(X,Y )Z ,W ) + g′(Z , RD′

(X,Y )W ).

So,

(n − 1)dγ (X,Y ) =
2n−1∑
i=1

g′(RD′
(X,Y )Ei , Ei ), (3.45)
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where {Ei } is an orthonormal base at p with respect to g′. By the aid of the first
Bianchi identity (notice that the connection D′ is torsion-free so that the Bianchi
identity holds), we have

RD′
(X,Y )Ei = −RD′

(Y, Ei )X − RD′
(Ei , X)Y, (3.46)

and therefore,

(n − 1)dγ (X,Y ) = RicD
′
(Y, X) − RicD

′
(X,Y ), (3.47)

where RicD
′
(X,Y ) =

2n−1∑
i=1

g′(RD′
(Ei , X)Y, Ei ) which is in line with the convention

(3.39).

Theorem 3.11 Let (M, g, S(T M)) be a screen integrable null hypersurface of an
indefinite Kenmotsu manifold (M, g) with ξ ∈ �(T M). Let (M ′, C′, D′) be an almost
Weyl leaf of S(T M) immersed in M as a non-degenerate submanifold. Then, for
g′ ∈ C′, the following assertions are equivalent:

(i) dγg′ = 0,
(ii) RicD

′
is symmetric,

(iii) each point of M ′ has a neighborhood on which D′ is a torsion-free g′-compatible
linear connection for a certain metric g′ in C′.

The Theorem 3.11 shows that, under some conditions, the local triviality implies
that a locally symmetric integral manifolds of integrable screen distribution S(T M)

of a null hypersurface (M, g, S(T M)) turns out to be locally semi-Riemannian.

Acknowledgements The author would like to thank the Berlin Mathematical School in Berlin, Germany,
for its hospitality and support during the preparation of this paper. Financial support from the IMU Berlin
Einstein Foundation Program (EFP) is acknowledged. He also thanks the referee for helping him to improve
the presentation.

References

1. Akivis, M.A., Goldberg, V.V.: Lightlike hypersurfaces on manifolds endowed with a conformal struc-
ture of Lorentzian signature. Acta Appl. Math. 57(3), 255–285 (1999)

2. Bejancu, A.: Umbilical Semi-invariant submanifolds of a Sasakian manifold. Tensor N. S. 37, 203–213
(1982)

3. Bonome, A., Castro, R., Garca-Rio, E., Hervella, L.: Curvature of indefinite almost contact manifolds.
J. Geom. 58, 66–86 (1997)

4. Duggal, K.L., Sahin, B.: Lightlike submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math.
Sci. 2007, Article ID 57585, 21 (2007)

5. Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications
(Mathematics and Its Applications). Kluwer Academic Publishers, Dordrecht (1996)

6. Duggal, K.L., Jin, D.H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Sci-
entific Publishing Co. Pte. Ltd, Singapore (2007)

7. Ivanov, S.: Einstein–Weyl structures on compact conformal manifolds. Q. J. Math. 50(200), 457–462
(1999)

123



A Conformal Connection on Null Hypersurfaces… 1575

8. Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24, 93–103 (1972)
9. Kon, M.: Remarks on anti-invariant submanifold of a Sasakian manifold. Tensor N. S. 30, 239–246

(1976)
10. Kupeli, D.N.: Singular Semi-Invariant Geometry, Mathematics and Its Applications. Kluwer Publish-

ers, Dordrecht (1996)
11. Massamba, F.: Totally contact umbilical lightlike hypersurfaces of indefinite Sasakianmanifolds.Kodai

Math. J. 31, 338–358 (2008)
12. Massamba, F.: On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds. J. Geom.

95, 73–89 (2009)
13. Massamba, F.: On lightlike geometry in indefinite Kenmotsu manifolds. Math. Slovaca 62(2), 315–344

(2012)
14. Massamba, F.: Screen almost conformal lightlike geometry in indefinite Kenmotsu space forms. Int.

Electron. J. Geom. 5(2), 36–58 (2012)
15. Massamba, F.: Symmetries of null geometry in indefinite Kenmotsu manifolds. Mediterr. J. Math.

10(2), 1079–1099 (2013)
16. Massamba, F.: Almost Weyl structures on null geometry in indefinite Kenmotsu manifolds. Math.

Slovaca (in press)

123


	A Conformal Connection on Null Hypersurfaces  of Indefinite Kenmotsu Manifolds
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main Results
	Acknowledgements
	References




