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Abstract A subgroup H of a group G is called a TI-subgroup if Hg ∩ H = 1 or H
for all g ∈ G; and H is called quasi TI if CG(x) ≤ NG(H) for all non-trivial elements
x ∈ H . A group G is called (quasi CTI-group) CTI-group if every cyclic subgroup of
G is a (quasi TI-subgroup) TI-subgroup. It is clear that TI subgroups are quasi TI. We
first show that finite nilpotent quasi CTI-groups are CTI. In this paper, we classify all
finite nilpotent CTI-groups.
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1 Introduction and Results

A subgroup H of a finite group G is called a TI-subgroup, if H ∩ Hg = 1 or H for all
g ∈ G. A group G is called a TI-group if all of whose subgroups are TI-subgroups. A
group G is called an ATI-group if all of whose abelian subgroups are TI-subgroups.
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Similarly, a groupG is called a CTI-group if any cyclic subgroup ofG is a TI-subgroup
or equivalently 〈x〉g ∩ 〈x〉 = 1 or 〈x〉 for all elements x, g ∈ G.

A subgroup H of a finite group G is called a quasi TI-subgroup or a QTI-subgroup
if CG(x) ≤ NG(H) for any 1 �= x ∈ H . A group G is called a QTI-group if all of
whose subgroups are QTI-subgroups. Similarly, a group G is called a AQTI-group (a
quasi CTI-group, respectively) if all of whose abelian subgroups (cyclic subgroups,
respectively) are QTI-subgroups.

In [1], Walls classified finite groups all of whose subgroups are TI-subgroups. In
[2] and [3], Guo, Li and Flavell classified finite groups whose abelian subgroups are
TI-subgroups. Also in [4], Qian and Tang classified finite groups all of whose abelian
subgroups are QTI-subgroups.

A subgroup H of G is called n-embedded in G if for every 1 �= K � H we have
NG(K ) � NG(H), and a group G is called n-group if every subgroup H of G is
n-embedded in G. If G is nilpotent, then any quasi CTI-subgroup of G is n-embedded
in G and quasi CTI-group is n-group. The n-groups have been classified by Kazarin
in [5,6], but those Russian papers are not accessible. In [7] one can find English
translation of [5] but without any proofs. So we give here a proof of this particular
case independently with full details.

Here, we show that a finite nilpotent group is CTI if and only if it is quasi CTI.
The structure of non-nilpotent finite CTI-groups are classified in [8]. In this paper, we
complete the classification of finite CTI-groups by classifying nilpotent ones.

Our main results are the following.

Theorem 1.1 Every finite nilpotent group is quasi CTI if and only if it is CTI.

Theorem 1.2 Let G be a finite nilpotent group. Then G is a CTI-group if and only if
one of the following holds:

(1) G is Dedekindian, i.e., all subgroups of G are normal in G;
(2) G is a p-group of exponent p for some prime p;
(3) G is a p-group for some prime p such that G ′ = �1(Gp) is of order p and

�(G) = Gp is a central cyclic subgroup of G; and
(4) G is a 2-group such that G = A〈x〉, where A is an abelian subgroup of G and x

is an involution in G \ A such that ax = a−1.

Our notations are as follows. Let G be a group, x ∈ G and H ≤ G. Then, CG(x)
denotes the centralizer of x in G and NG(H) denotes the normalizer of H in G. The
derived subgroup, the center, and the Frattini subgroup of G are denoted by G ′, Z(G),
and �(G), respectively; and if G is a p-group, Gp denotes 〈x p | x ∈ G〉 and �1(G)

denotes 〈x ∈ G | x p = 1〉. The cyclic group of order n is denoted by Zn and Q8
denotes the quaternion group of order 8. The exponent of a finite group G is denoted
by exp(G), and the order of an element x ∈ G is denoted by |x |. For two elements x
and y in a group, [x, y] denotes the commutator x−1y−1xy.

2 Quasi CTI-Groups

Clearly a TI-subgroup is a QTI-subgroup. So TI-, ATI-, and CTI-groups are QTI-,
AQTI-, and quasi CTI-groups, respectively. In [4] Qian and Tang proved that:
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Theorem 2.1 ([4], Theorem 2.1). For a finite p-group G, the following statements
are equivalent:

(i) G is a T I -group;
(ii) G is an AT I -group; and
(iii) G is an AQT I -group.

In Theorem 1.1, we show that a finite p-group is CTI if and only if it is quasi CTI.
We need the following proposition in the proof of Theorem 1.1.

Proposition 2.2 Let G be a finite quasi CTI-group and H is a non-normal cyclic
subgroup of G.

(i) H ∩ Z(G) = 1 and in particular no non-trivial subgroup of H is normal in G.
(ii) If x ∈ H is of prime order, then CG(x) = NG(H).
(iii) If |Z(G)| divides by two distinct primes, then G is Dedekindian.

Proof (i) If 1 �= x ∈ H ∩ Z(G), then G = CG(x) � NG(H), a contradiction.
(ii) Since 〈x〉 � NG(H), x ∈ Z(NG(H)) and so CG(x) = NG(H).
(iii) Let h ∈ G be of prime order. By assumption, Z(G) contains an element x of

order coprime to |h|. By (i) 〈xh〉 � G. Since 〈h〉 � 〈xh〉, 〈h〉 � G . Therefore,
any subgroup of prime order of G is normal and so G is Dedekindian by (i). 	


We can now prove Theorem 1.1. Let us restate the statement of Theorem 1.1.

Theorem 1.1 Every finite nilpotent group is quasi CTI if and only if it is CTI.

Proof Suppose that G is a finite nilpotent non-Dedekindian quasi CTI-group. By
Proposition 2.2 (iii), G must be a non-abelian p-group for some prime p. Suppose
H is a cyclic subgroup of G and x ∈ H is of order p. If H ∩ Hg �= 1 for some
element g ∈ G, then 〈x〉 = 〈x〉g . Hence g ∈ CG(x) = NG(H) by Proposition 2.2 (ii).
Therefore H = Hg . This completes the proof. 	


3 CTI- p-Groups with Center of Exponent > p

The following lemma shows that to classify finite nilpotent CTI-groups it is enough
to classify the finite CTI-p-groups. Recall that a group is called Dedekindian (or
Hamiltonian) if all of its subgroups are normal.

Lemma 3.1 ([8], Corollary 1.3). Let G be a CTI-group with non-trivial center.

(i) Assume that the order of 1 �= g ∈ G is coprime to the order of an element of
Z(G). Then 〈g〉 � G.

(ii) If two distinct primes p and q divide the order of Z(G), then G is a Dedekindian
group.

The preceding lemma implies that a finite non-Dedekindian nilpotent CTI-group is
necessarily a non-Dedekindian p-group.

It is easy to see that a finite non-Dedekindian CTI-p-group contains a non-normal
(non-central) subgroup of order p. This justifies the hypothesis of the existence of a
non-central element of order p in the following lemma:
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Lemma 3.2 Let G be a non-Dedekindian finite CTI-p-group such that the exponent
of Z(G) is at least p2 and x is a non-central element of order p of G.

(i) For any g ∈ G\CG(x), [x, g] is an element of Z(G)p of order p.
(ii) CG(x) is a maximal subgroup of G.
(iii) Z(G) ∼= Zpe × E where e ≥ 2 and E is an elementary abelian subgroup.
(iv) If for any non-central element y of order p, CG(x) = CG(y), then CG(x) is

abelian.

Proof (i) Let y ∈ Z(G) be of order at least p2. Since (yx)p is central, 〈yx〉 � G.
Hence for any g ∈ G, yxg ∈ 〈yx〉, so yxg = yi xi for some i where (i, p) = 1, then
[x, g] = xi−1y1−i . Therefore [x, g]p = [x p, g] = 1. Accordingly y p(i−1) = 1,
thus p divides i − 1 and so xg = yi−1x . This implies that [x, g] ∈ Z(G)p and
〈y, x〉 � G. Let Z � 〈y〉 be of prime order. Then

〈xg, x〉 = 〈Z , x〉 = �1(〈y, x〉) � G.

(ii) By (i), 〈xg, x〉 contains any conjugate of x , so |G : NG(〈x〉)| = p, now (ii)
follows from the equality CG(x) = NG(〈x〉).

(iii) Let 〈y1〉 be a central subgroup of order at least p2 such that 〈y〉 ∩ 〈y1〉 = 1. By
(i), we have 〈Z , x〉 = 〈xg, x〉 = 〈Z1, x〉, where Z1 � 〈y1〉 is of order p. Then
we have Z = Z1, which is a contradiction.

(iv) The hypothesis implies that CG(x) is Dedekindian, as it is a CTI-group and any
subgroup of prime order is normal in CG(x). Since CG(x) contains Z(G), so
exp(Z(CG(x))) is at least p2. Hence CG(x) is an abelian group. 	


Theorem 3.3 Let G be a finite non-abelian p-group such that exp(Z(G)) > p. If G
is a CTI-group then every cyclic subgroup of order at least p2 is normal in G.

Proof Suppose that G is a non-abelian CTI-p-group having a cyclic subgroup 〈a〉
which is not normal in G and |a| = p2. Thus a p /∈ Z(G) and 〈a〉 ∩ Z(G) = 1.

Step 1 We show that CG(a) is abelian and �1(G) � CG(a).
Since a ∈ Z(CG(a)) and 〈a〉 ∩ Z(G) = 1, it follows from Lemma 3.2 (iii) that

CG(a) is abelian. Now for any non-central element y of order p, we have a p ∈ CG(y),
since CG(y) is a maximal subgroup ofG by Lemma 3.2 (ii). Hence y ∈ CG(a p). Since
G is CTI, 〈a〉 � CG(a p) and so [a, y] ∈ 〈a〉 because y ∈ CG(a p). Also [a, y] ∈ Z(G)

by Lemma 3.2 (i). Hence [a, y] = 1 (otherwise 〈a〉 � G) and so CG(a) contains any
element of order p of G.

Step 2 M = CG(a p) is abelian.
We show that for any non-central element y of order p, CG(y) = M . Suppose, for

a contradiction, that y ∈ G\Z(G) is of order p such that CG(y) �= M . By Step 1,
C = CG(a) is abelian and y ∈ C . Thus C � CG(y), so C �= M and by Normalizer–
Centralizer theoremC is maximal inM . Nowwe haveC = M∩CG(y). Let g ∈ M\C ,
then |g| ≥ p2 as by the previous part�1(G) ≤ C . SinceM = 〈g〉C , we have 〈g〉 � M
(because gp ∈ Z(M)). Therefore

1 �= [a, g] ∈ 〈g〉 ∩ 〈a〉 = 〈a p〉,
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and so 〈g〉 � G, because 〈x〉 � G. Now since g /∈ CG(y) and 〈g〉 � M , then 1 �=
[g, y] ∈ 〈g〉 is a central element of prime order, a contradiction. Hence, M = CG(y)
for any non-central element y of prime order and it follows from Lemma 3.2 (iv) that
M is abelian.

Let x ∈ G\M . Then |x | ≥ p2. Since G = M〈x〉 and M is abelian, 〈x p〉 �
M ∩ 〈x〉 � Z(G). Therefore 〈x〉 � G. Thus [a, x] ∈ M ∩ 〈x〉 ≤ Z(G). Hence
[a p, x] = [a, x p] = 1 and so a p ∈ Z(G), a contradiction. 	


In Theorem 4.3 (see Sect. 4), we shall prove that all finite CTI-p-groups G satisfy
the property mentioned in the conclusion of Theorem 3.3, i.e., every cyclic subgroup
of order at least p2 is normal in G. In the proof of Theorem 4.3 we use Theorem 3.3.

Theorem 3.4 Let G be a finite non-Dedekindian p-group such that exp(Z(G)) > p.
If G is a CTI-group then the followings hold:

(i) G ′ is of order p and G ′ = 〈x〉 for all x ∈ G such that |x | ≥ p2;
(ii) Gp is a cyclic central subgroup of G and G ′ = �1(Gp). In particular, �(G) =

Gp is a cyclic central subgroup of G.

Proof (i) Let H be a non-normal subgroup ofG and h ∈ H such that hg /∈ H for some
g ∈ G. Let pe = exp(Z(G)). Since 〈h〉 � G, Theorem 3.3 implies that |h| = p

and it follows from Lemma 3.2 (iii) that [g, h] ∈ Z , where Z = Z(G)p
e−1

.
Hence 〈hZ〉 � G/Z . Therefore G/Z is Dedekindian. If p > 2 or p = 2 and
exp(Z(G)) > 4, then G/Z is abelian and so G ′ = Z is of order p.

Now let p = 2 and exp(Z(G)) = 4 and assume that G/Z ∼= Q8 × E for some
elementary abelian 2-group E . It follows that there exists a normal subgroup K of G
such that K/Z ∼= Q8. By [9, 3.2.10], Z � Z(K ). Thus K/Z(K ) ∼= Z2 × Z2 which
implies that |K ′| = 2. Hence K ′ � Z(G) since K � G. It follows that K ′ ∩ Z = 1.
Now we have K ∼= Q8 × Z and so G has a subgroup H isomorphic to Z4 × Q8 which
is not CTI, since �1(H) � Z(H), a contradiction. Therefore, in this case again G/Z
is abelian and |G ′| = 2.

Since G is not Dedekindian, it follows from Lemma 3.2 (i) that G ′ = �1(Z(G)p).
Let x be an element of G of order greater than p. By Theorem 3.3, 〈x〉 � G. If

x /∈ Z(G), then [x, g] �= 1 for some g ∈ G. Since |G ′| = p, G ′ = 〈[x, g]〉 = 〈x |x |
p 〉

as 〈x〉 � G. Now assume that x ∈ Z(G). Then it follows from Lemma 3.2 (iii) that

Z(G)p ∩ 〈x〉 �= 1 and so G ′ = 〈x |x |
p 〉.

(ii) Note that Gp = 〈a p : |a| ≥ p2〉. Since Gp ≤ Z(G), Gp is abelian and so

�1(G
p) = 〈a |a|

p : |a| ≥ p2〉.

Now by part (i), G ′ = 〈a |a|
p 〉 for all a ∈ G such that |a| ≥ p2. Therefore

G ′ = �1(Gp). 	


4 CTI- p-Groups with Center of Exponent = p

In this section, we classify CTI-p-groups whose centers are elementary abelian.
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The following lemma holds in any CTI-group.

Lemma 4.1 Let G be a finite CTI-group and g be any element of G. Then 〈gx , g〉 is
abelian for all x ∈ NG(NG(〈g〉)).
Proof Since x ∈ NG(NG(〈g〉)), 〈g〉x ≤ NG(〈g〉) and 〈g〉x−1 ≤ NG(〈g〉). It follows
that 〈g〉x and 〈g〉 are normal subgroups of 〈g, gx 〉. Thus 〈g, gx 〉′ ≤ 〈g〉x∩〈g〉. Suppose,
if possible, that 〈g, gx 〉′ �= 1. Since G is a CTI-group, 〈g〉x = 〈g〉 and so [gx , g] = 1.
This completes the proof. 	


The following Lemma is a consequence of Theorem 3.3.

Lemma 4.2 Let G be a finite non-abelian CTI-p-group and let H be any normal
non-abelian subgroup of G such that Z(H) is of exponent at least p2. Then any cyclic
subgroup of order at least p2 of H is normal in G.

Proof By Theorem 3.4, H ′ ≤ 〈x〉 for all x ∈ H of order at least p2. Now Theorem 3.4
implies that |H ′| = p and since H is normal in G, H ′ ≤ Z(G). It follows that 〈x〉 is
normal in G. 	


As we promised in Sect. 2, we now prove that the conclusion of Theorem 3.4 holds
for all finite CTI-p-groups.

Theorem 4.3 Let G be a finite CTI-p-group and g be any element of order p2 of G.
Then 〈g〉 is normal in G.

Proof Suppose, for a contradiction, that 〈g〉 is not normal in G. Thus NG(〈g〉) �=
G and so NG(NG(〈g〉)) \ NG(〈g〉) �= ∅ since G is a nilpotent group. Let x ∈
NG(NG(〈g〉)) \ NG(〈g〉). Let H = 〈g, x〉. Note that 〈g〉 is not also normal in H .

(i) It follows from Lemma 4.1 that the normal closure 〈g〉H is abelian.
(ii) The centralizer CH (g) is normal in H , since H ′ ≤ 〈g〉H ≤ CH (g). ByLemma4.2,

the centralizer CH (g) is abelian, otherwise 〈g〉 is normal.
(iii) Let k be the largest positive integer such that |[g,k x]| = p2 and |[g,k+1 x]| ≤ p.

Note that such k exists; for G is nilpotent and so [g,c x] = 1, where c is the
nilpotency class of H and |[g, x]| = p2, otherwise [g, x]p = 1, implies then
(g−1gx )p = g−p(gp)x = 1 and so gp = (gp)x . It follows that 〈g〉 ∩ 〈g〉x �= 1
and so 〈g〉 = 〈g〉x , a contradiction (note that [g, x]p2 = [gp2 , x] = 1). Since
[g,k+1 x]p = 1, [g,k x]p = ([g,k x]p)x and so [g,k x]x = [g,k x]i for some
integer i such that 1 ≤ i ≤ p2 and gcd(i, p) = 1. Therefore, 〈[g,k x]〉 � H and
so CG([g,k x]) is a maximal subgroup of H .

Suppose, for a contradiction, that CH ([g,k x]) is not abelian. Since 〈g〉H ≤
CH ([g,k x]), H ′ ≤ CH ([g,k x]) and so CH ([g,k x]) is a normal non-abelian sub-
group of H such that the exponent of its center is greater than p (as [g,k x] ∈
Z(CH ([g,k x]))). Now Lemma 4.2 implies that 〈g〉 is normal in H , a contradiction.
Hence CH ([g,k x]) is abelian. By (ii), CH (g) is abelian and so CH (g) = CH ([g,k x]),
because [g, [g,k x]] = 1. Hence CH (g) is a maximal subgroup of H . Therefore,
x p ∈ CH (g) and so [g, x p] = 1. Thus

1 = [g,k−1 x, x
p] = [g,k x]x p−1+···+x+1 = [g,k x]i p−1+···+i+1.
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If i = 1, then it follows that [g,k x]p = 1, a contradiction. Thus i > 1, and so

i p−1 + · · · + 1 = i p − 1

i − 1
.

Since [g,k x]p = ([g,k x]p)x , i = pk + 1 for some integer. Therefore, i
p−1
i−1 = p(1+

p�) for some integer � and so [g,k x]p = 1, a contradiction. This last contradiction
completes the proof. 	

Lemma 4.4 Let G be a finite CTI-p-group and x and y be elements of G of orders at
least p2. Then either 〈x〉 ∩ 〈y〉 �= 1 or CG(x) = CG(y) is abelian.

Proof Suppose that 〈x〉 ∩ 〈y〉 = 1 and let H = CG(x). We show that H is abelian
and H = CG(y). By Theorem 4.3, 〈x〉 and 〈y〉 are normal subgroups of G and so
y ∈ H . Suppose, for a contradiction, that H is not abelian. Since x ∈ Z(H), it
follows from Theorem 3.4 (ii) that [g, y] ∈ 〈x p〉 for all g ∈ H . Since 〈y〉 � G,
[g, y] ∈ 〈x p〉 ∩ 〈y〉 and so y ∈ Z(H). This means that 〈x〉 × 〈y〉 ≤ Z(H) contrary to
Lemma 3.2. Hence H is abelian and by the symmetry between x and y, CG(y) is also
abelian. Since x commutes with y and both CG(x) and CG(x) are abelian, it follows
that CG(x) = CG(y). This completes the proof. 	

Theorem 4.5 Let G be a non-abelian CTI-p-group such that exp(Z(G)) = p and
exp(G) > p. If p > 2, then exp(G) = p2 and G ′ = Gp is of order p. In particular,
�(G) = G ′ = Gp is a central subgroup of G of order p.

Proof We first prove that exp(G) = p2. Suppose, for a contradiction, that g ∈ G is
of order p3. By Theorem 4.3, 〈g〉 � G and so 〈gp〉 � G. Since exp(Z(G)) = p,
gp /∈ Z(G) and so CG(gp) is a maximal subgroup of G. Assume that x is an element
of G. Suppose that |x | = p. Since p > 2, 〈g〉 � G, and |g| = p3, gx = g1+kp2

for some k ∈ {1, . . . , p}. It follows that [gp, x] = 1. Now assume that |x | ≥ p2. By
Theorem4.3 〈x〉 � G and so [g, x] ∈ 〈g〉∩〈x〉. Since 〈g〉∩〈x〉 ∈ {〈gp〉, 〈x〉, 〈gp2〉, 1}.
It follows that |[g, x]| ≤ p and so [gp, x] = [g, x]p = 1. Therefore, gp ∈ Z(G)which
is a contradiction as exp(Z(G)) = p. Hence exp(G) = p2.

Now let x, y ∈ G be of the same order p2. We show that 〈x p〉 = 〈y p〉. The latter
is equivalent to say 〈x〉 ∩ 〈y〉 �= 1. It follows from Lemma 4.4 that CG(x) = CG(y)
is abelian. We can find an h element of order p2 in G \ CG(x): for if g /∈ CG(x) and
|g| = p, then |xg| = p2 and xg /∈ CG(x). Since 1 �= [x, h] ∈ 〈x〉 ∩ 〈h〉, 〈x p〉 = 〈gp〉,
similarly 〈y p〉 = 〈gp〉. Therefore 〈x p〉 = 〈y p〉.

Hence Gp is cyclic of order p, since exp(G) = p2.
Now we show that G ′ = Gp. We show that [x, y] ∈ Gp which follows that G ′ =

Gp. Suppose a is an element ofG of order p2. Since CG(a) is maximal,G = CG(a)〈b〉
for some b ∈ G. It follows that G ′ = 〈[m, b], [m,m′] | m,m′ ∈ CG(a)〉G .

Let x and y be elements of G. If |x | or |y| is greater than p, then by Theorem 4.3,
[x, y] ∈ 〈x p〉 or 〈y p〉 and so [x, y] ∈ Gp.

If CG(a) is not abelian, it follows from Theorem 3.4 (ii) that CG(a)′ ≤ Gp. The
latter is clearly valid if CG(a) is abelian. Thus [m,m′] ∈ Gp for allm,m′ ∈ CG(a). By
the previous paragraph, it remains to show that [m, b] ∈ Gp for m ∈ CG(a) whenever
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|m| = |b| = p. Since |ab| = p2 and [m, ab] = [m, b], it follows from the previous
paragraph that [m, b] ∈ Gp. This shows that G ′ ≤ Gp. 	


The following result is well known and easy to prove. We need it in the sequel. We
give it for the reader’s convenience.

Lemma 4.6 Let G be a finite CTI-2-group. Let x and y ∈ G such that |x | = 2 and
|y| = 2n ≥ 4. Then yx ∈ {y, y−1, y1+2n−1}.
Proof Suppose that yx �= y. By Theorem 4.3, 〈y〉 � G and so yx = yr for some odd
integer r ∈ {2, . . . , 2n − 1}. Thus 2n divides r2 − 1. If n = 2, then yx = x−1 easily
follows. Suppose that n > 2. Since 2n divides (r−1)(r+1) and gcd(r−1, r+1) = 2,
2n−1 divides exactly one of r − 1 or r + 1. Therefore r = 1+ 2n−1 or r = −1+ 2n−1

as 1 < r < 2n . We now show that the latter case does not happen. Since |xy| = 4
and (xy)x = yx and G is CTI, 〈xy〉 = 〈yx〉. Thus xy = (yx)−1 and so x2 = y−2, a
contradiction. This completes the proof. 	

Theorem 4.7 Let G be a non-abelian CTI-2-group of exponent 2e. If Z(G) is of
exponent 2, then

(i) any 2-generated non-abelian subgroup of G is either a dihedral group or Q8;
(ii) G ′ = G2 = �(G). In addition, if exp(G) = 4 and G does not contain any

subgroup isomorphic to Z4 × Z4, then G2 is of order 2.

Proof If G is Dedekindian, then (i) and (ii) obviously occur. Hence we consider non-
Dedekindian case.

(i) First we note that for any two elements g, x such that [g, x] �= 1, if |g| ≤ 4 and
|x | = 2, then the subgroup 〈g, x〉 is a dihedral group.
Let g ∈ G be of order 2n ≥ 4 and Z � 〈g〉 be of order 4. By Theorem 4.3, CG(Z)

is a maximal subgroup of G. Assume that x ∈ G\CG(Z), then G = CG(Z)〈x〉.
First suppose that |x | = 2, by Lemma 4.6, gx = g−1 or g1+2n−1

. In the latter case,
since [g, x] = g2

n−1 ∈ Z(G) and g2 ∈ Z(CG(Z)) so g2 ∈ Z(G)which implies n = 2.
Therefore 〈g, x〉 ∼= D2n+1 .

If |x | �= 2, then [g, x] ∈ 〈g2〉 ∩ 〈x2〉 � Z(G), as g2 ∈ Z(CG(Z)) by Theorem 3.4.
Therefore [g2, x] = 1 hence g2 ∈ Z(G) and so |g| = 4 which implies 〈g〉 = Z . Since
x4 ∈ Z(CG(Z)), x4 ∈ Z(G) is of order at most 2, so |x | ≤ 8 and |x | = 4 if CG(Z) is
abelian.

Assume that |x | = 8. Then CG(Z) is non-abelian. Since Z(CG(Z)) = 〈g〉 × E ,
where E is elementary abelian, it follows from Theorem 3.4 (ii) that (CG(Z))2 � 〈g〉.
Now let y be a non-involution element of CG(Z). Then

[y, x] � 〈y2〉 ∩ 〈x2〉 � 〈g〉 ∩ 〈x2〉 = 〈g2〉 � Z(G).

So [y, x2] = 1. If y is a non-central involution of CG(Z), since |gy| = 4, it follows that
[x2, y] = [x2, gy] = 1. Therefore x2 ∈ Z(G) which is impossible. Hence |x | = 4
and 〈g, x〉 ∼= Q8.
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(ii) By the previous part, for any g ∈ G of order 2n ≥ 4, if there exists x ∈ G\CG(g)
of order 2, then 〈g, x〉 ∼= D2n+1 . So g2 = [x, g] ∈ G ′. Otherwise 〈g, x〉 ∼= Q8
and so g2 = [g, x]. Therefore G2 � G ′.

Let x, y ∈ G be of the same order 4. By Theorem 4.3, 〈x〉 and 〈y〉 are normal in
G. If 〈x〉 ∩ 〈y〉 = 1, then 〈x〉 × 〈y〉 ∼= Z4 × Z4, a contradiction. Thus 〈x〉 ∩ 〈y〉 �= 1
and so 〈x2〉 = 〈y2〉. It follows that G2 = 〈a2〉 for any element a of order 4 of G. This
completes the proof. 	

Lemma 4.8 Let G be aCTI-2-group such that exp(Z(G)) = 2 and exp(G) = 2e ≥ 8.

Then CG
(
g2

e−2
)
is abelian for any element g of order 2e.

Proof Let a = g2
e−2

so that |a| = 4. Suppose, for a contradiction, that CG(a) is
non-abelian. Since g ∈ CG(a), it follows from Theorem 3.4 that g2 ∈ Z(CG(a)) and
so CG(a) ≤ CG(g2). By Theorem 4.3, CG(a) is maximal in G. It follows that CG(a) =
CG(g2), since g2 /∈ Z(G). Now suppose that there exists an element h ∈ G \ CG(g2)
of order greater than 2. Then G = CG(g2)〈h〉. By Theorem 4.3, 〈g〉 and 〈h〉 are both
normal subgroups of G and so [g, h] ≤ 〈g2〉 ∩ 〈h2〉. Since 〈g2〉 ∩ 〈h2〉 ≤ Z(G) and
exp(Z(G)) = 2, [g, h]2 = 1 and so [g2, h] = 1 which implies that g2 ∈ Z(G), a
contradiction. Therefore, all elements in G \CG(a) are of order 2. Now fix an element
h of G \ CG(a) and let b ∈ CG(a). Then |bh| = |h| = 2 and so bh = b−1 for all
b ∈ CG(a). This implies that CG(a) is abelian. This completes the proof. 	

Theorem 4.9 Let G be a CTI-2-group such that exp(Z(G)) = 2. Then one of the
following holds:

(1) G is Dedekindian,
(2) G ′ = G2 is of order 2, and
(3) G = A〈x〉 for some abelian subgroup A and involution x ∈ G \ A such that

ax = a−1 for all a ∈ A.

Proof Suppose that (1) and (2) do not hold.We show thatG has the structure described
in (3).

• We first show that there exists an element y of order 4 such that A = CG(y) is
abelian.

Since G is not abelian and we are assuming that (2) does not hold, it follows from
Theorem 4.7 that either exp(G) ≥ 8 or G contains a subgroup isomorphic to Z4 ×Z4.
If the former happens, then such an element y exists according to Lemma 4.8 and if
the latter happens, Lemma 4.4 guaranties the existence of an element y of order 4 with
abelian centralizer in G.

• Now we prove that there exists an involution x ∈ G \ A.

By Theorem 4.3, A is a maximal subgroup of G. Note that if g ∈ A \ Z(G), then
A = CG(g) and if h ∈ A \ Z(G) and [t, h] = 1 for some t ∈ G, then t ∈ A. We use
the latter note in the sequel of the proof.

Since G is non-Dedekindian, it follows from Theorem 4.3 that there exists a non-
central element z of order 2. If z /∈ A, we take x = z. Now assume that z ∈ A and
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there exists an element t ∈ G \ A of order 2n ≥ 4. If t z = t , then by the above note
t ∈ A, which is impossible. Thus t z �= t . It follows from Lemma 4.6 that t z = t−1 or
t z = t1+2n−1

. If the latter happens, then [t2, z] = 1 and so t2 ∈ A. If t2 /∈ Z(G), then
t ∈ A, a contradiction. Thus t2 ∈ Z(G) and so |t | = 4. Hence t z = t3 = t−1. Now
take x = t z which is of order 2 and x /∈ A.

• Now we prove that ax = a−1 for all a ∈ A = CG(y).

By Lemma 4.6, yx = y−1 since |y| = 4. Let a ∈ A be of order 2. Then |ay| = 4
and so by Lemma 4.6, (ay)x = (ay)−1 or (ay)x = ay. The latter does not happen,
otherwise x ∈ A by the above note. Therefore ax = a−1 = a. If a ∈ A is of order
4, then by Lemma 4.6 ax = a−1 or ax = a. The latter does not happen according to
the above note. Now assume that a ∈ A of order 2e ≥ 8. Then by Lemma 4.6 and
the above note, ax = a−1 or ax = a1+2e−1

. If the latter happens, then [a2, x] = 1
and so by the above note a2 ∈ Z(G) which is not possible as exp(Z(G)) = 2. This
completes the proof. 	


5 Proof of the Main Theorem

In this section, we give the proof of Theorem 1.2. Let us restate the statement of
Theorem 1.2.

Theorem 1.2 Let G be a finite nilpotent group. Then G is a CTI-group if and only if
one of the following holds:

(1) G is Dedekindian;
(2) G is a p-group of exponent p for some prime p;
(3) G is a p-group for some prime p such that G ′ = �1(Gp) is of order p and

�(G) = Gp is a central cyclic subgroup of G; and
(4) G is a 2-group such that G = A〈x〉, where A is an abelian subgroup of G and x

is an involution in G \ A such that ax = a−1.

Proof Suppose G satisfies one (1), (2), (3), or (4).
If G is a p-group of exponent p, every non-trivial cyclic C subgroup is of order p

and so Cx ∩ C is clearly equal to C or 1. Therefore G is CTI.
If G is a Dedekindian group, then every subgroup is normal in G and so G is CTI.
Let G be a p-group such that G ′ = �1(Gp) is of order p. If a ∈ G is of order at

least p2, then it follows that G ′ ≤ 〈a〉 and so 〈a〉 � G. Elements of order p obviously
satisfy the condition of being CTI. This implies that G is a CTI-group.

Suppose G is of the form described in (3). Then every element in G \ A is of order
2 and so if |g| ≥ 4, g ∈ A. Since gh = g or g−1 for all g ∈ G, 〈g〉 � G. Hence G is
CTI.

Now assume that G is a nilpotent CTI-group which is not Dedekindian. By
Lemma 3.1, G is a non-Dedekindian p-group for some prime p. Suppose further
that G is not of exponent p. If exp(Z(G)) > p, then it follows from Theorem 3.4
that G satisfies (3). If exp(Z(G)) = p > 2, then it follows from Theorem 4.5 that
G ′ = Gp of order p. Therefore G satisfies (3), since �1(Gp) = Gp in this case. If
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exp(Z(G)) = 2, then it follows from Theorem 4.9 that G ′ = G2 is of order 2 or G is
of the form described in (4). This completes the proof. 	


We note that any extra-special group is CTI, since the central factor of such a group
is elementary abelian. Let G be a finite p-group such that exp(Z(G)) �= p. In this
case, �(G) is cyclic by Theorem 3.4. If �(G) is of order p, then G has the following
structure.

Theorem 5.1 Let G be a non-Dedekindian CTI-p-group such that exp(G) ≥ p2 and
exp(Z(G)) > p. If |�(G)| = p, then G = AZ(G), where A = A1 ∗ · · · ∗ As is an
extra-special p-group and |A1| = · · · = |As | = p3.

Proof Since in this case |G ′| = p and G/G ′ is elementary abelian, then [10,
Lemma 4.2] completes the proof. 	

Theorem 5.2 Let G be a non-Dedekindian CTI-p-group of exponent pe such that
exp(Z(G)) > p. If |�(G)| > p and Z(G) = 〈z〉×E, where E is elementary abelian.
Then G = K × E, where K is a non-abelian CTI-group with cyclic center. Also
K ∼= M � 〈x〉 for some maximal subgroup M of K and some prime order element
x /∈ �(G).

(i) If M is abelian, then either M ∼= 〈z〉 × 〈y〉 for some prime order element y ∈ M
or M is maximal cyclic subgroup of G such that Z(K ) = Mp. The subgroup K
has one of the following presentations:

(1) 〈z, y, x | z pe = y p = x pe = [z, y] = [z, x] = 1, yx = yz p
e−1〉;

(2) Mpe+1 = 〈z, x | z pe = x p = 1, zx = z1+pe−1〉.
(ii) If M is not abelian then K = AZ = (A1 ∗ · · · ∗ As)Z = Z(A)T Z where Z is a

maximal cyclic subgroup of K containing �(G) and Ai is minimal non-abelian
for all i and T is extra-special.

Proof By Theorem 3.4, �(G) ∩ E = 1. It follows from [11, Hilfssatz 4.4] that
G = H × E and �(G) = �(H) � 〈z〉. Since H is non-abelian, it contains a non-
normal cyclic subgroup 〈x〉 of order p. Obviously, x /∈ �(H) and so H has a maximal
subgroup M such that x /∈ M . Therefore H ∼= M � 〈x〉.
(i) Since Z(K ) = 〈z〉 and |z| > p, it follows fromCorollary 3.4 that�(K ) � Z(K ).

Now let x be a non-central element of order p. By Lemma 3.2 (ii), C = CK (x)
is maximal and M ∩ C is an abelian maximal subgroup of C . Since x ∈ Z(C)

and x /∈ M ∩ C , C = (M ∩ C)〈x〉 is abelian. Therefore, Z(K ) = M ∩ C is a
maximal cyclic subgroup of M . So either M ∼= 〈z〉 × 〈y〉 for some y ∈ M of
order p or M is cyclic and Z(K ) = Mp.

(ii) In this case, G ′ = K ′ and �(G) = �(K ) � Z(K ) � M . Let Z � K be cyclic
of maximal order such that �(G) � Z . Then |Z | = p|�(G)|. Assume that H
is a subgroup of K such that |H : Z | = p. Thus H = Z〈y〉 for some prime
order y ∈ K so T (H) = 〈G ′, y〉 � G. Now for any non-central element y of
K , 〈Z , y〉 has such properties and T (〈Z , y〉) � G. Let A be generated by T (H)

where |H : Z | = p. So A contains any non-central element of prime order. If A
is abelian, then for any two non-central elements y1 and y2, CG(y1) = CG(y2) is
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abelian by Lemma 3.2 (ii), (iv). Since M is non-abelian, we can choose a non-
central element y of M so that CM (y) = CM (x) is a maximal in M . Now let
g ∈ M\CM (x), so [g, y] = [g, x] is central. Thus [g, xyi ] = 1 for some i and
so xyi is central, since |xyi | = p. Then xyi ∈ Z(K ) � M , which is impossible
as x /∈ M . Therefore, A is non-abelian and H satisfies the hypothesis of [10,
Theorem 4.4]. This completes the proof. 	


Remark 5.3 Let G be a non-Dedekindian CTI-p-group of exponent pe such that
exp(Z(G)) = p. If e ≥ 3 or G contains an abelian subgroup of type (4, 4), then
p = 2 and G is of type (4) in the Theorem 1.2. Otherwise exp(G) ≤ p2 and G does
not contain any abelian subgroup of type (4, 4). In this case, we have the following
theorem:

Theorem 5.4 Let G be a non-Dedekindian CTI-p-group of exponent p2 such that
exp(Z(G)) = p. If G does not contain any abelian subgroup isomorphic to Z4 × Z4,
then G ∼= E × H, where H is an extra-special p-group and Z(G) = E × �(G) for
some elementary abelian subgroup E.

Proof By Theorems 4.5 and 4.7, |�(G)| = p. So we may write Z(G) = �(G) × E ,
where E is an elementary abelian subgroup of G. By [11, Hilfssatz 4.4], G ∼= E × H .
Hence �(G) = �(H). This completes the proof. 	


6 Some Applications in the Structure of Solvable CTI-Groups with
Trivial Center

Let G be a finite solvable CTI-group with trivial center which is not isomorphic to
the symmetric group of degree 4. Then by [8, Proposition 3.2 and Theorem 3.4],
G = F(G)H is a Frobenius group whose kernel is the Fitting subgroup F(G) and
H is the complement. By [8, Theorem 3.5], F(G) is abelian if F(G) is not of prime
power order or |H | is even. Assume that n = |H | is odd. Then H is cyclic and F(G)

is of prime power order. Thus F(G) is the Sylow p-subgroup of G for some prime p
such that p � n.

Corollary 6.1 Under the above assumptions and notations, suppose further that
F(G) is not abelian. Now

(i) if p is odd and exp(F(G)) �= p, then n divides p − 1;
(ii) if p = 2 then F(G) = A〈x〉, where A is an abelian subgroup and x ∈ F(G) \ A

of order 2 such that ax = a−1 for all a ∈ A.

Proof (i) If p > 2 and exp(F(G)) �= p, then it follows from Theorem 1.2 (3) that
F(G) contains a characteristic subgroup of order p. Thus H is embedded in the
automorphism group of Zp. Hence n | p − 1.

(ii) If exp(Z(F(G))) �= 2, then by Theorem 3.4 F(G)′ is of order 2 and so F(G)′ ≤
Z(G), a contradiction. Thus exp(Z(F(G)) = 2. Now Theorem 4.9 implies that
F(G) satisfies one of the cases (1), (2), or (3). If F(G) satisfies (2), then Z(G) �= 1
which is not possible. Then F(G) satisfies (1) or (3). If F(G) is Dedekin-
dian, F(G) ∼= Q8 × E for some elementary abelian 2-group E . It follows that
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F(G)′ is of order 2 and it is contained in Z(G), a contradiction. This completes
the proof. 	
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