

Minimum Number of Components of 2-Factors in Iterated Line Graphs

Shengmei $Lv^{1,2}$ **· Liming Xiong**¹

Received: 20 December 2014 / Revised: 28 May 2015 / Published online: 12 June 2015 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract It is well known that it is NP-hard to determine the minimum number of components of a 2-factor in a graph, even for iterated line graphs. In this paper, we determine the minimum number of components of 2-factors in iterated line graphs of some special tree-like graphs. It extends some known results.

Keywords 2-Factor · Cut-branch · Iterated line graph · Hamiltonian index

Mathematics Subject Classification 05C38 · 05C45 · 05C76

1 Introduction

Throughout this paper, all graphs considered are simple and finite graphs. We follow the most common graph-theoretical terminology and for concepts and notations not defined here, see [\[1](#page-10-0)].

A *2-factor* of a graph *G* is a spanning subgraph whose components are cycles. In particular, a hamiltonian graph has a 2-factor with exactly one component. There

Communicated by Xueliang Li.

² School of Mathematics and Statistics, Qinghai University for Nationalities, Xining 810007, People's Republic of China

 \boxtimes Liming Xiong lmxiong@bit.edu.cn Shengmei Lv meizi3411@163.com

¹ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

are many results on the existence of 2-factors with a given number of components, mainly on the existence of hamiltonian graphs, see the survey paper [\[5](#page-10-1)]. The *line graph L*(*G*) of a graph *G* is the graph with vertex set $E(G)$, in which two vertices are adjacent if, and only if, the corresponding edges have a common end vertex in *G*. The *n*-time iterated line graph $L^n(G)$ is defined to be $L(L^{n-1}(G))$, and we assume that $E(L^{n-1}(G))$ is not empty. The *hamiltonian index* of a graph *G* is the minimum nonnegative integer *n* such that $L^n(G)$ is hamiltonian, denoted by $h(G)$, the interested readers can consult [\[4\]](#page-10-2). The *Hamilton-connected index* of a graph *G* is the minimum nonnegative integer *n* such that $L^n(G)$ is Hamilton-connected, i.e., any two vertices in $L^n(G)$ are connected by a Hamilton path. We know that the Hamilton problem, i.e., the problem to decide whether a given graph is hamiltonian, is one of the classical NP-complete problems. In [\[8](#page-10-3)], the authors have proved that it is NP-hard to determine whether $L^k(G)$ is hamiltonian even for any large integer *k*. Thus, it is also NP-hard to determine the minimum number of components of a 2-factor in $L^k(G)$ for any large integer *k*. Wang and Xiong [\[10](#page-10-4)] provided an upper bound of minimum number of components of 2-factors in iterated line graph. In present paper, we consider the similar problem and determine the minimum number of components of 2-factors in iterated line graph of some special graphs. Before presenting our main results, we first introduce some additional terminology and notation.

A *branch* is a nontrivial path whose internal vertices have degree two and end vertices have degree other than two. The number of edges in a branch *B* is said to be its *length*, denoted by $l(B)$. We denote by $B(G)$ the set of branches of G. Note that a branch of length one has no internal vertex. A branch *B* of a graph *G* is called a *cutbranch* if the subgraph obtained from *G* by deleting all edges and internal vertices of *B* has more components than *G*, and we denote by *CB(G)* the set of all cut-branches of *G*. Let $\mathcal{B}_2(G) = \{B \in \mathcal{CB}(G) : \text{ both end vertices of } B \text{ have degree at least 3 in } G\}$ and $\mathcal{B}_1(G) = \{ B \in \mathcal{C}\mathcal{B}(G) : \text{ at least one end vertex of } B \text{ has degree 1 in } G \}, \text{ then it}$ is obvious that $\mathcal{CB}(G) = \mathcal{B}_1(G) \cup \mathcal{B}_2(G)$.

For $i \in \{1, 2\}$, define

$$
h_i(G) = \begin{cases} max\{l(B) : B \in \mathcal{B}_i(G)\}, & \text{if } \mathcal{B}_i(G) \text{ is not empty,} \\ 0, & \text{otherwise.} \end{cases}
$$

Now we state the main results as follows.

Theorem 1 *Let G be a connected graph with* $h_1(G) \leq h_2(G) - 1$ *and* $h_2(G) \geq 2$, *such that every nontrivial component of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G has hamiltonian index at most* $h_2(G) - 1$ *. Then*

- *(1)* $L^{h_2(G)-2}(G)$ *has no 2-factor*;
- (2) if $h_2(G) \geq 3$, then the minimum number of components of 2-factors in $L^{h_2(G)-1}(G)$ *is*

$$
\left| \{ B \in \mathcal{B}_2(G): l(B) \in \{ h_2(G) - 1, h_2(G) \} \} \right| + 1;
$$

(3) the minimum number of components of 2-factors in $L^{h_2(G)}(G)$ *is*

$$
\left|\{B\in \mathcal{B}_2(G):l(B)=h_2(G)\}\right|+1;
$$

(4) $L^{h_2(G)+1}(G)$ *is hamiltonian.*

Theorem 2 Let G be a connected graph with $h_1(G) > h_2(G) > 1$, such that every *nontrivial component of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least three in G has hamiltonian index at most h*1*(G). Then*

- *(1)* $L^{h_1(G)-1}(G)$ *and* $L^{h_2(G)-1}(G)$ *have no 2-factor;*
- *(2) if* $h_1(G) = h_2(G) > 2$, *then the minimum number of components of 2-factors in* $L^{h_1(G)}(G)$ *is* $|\{B \in B_2(G) : l(B) = h_2(G)\}| + 1;$
- (3) if $h_1(G) = h_2(G) > 1$, then $L^{h_1(G)+1}(G)$ is hamiltonian;
- *(4) if* $h_1(G) > h_2(G) \ge 1$ *, then* $L^{h_1(G)}(G)$ *is hamiltonian.*

The proofs of Theorems [1](#page-1-0) and [2](#page-2-0) will be given in Sect. [3.](#page-4-0)

The authors in [\[4](#page-10-2)] gave a formula of the hamiltonian index $h(T)$ for a tree *T*. We shall extend the result. Eminjan and Elkin [\[3](#page-10-5)] gave a relation between hamiltonian index and Hamilton-connected index of trees.

Since every nontrivial component of the graph obtained from *T* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G* has hamiltonian index at most $h_2(T) - 1$ under the condition $h_1(T) \leq$ $h_2(T) - 1$ and $h_2(T) \geq 2$, which satisfies the condition of Theorem [1.](#page-1-0) Let $l =$ $max\{l(B):B \in \mathcal{B}_2(T)\}\$, and $\mathcal{B}_2(T) = \mathcal{B}(T)\backslash \mathcal{B}_1(T)$, then we consequently have the following conclusion.

Corollary 3 *Let* $l > 2$ *and let* T *be a tree with* $l(B) < l - 1$ *for any* $B \in B_1(T)$ *. Then*

- *(1)* $L^{l-2}(T)$ *has no 2-factor*;
- *(2) if* l ≥ 3*, then the minimum number of components of 2-factors in* $L^{l-1}(T)$ *is*

$$
\left| \left\{ B \in \mathcal{B}(T) \setminus \mathcal{B}_1(T) : \left| E(B) \right| \in \{l-1, l\} \right\} \right| + 1;
$$

(3) the minimum number of components of 2-factors in $L^l(T)$ *is*

$$
\left| \left\{ B \in \mathcal{B}(T) \setminus \mathcal{B}_1(T) : \left| E(B) \right| = l \right\} \right| + 1;
$$

(4) $L^{l+1}(T)$ *is hamiltonian.*

By Corollary [3](#page-2-1) and Theorem [2,](#page-2-0) we can obtain the following result:

Corollary 4 (Chartrand and Wall [\[4](#page-10-2)]) *If T is a tree which is not a path, then*

$$
h(T) = \max\{h_2(T) + 1, h_1(T)\}.
$$

Proof By Corollary [3](#page-2-1) (4), we have $h(T) = h_2(T) + 1$ if $h_1(T) \leq h_2(T) - 1$ and $h_2(T) \geq 2$. Since any tree *T* with $h_1(T) \geq h_2(T) \geq 1$ satisfies the condition of Theorem [2,](#page-2-0) then we have $h(T) \leq h_2(T) + 1$ if $h_1(T) = h_2(T) \geq 1$, and $h(T) \leq h_1(T)$ if $h_1(T) > h_2(T) \ge 1$ $h_1(T) > h_2(T) \ge 1$ $h_1(T) > h_2(T) \ge 1$ by (3) and (4) of Theorem [2.](#page-2-0) Again by Theorem 2 (1), $h(T) > h_1(T) - 1$ and $h(T) > h_2(T) - 1$. Above all, we can obtain $h(T) = max\{h_2(T) + 1, h_1(T)\}$ $max\{h_2(T) + 1, h_1(T)\}.$

2 Preliminaries and Notations

As noted in the first section, for graph-theoretic notation not explained in this paper, we refer readers to [\[1](#page-10-0)]. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. For a nonnegative integer k, we define $V_k(G)$ by $V_k(G) = \{x \in$ $V(G)$: $d_G(x) = k$, where $d_G(x)$ is the degree of *x* in *G*. Given two subgraphs G_1 and G_2 , we define the distance $d_G(G_1, G_2)$ between G_1 and G_2 by $d_G(G_1, G_2)$ = $\min\{d_G(x_1, x_2): x_1 \in V(G_1), x_2 \in V(G_2)\}.$ For subgraphs $G_1, G_2, ..., G_k$, their union $G_1 \cup G_2 \cup \cdots \cup G_k$ is the graph whose vertex set and edge set are $V(G_1) \cup$ $V(G_2) \cup \cdots \cup V(G_k)$ and $E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k)$, respectively. For $S \subseteq V(G)$, we denote by *G*[*S*] the subgraph of *G* induced by *S*.

A *circuit* is a connected graph with at least three vertices in which every vertex has even degree. A set of vertices *S* is said to *dominate G* if each edge of *G* has at least one end vertex in *S*. A circuit of *G* is called a *dominating circuit* of *G* if every edge of *G* either belongs to the circuit or is adjacent to an edge of the circuit. For a graph *G* of order at least three, its subgraph *H* is called a *k-system that dominates* if it comprises *k* edge-disjoint stars ($K(1, s)$, $s \geq 3$) and circuits, such that each edge of *G* is either contained in one of the circuits or stars, or is adjacent to one of the circuits. Harary and Nash-Williams [\[7](#page-10-6)] showed that for a connected graph *G* with at least three edges, *L(G)* has a hamiltonian cycle if and only if *G* has a dominating circuit. This characterization has been widely employed to study the properties of cycles in line graphs and iterated line graphs, see [\[2\]](#page-10-7). In 1999, Gould and Hynds presented a necessary and sufficient condition for the line graph $L(G)$ of a graph *G* that has a 2-factor with exactly *k* components.

Lemma 5 (Gould and Hynds [\[6\]](#page-10-8)) *Let G be a graph such that each component of G has at least three edges. Then L(G) has a 2-factor with exactly k components if and only if G has a k-system that dominates.*

We let $EU_n^k(G)$ denote the set of subgraphs *H* of *G* satisfying the following five conditions:

- (I) *H* is an even graph;
- $(V_0(H) \subseteq \bigcup_{i=1}^n V_i(G) \subseteq V(H);$ *i*≥3
- (III) $|E(B)| \leq n + 1$ for any branch *B* with $E(B) \cap E(H) = \emptyset$;
- (IV) $|E(B)| \leq n$ for any branch *B* in $\mathcal{B}_1(G)$;
- (V) *H* can be decomposed into at most *k* pairwise vertex-disjoint subgraphs H_1, \ldots, H_t ($t \leq k$) such that for every *j* and for every induced subgraph *F* of H_j with $\emptyset \neq V(F) \subsetneq V(H_j)$, it holds $d_G(F, H_j - V(F)) \leq n - 1$.

In [\[11](#page-10-9)], Xiong and Liu considered iterated line graphs and gave a characterization of the graphs *G* for which $L^n(G)$ is hamiltonian for $n \geq 2$, which has been used to study the hamiltonian index. We state it as follows.

Lemma 6 (Xiong and Liu [\[11\]](#page-10-9)) *Let G be a connected graph with at least three edges. Then for n* ≥ 2 , $L^n(G)$ *is hamiltonian if and only if* $EU_n^1(G) \neq \emptyset$ *.*

Saito and Xiong in [\[9\]](#page-10-10) showed that the following result, which extends Lemma [6.](#page-4-1)

Lemma 7 (Saito and Xiong [\[9](#page-10-10)]) *Let G be a connected graph with at least three edges and let k be a positive integer. Then for* $n \geq 2$ *,* $L^n(G)$ *has a 2-factor with at most k components if and only if* $EU_n^k(G) \neq \emptyset$ *.*

Next, we provide the proofs of Theorem [1](#page-1-0) and Theorem [2.](#page-2-0)

3 Proofs of Main Results

Proof of Theorem [1](#page-1-0) (1) Let $B \in \mathcal{B}_2(G)$ and $l(B) = h_2(G)$. Then *B* becomes a branch *B*' of length 2 in $L^{h_2(G)-2}(G)$, whose end vertices belong to two distinct components. Let *u* be the vertex of degree 2 in *B* , then *u* does not belong to any 2-factor component of $L^{h_2(G)-2}(G)$. Thus, $\overline{L}^{h_2(G)-2}(G)$ has no 2-factor.

(2) Assume that the minimum number of components of 2-factors in $L^{h_2(G)-1}(G)$ \mathcal{L} is *k* and let $\left| \{ B \in \mathcal{B}_2(G) : l(B) \in \{ h_2(G) - 1, h_2(G) \} \} \right| = s.$

Let G_1, G_2, \ldots, G_t be the components of the graph obtained from G by deleting all edges and inner vertices of any branch in $\{B \in \mathcal{B}_2(G) : l(B) \in \{h_2(G) - 1, h_2(G)\}\}.$ It is obvious that G_1, G_2, \ldots, G_t are pairwise vertex-disjoint and $l(B) \leq h_2(G) - 2$ for any branch $B \in \mathcal{B}_2(G_i) \cap \mathcal{B}_2(G)$, $1 \leq j \leq t$. Contracting G_j to a vertex, the resulting graph becomes a tree, then $t = s + 1$ since $|V(T)| = |E(T)| + 1$ in a tree *T*. Since any possible 2-factor has at least one component in every $L^{h_2(G)-1}(G_i)$, then $k \geq s + 1$. Now we verify that $k \leq s + 1$. By Lemma [7,](#page-4-2) we need to prove that $EU_{h_2(G)-1}^{s+1}(G) \neq \emptyset.$

Assume that every G_i $(1 \leq j \leq s + 1)$ is composed of i_j nontrivial components $G_{j,1}, G_{j,2}, \ldots, G_{j,i_j}$ of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G*, i.e., $G_j = \bigcup_{k=1}^{i_j} G_{j,k}$. Then $G_{j,1}, G_{j,2}, \ldots, G_{j,i_j}$ are pairwise vertex-disjoint and *h*($G_{j,k}$) ≤ *h*₂(G) − 1 for 1 ≤ *k* ≤ *i*_j, 1 ≤ *j* ≤ *s* + 1 by the hypothesis of Theorem [1.](#page-1-0) By Lemma [6,](#page-4-1) $EU^1_{h_2(G)-1}(G_{j,k}) \neq \emptyset$. Suppose $H_{j,k} \in EU^1_{h_2(G)-1}(G_{j,k}), 1 \leq j \leq$ $s + 1$, $1 \le k \le i_j$. Then $H_{j,k}$ satisfies (I)-(V) in the definition of $EU_{h_2(G)-1}^1(G_{j,k}),$ and $H_{j,1}$, $H_{j,2}$, ..., H_{j,i_j} are pairwise vertex-disjoint. Let $H_j = \bigcup_{k=1}^{i_j} H_{j,k}$, $1 \leq j \leq j$ $j \leq s + 1$. Next, we verify that $H_j \in EU^1_{h_2(G)-1}(G_j)$, $1 \leq j \leq s + 1$.

Since $H_{j,k}$ is even graph and $H_{j,k}$'s are mutually vertex-disjoint subgraphs, then H_j is even graph, and (I) follows. Since $V_0(H_{j,k}) \subseteq \bigcup_{i \geq 3} V_i(G_{j,k}) \subseteq V(H_{j,k}), 1 \leq$ $k \le i_j$, $\bigcup_{k=1}^{i_j} V_0(H_{j,k}) \subseteq \bigcup_{k=1}^{i_j} \bigcup_{i \ge 3} V_i(G_{j,k}) \subseteq \bigcup_{k=1}^{i_j}$
 $\bigcup_{i > 3} V_i(G_j) \subseteq V(H_j)$, and (II) follows. Let *B'* be any bran *V*(*H_j*,*k*), then *V*₀(*H_j*) ⊆ $i \geq 3$ $V_i(G_j) \subseteq V(H_j)$, and (II) follows. Let *B*' be any branch with $E(B') \cap E(H_j) =$ \emptyset . Assume that $|E(B')| \geq h_2(G) + 1$, which contradicts that $H_{j,k}$ satisfies (III) of

the definition of $EU_{h_2(G)-1}^1(G_{j,k})$, then $|E(B')| ≤ h_2(G)$, and (III) follows. By the hypothesis of Theorem [1,](#page-1-0) we have $|E(B'')| \leq h_2(G) - 1$ for any branch $B'' \in \mathcal{B}_1(G_i)$, and (IV) follows. For any induced subgraph *F* of H_j with $\emptyset \neq V(F) \subsetneq V(H_j)$. If $F \cap H_{j,k} \neq \emptyset$, then $d_{G_j}(F, H_j - V(F)) = d_{G_{j,k}}(F, H_{j,k} - V(F)) \leq h_2(G) - 2$ by the fact that $H_{j,k}$ satisfies (V) in the definition of $EU_{12(G)-1}^1(G_{j,k})$. If $F \cap H_{j,k} = \emptyset$,
then $J_{j,k}(F) \leq J_{k}(G) = 2$. Thus, $J_{j,k}(F) \leq J_{k}(G) = 2$ then $d_{G_i}(F, H_i - V(F)) \leq h_2(G) - 2$. Thus, $d_{G_i}(F, H_i - V(F)) \leq h_2(G) - 2$ for any induced subgraph *F* of H_j with $\emptyset \neq V(F) \subsetneq V(H_j)$, and (V) follows. Then $H_j \in EU^1_{h_2(G)-1}(G_j)$, $1 \leq j \leq s+1$. Then H_j satisfies (I)-(V) in the definition of $EU_{h_2(G)-1}^1(G_j)$, and $H_1, H_2, \ldots, H_{s+1}$ are pairwise vertex-disjoint. Let $H = \bigcup_{j=1}^{s+1} H_j$. Then we shall prove $H \in EU_{h_2(G)-1}^{s+1}(G)$, i.e., we shall show that *H* satisfies the conditions (I)-(V) for $n = h_2(G) - 1$ and $k = s + 1$ in Lemma [7.](#page-4-2)

Since H_i is even graph and disjoint union of even graphs is still even graph, H is even graph, and (I) follows. Further, $V_0(H_j) \subseteq \bigcup_{i \geq 3} V_i(G_j) \subseteq V(H_j)$, $1 \leq$ $j \leq s+1$, $\bigcup_{j=1}^{s+1} V_0(H_j) \subseteq \bigcup_{j=1}^{s+1} \bigcup_{i \geq 3} V_i(G_j) \subseteq \bigcup_{j=1}^{s+1} V(H_j)$, then $V_0(H) \subseteq$ $\bigcup_{i \geq 3} V_i(G) \subseteq V(H)$, and (II) follows. Let *B* be a branch of *G* with $E(B) \cap E(H) = \emptyset$. Assume that $|E(B)| \ge h_2(G) + 1$, which contradicts $h_2(G) = max\{l(B) : B \in$ $\mathcal{B}_2(G)$ }, hence (III) follows. (IV) is obvious by the hypothesis of Theorem [1.](#page-1-0)

Next, we verify that *H* satisfies (V). By the construction of *H*, *H* can be decomposed into $s + 1$ pairwise vertex-disjoint subgraphs $H_1, H_2, \ldots, H_{s+1}$, and for every *j* and for every induced subgraph *F* of H_j with $\emptyset \neq V(F) \subseteq V(H_j)$, we have $d_{G_j}(F, H_j - V(F)) \leq h_2(G) - 2$ by the condition (V) of $EU^1_{h_2(G)-1}(G_j)$. Furthermore, $d_G(F, H_j - V(F)) = d_{G_j}(F, H_j - V(F)) \le h_2(G) - 2$ for every j and the same *F*, then (V) follows. Hence, $H \in EU_{h2}^{s+1}(G) - 1(G)$. Therefore, $k = s + 1$.

(3) The proof is similar to the proof of (2). Assume that the minimum number of components of 2-factors in $L^{h_2(G)}(G)$ is k' and let $\left|\left\{B \in \mathcal{B}_2(G) : l(B) = h_2(G)\right\}\right| =$ *s .*

Let G'_1, G'_2, \ldots, G'_t be the components of the graph obtained from *G* by deleting all edges and inner vertices of any branch in $\{B \in \mathcal{B}_2(G) : l(B) = h_2(G)\}\)$, then G'_1, G'_2, \ldots, G'_t are pairwise vertex-disjoint and $l(B) \leq h_2(G) - 1$ for any branch *B* ∈ $\mathcal{B}_2(G'_j) \cap \mathcal{B}_2(G)$, 1 ≤ *j* ≤ *t*. Contracting G'_j to a vertex, the resulting graph becomes a tree, then $t = s' + 1$. Since any possible 2-factor has at least one component in every $L^{h_2(G)}(G'_j)$, then $k' \geq s'+1$. It remains to verify that $k' \leq s'+1$. By Lemma [7,](#page-4-2) we need to prove that $EU_{h_2(G)}^{s'+1}(G) \neq \emptyset$.

Assume that every G'_{j} $(1 \leq j \leq s' + 1)$ is composed of i_j nontrivial components $G'_{j,1}$, $G'_{j,2}$, ..., G'_{j,i_j} of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G* , i.e., $G_j' =$ $\bigcup_{q=1}^{i_j} G'_{j, q}$. Then $G'_{j, 1}, G'_{j, 2}, \ldots, G'_{j, i_j}$ are pairwise vertex-disjoint, and $h(G'_{j, q}) \le$ *h*₂(*G*)−1 for $1 \le q \le i_j$, $1 \le j \le s' + 1$ by the hypothesis of Theorem [1.](#page-1-0) This means that $L^{h_2(G)-1}(G'_{j,q})$ has a hamiltonian cycle. Then $L^{h_2(G)}(G'_{j,q})$ is hamiltonian. By Lemma [6,](#page-4-1) there exists a subgraph $H'_{j,q}$ of $G'_{j,q}$ such that $H'_{j,q} \in EU^1_{h_2(G)}(G'_{j,q})$, $1 \leq$ $q \le i_j$, $1 \le j \le s' + 1$. Let $H'_j = \bigcup_{q=1}^{i_j} H'_{j,q}$, $1 \le j \le s' + 1$. Now, we shall show that $H'_j \in EU^1_{h_2(G)}(G'_j), 1 \le j \le s' + 1$.

Since $H'_{j,q}$'s $(1 \leq j \leq s' + 1, 1 \leq q \leq i_j)$ are mutually vertex-disjoint even subgraphs, and hence H'_{j} is also even subgraph, and (I) follows. Since $V_0(H'_{j,q}) \subseteq$ $\bigcup_{i\geq 3} V_i(G'_{j,q}) \subseteq V(H'_{j,q}), 1 \leq q \leq i_j, \ \bigcup_{q=1}^{i_j} V_0(H'_{j,q}) \subseteq \bigcup_{q=1}^{i_j} \bigcup_{i\geq 3} V_i(G'_{j,q}) \subseteq$ $\bigcup_{q=1}^{i_j} V(H'_{j,q})$, then $V_0(H'_j) \subseteq \bigcup_{i \geq 3} V_i(G'_j) \subseteq V(H'_j)$, and (II) follows. Let B' be any branch with $E(B') \cap E(H'_j) = \emptyset$. Assume that $|E(B')| \geq h_2(G) + 2$, which contradicts the fact that $H'_{j,q}$ satisfies (III) of the definition of $EU^1_{h_2(G)}(G'_{j,q})$, then $|E(B')| \leq h_2(G) + 1$, and hence (III) follows. (IV) is obviously true by the hypothesis of Theorem [1.](#page-1-0) By the fact that $H'_{j,q}$ satisfies (V) of the definition of $EU^1_{h_2(G)}(G'_{j,q})$, we have $d_{G'_{j}}(F, H'_{j} - V(F)) = d_{G'_{j,q}}(F, H'_{j,q} - V(F)) \leq h_2(G) - 1$ for any induced subgraph F of H'_j with $\emptyset \neq V(F) \subsetneq V(H'_j)$ if $F \cap H'_{j,q} \neq \emptyset$, and $d_{G'_j}(F, H'_j V(F) \le h_2(G) - 1$ if $F \cap H'_{j,q} = \emptyset$. Thus, $d_{G'_j}(F, H'_j - V(F)) \le h_2(G) - 1$ for any induced subgraph *F* of H'_j with $\emptyset \neq V(F) \subsetneq V(H'_j)$, and (V) follows. Then $H'_{j} \in EU^{1}_{h_{2}(G)}(G'_{j}), 1 \leq j \leq s' + 1$. Let $H' = \bigcup_{j=1}^{s'+1} H'_{j}$. Then we shall verify that *H*^{$'$} satisfies the conditions (I)-(V) in the definition of $EU_{h_2(G)}^{s'+1}(G)$.

H' is even graph since it is composed of those vertex-disjoint even subgraphs *H*^{$'$}, and (I) follows. Since *H*^{$'$}_{*j*} satisfies (II) in the definition of $EU^1_{h_2(G)}(G'_j)$, we have $V_0(H'_j) \subseteq \bigcup_{i \geq 3} V_i(G'_j) \subseteq V(H'_j), 1 \leq j \leq s' + 1$. Then $\bigcup_{j=1}^{s'+1} V_0(H'_j) \subseteq$ $\bigcup_{j=1}^{s'+1} \bigcup_{i\geq 3} V_i(G'_j) \subseteq \bigcup_{j=1}^{s'+1} V(H'_j)$, that is, $V_0(H') \subseteq \bigcup_{i\geq 3} V_i(G) \subseteq V(H')$, and (II) follows. Let *B* be any branch of *G* with $E(B) \cap E(H') = \emptyset$. Then $|E(B)| \le$ $h_2(G) \leq h_2(G) + 1$, (III) follows. (IV) is obvious by the hypothesis of Theorem [1.](#page-1-0)

By the construction of H' and H'_j satisfies (V) in the definition of $EU^1_{h_2(G)}(G'_j)$, H' can be decomposed into $s' + 1$ pairwise vertex-disjoint subgraphs $H'_1, H'_2, \cdots, H'_{s'+1}$, and for every *j* and for every induced subgraph *F* of H'_j with $\emptyset \neq V(F) \subsetneq V(H'_j)$, it holds $d_{G'_{j}}(F, H'_{j} - V(F)) \leq h_{2}(G) - 1$. Since $d_{G}(F, H'_{j} - V(F)) = d_{G'_{j}}(F, H'_{j} V(F)$) $\leq h_2(G) - 1$ for every *j* and the same *F*, *H'* satisfies (V). Hence, *H'* \in $EU^{s'+1}_{h_2(G)}$ *(G).*

(4) By Theorem [1](#page-1-0) (2), we have that $L^{h_2(G)-1}(G)$ has a 2-factor which has at least *s* + 1 components. Let $L^{h_2(G)-1}(G) = G^*$, we need to prove that $EU_2^1(G^*) \neq \emptyset$.

Assume that *H_j* is a 2-factor component of $L^{h_2(G)-1}(G)$, $1 \le j \le s + 1$. Let $H = \bigcup_{j=1}^{s+1} H_j$. Then *H* is a 2-factor of *G*[∗] since $\{H_j, 1 \le j \le s + 1\}$ is pairwise vertex-disjoint. It is obvious that *H* is an even graph of *G*∗, and (I) follows. Since $V_0(H) = \emptyset$ and *H* is a 2-factor of $G^*, \emptyset = V_0(H) \subseteq \bigcup_{i \geq 3} V_i(G^*) \subseteq V(H)$, and (II) follows. Let *B* be a branch with $E(B) \cap E(H) = \emptyset$. Then $|E(B)| = 1 \leq 2 + 1$ by *H* is a 2-factor of G^* , hence (III) follows. (IV) holds by the hypothesis of Theorem [1.](#page-1-0) Now, we prove (V). Assume, by contradiction, that $d_{G^*}(F, H - V(F)) \geq 2$ for some induced subgraph *F* of *H* with $\emptyset \neq V(F) \subsetneq V(H)$. This implies that there exists a branch *B* of length at least 2 between *F* and $H - F$. Let *x* be the vertex of degree 2 in *B*, then $x \in V(B) \setminus V(H)$. This contradicts the fact that *H* is a 2-factor of G^* , hence *H* satisfies (V). Therefore, $H \in EU_2^1(G^*)$. By Lemma [6,](#page-4-1) $L^2(G^*) = L^{h_2(G)+1}(G)$ is hamiltonian.

Proof of Theorem [2](#page-2-0) (1) Let $B \in \mathcal{B}_1(G)$ and $l(B) = h_1(G)$. Then *B* becomes a branch *B*^{\prime} with an end vertex of degree 1 in $L^{h_1(G)-1}(G)$ and $L^{h_2(G)-1}(G)$, respectively. Therefore, $L^{h_1(G)-1}(G)$ and $L^{h_2(G)-1}(G)$ have no 2-factor.

(2) Assume that the minimum number of components of 2-factors in $L^{h_1(G)}(G)$ is k'' and let $|\{B \in \mathcal{B}_2(G) : l(B) = h_2(G) = h_1(G)\}| = s''$.

Let $G_1'', G_2'', \ldots, G_t''$ be the components of the graph obtained from *G* by deleting all edges and internal vertices of any branch in $\{B \in \mathcal{B}_2(G) : l(B) = h_2(G) = h_1(G) \ge$ 2). Then $G''_1, G''_2, \ldots, G''_t$ are pairwise vertex-disjoint, and $l(B) \leq h_1(G) - 1$ for any branch $B \in \mathcal{B}_2(G_j'') \cap \mathcal{B}_2(G)$, $1 \leq j \leq t$. Contracting G_j'' to a vertex, the resulting graph becomes a tree, then $t = s'' + 1$ since $|V(T)| = |E(T)| + 1$ in a tree *T*. Since any possible 2-factor has at least one component in every $L^{h_1(G)}(G'_{j})$, then $k'' \geq s'' + 1$. Next, we shall prove that $k'' \leq s'' + 1$. According to Lemma [7,](#page-4-2) we shall prove that $EU_{h_1(G)}^{s''+1}(G) \neq \emptyset$.

Assume that every G''_j $(1 \le j \le s'' + 1)$ comprises i_j nontrivial components $G''_{j,1}$, $G''_{j,2}$, ..., G''_{j,i_j} of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G*, that is, $G''_j = \bigcup_{q=1}^{i_j} G''_{j,q}$. It is obvious that $G''_{j,1}, G''_{j,2}, \ldots, G''_{j,i_j}$ are pairwise vertex-disjoint. By the hypothesis of Theorem [2,](#page-2-0) $h(G''_{j,q}) \leq h_1(G)$ for $1 \leq q \leq i_j, 1 \leq j \leq s'' + 1$. By Lemma [6,](#page-4-1) $EU_{h_1(G)}^1(G_{j,q}'') \neq \emptyset$. We may take $H_{j,q}'' \in EU_{h_1(G)}^1(G_{j,q}''), 1 \leq j \leq$ $s'' + 1$, $1 \le q \le i_j$, then $H''_{j,q}$ satisfies (I)-(V) in the definition of $EU^1_{h_1(G)}(G''_{j,q})$, and $H''_{j,q}$'s are mutually vertex-disjoint subgraphs. Let $H''_j = \bigcup_{q=1}^{i_j} H''_{j,q}$, $1 \le j \le s''+1$. Next, we shall show that $H''_j \in EU^1_{h_1(G)}(G''_j)$, $1 \le j \le s'' + 1$.

Since $H''_{j,q}$'s are mutually vertex-disjoint even subgraphs, H''_j is even graph, and (I) follows. Since $V_0(H''_{j,q}) \subseteq \bigcup_{i \geq 3} V_i(G''_{j,q}) \subseteq V(H''_{j,q}), 1 \leq q \leq i_j$, and $\bigcup_{q=1}^{i_j} V_0(H''_{i,q}) \subseteq \bigcup_{q=1}^{i_j} \bigcup_{i\geq 3} V_i(G''_{j,q}) = \bigcup_{i\geq 3} V_i(G''_j) \subseteq \bigcup_{q=1}^{i_j} V(H''_{j,q}),$ then $V_0(H_j'') \subseteq \bigcup_{i \ge 3} V_i(G_j'') \subseteq V(H_j'')$, and (II) follows. Let *B'* be any branch with $E(B') \cap E(H''_j) = \emptyset$. Assume that $|E(B')| \geq h_1(G)+2$, which contradicts the fact that $H''_{j,q}$ satisfies (III) of $EU^1_{h_1(G)}(G''_{j,q})$, then $|E(B')|\leq h_1(G)+1$, and (III) follows. (IV) is obvious by the hypothesis of Theorem [2.](#page-2-0) By the fact that $H''_{j,q}$ satisfies (V) of the definition of $EU^1_{h_1(G)}(G''_{j,q})$, we have $d_{G''_j}(F, H''_j - V(F)) = d_{G''_{j,q}}(F, H''_{j,q} - V(F)) \le$ *h*₁(*G*) − 1 for any induced subgraph *F* of H''_j with Ø $\neq V(F) \subsetneq V(H''_j)$ when $F \cap H''_{j,q} \neq \emptyset$, and $d_{G''_j}(F, H''_j - V(F)) \leq h_1(G) - 1$ when $F \cap H''_{j,q} = \emptyset$. Then $d_{G''_j}(F, H''_j - V(F)) \leq h_1(G) - 1$ for any induced subgraph *F* of H''_j with Ø \neq $V(F) \subsetneq V(H''_j)$, and hence (V) follows. Then $H''_j \in EU^1_{h_1(G)}(G''_j)$, $1 \leq j \leq s'' + 1$. Let $H'' = \bigcup_{j=1}^{s''+1} H''_j$. Next, we show that $H'' \in EU^{s''+1}_{h_1(G)}(G)$.

Since H_j'' satisfies (I) and (II) of the definition of $EU^1_{h_1(G)}(G_j'')$, it is easy to deduce H'' is even graph and $V_0(H'') \subseteq \bigcup_{i \geq 3} V_i(G) \subseteq V(H'')$, then (I) (II) follow. Let *B* be a branch of G with $E(B) \cap E(H^{\prime\prime}) = \emptyset$. Then $|E(B)| \leq h_2(G) \leq h_2(G) + 1 =$ $h_1(G) + 1$, and (III) follows. It is obvious that $|E(B)| \leq h_1(G)$ for any branch *B* in $\mathcal{B}_1(G)$, (IV) follows.

Now, we verify that (V) holds. By the construction of H'' , H'' can be decomposed into $s'' + 1$ pairwise vertex-disjoint subgraphs $H''_1, H''_2, \cdots, H''_{s''+1}$, and for every *j* and for every induced subgraph *F* of H_j'' with $\emptyset \neq V(F) \subsetneq V(H_j'')$, we have $d_{G_j''}(F, H_j'' - V(F)) \le h_1(G) - 1$ by the fact that H_j'' satisfies (V) of the definition of $EU_{h_1(G)}^1(G''_j)$. Furthermore, $d_G(F, H''_j - V(F)) = d_{G''_j}(F, H''_j - V(F)) \leq h_1(G) - 1$ for every *j* and the same *F*, then (V) follows. Hence, $H'' \in EU_{h_1(G)}^{s''+1}(G)$.

(3) According to Lemma [6,](#page-4-1) we need to prove that $EU_{h_1(G)+1}^1(G) \neq \emptyset$ when $h_1(G) = h_2(G) \geq 1$. Let G_1, G_2, \ldots, G_q be those nontrivial components of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G*. Then we have $h(G_i) \leq h_1(G)$ by the hypothesis of Theorem [2.](#page-2-0) It implies that $L^{h_1(G)+1}(G_i)$ is hamiltonian. By Lemma [6,](#page-4-1) there exists a subgraph H_i ∈ $EU_{h_1(G)+1}^1(G_i)$, 1 ≤ i ≤ q . Then H_1 , H_2, \ldots, H_q (some of these sub-
proche graphs isolated in the second theory models across vertices y_i or G such that graphs maybe isolated vertices because there maybe some vertices v_k 's in *G* such that $d_G(v_k) \geq 3$ and the edges incident to v_k are all cut edges) are pairwise vertex-disjoint. Let $H = \bigcup_{i=1}^{q} H_i$. Then *H* is even graph since H_i *s* are mutually vertex-disjoint even subgraphs, and (I) follows. Since $V_0(H_i) \subseteq \bigcup_{i \geq 3} V_i(G_i) \subseteq V(H_i)$ (1 ≤ *i* ≤ *q*), $\bigcup_{i=1}^{q} V_0(H_i) \subseteq \bigcup_{i=1}^{q} \bigcup_{i \geq 3} V_i(G_i) = \bigcup_{i \geq 3} V_i(G) \subseteq \bigcup_{i=1}^{q} V(H_i)$, then $V_0(H) \subseteq$ $\bigcup_{i \geq 3}$ *V_i*(*G*) ⊆ *V*(*H*), (II) follows. Since $|E(B')| \leq h_1(G) + 2$ for any branch *B*^{*i*} with $E(B') \cap E(H_i) = \emptyset$ by H_i satisfies (III) in the definition of $EU_{h_1(G)+1}^1(G_i)$, and $|E(B'')| \leq h_2(G) = h_1(G) \leq h_1(G) + 2$ for any branch $B'' \in \mathcal{B}_2(G)$, then $|E(B)| \leq h_1(G) + 2$ for any branch *B* of *G* with $E(B) \cap E(H) = \emptyset$, and (III) follows. (IV) follows from the fact that $|E(B)| \leq h_1(G) \leq h_1(G) + 1$ for any branch *B* in $\mathcal{B}_1(G)$. For any induced subgraph *F* of *H* with $\emptyset \neq V(F) \subsetneq V(H)$, we have $d_G(F, H - V(F)) = d_{G_i}(F, H_i - V(F)) \leq h_1(G)$ if $F \cap H_i \neq \emptyset$ by the fact that H_i (Here H_i is the subgraph which is not an isolated vertex) satisfies (V) of the definition of $EU_{h_1(G)+1}^1(G_i)$. If $F \cap H_i = \emptyset$, then $d_G(F, H - V(F)) \le$ $h_2(G) = h_1(G)$. Thus, $d_G(F, H - V(F)) \leq h_1(G)$ for any induced subgraph *F* of *H* with $\emptyset \neq V(F) \subsetneq V(H)$, and (V) follows. Then $H \in EU^1_{h_1(G)+1}(G)$. \Box

(4) Similar to the proof of Theorem [2](#page-2-0) (3), we shall show that $EU_{h_1(G)}^1(G) \neq \emptyset$ when $h_1(G) > h_2(G) \geq 1$. We use G'_i $(1 \leq i \leq q)$ to denote those components of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G*. Then $h(G_i') \leq$ $h_1(G)$ by the hypothesis of Theorem [2.](#page-2-0) This means that $L^{h_1(G)}(G_i')$ is hamil-tonian. By Lemma [6,](#page-4-1) $EU_{h_1(G)}^1(G_i') \neq \emptyset$. Let $H'_i \in EU_{h_1(G)}^1(G_i'), 1 \leq i \leq q$, then H'_1 , H'_2 , \ldots , H'_q (some of these subgraphs maybe isolated vertices) are pairwise vertex-disjoint. Let $H' = \bigcup_{i=1}^{q} H'_i$. Then H' is even graph and $V_0(H') \subseteq$ $\bigcup_{i \geq 3} V_i(G) \subseteq V(H')$ by the fact that *H*_i satisfies the conditions (I) and (II) in the definition of $EU_{h_1(G)}^1(G_i)$, and hence (I), (II) follow. Since $|E(B')| \leq h_1(G) + 1$ for any branch *B'* with $E(B') \cap E(H_i') = \emptyset$ by the fact that H_i' satisfies (III) in the definition of $EU_{h_1(G)}^1(G_i')$, and $|E(B'')| \leq h_2(G) < h_1(G) + 1$ for any branch $B'' \in \mathcal{B}_2(G)$, then $|E(B)| \leq h_1(G) + 1$ for any branch *B* of *G* with $E(B) \cap E(H') = \emptyset$, and (III) follows. (IV) is obviously true. By the fact that

Fig. [1](#page-1-0) Condition ([2](#page-2-0)) in both Theorems 1 and 2 is sharp

 H_i' (Here H_i' is the subgraph which is not an isolated vertex) satisfies the condition (V) in the definition of $EU_{h_1(G)}^1(G_i')$, we have $d_{G_i'}(F, H_i' - V(F)) \le$ $h_1(G) - 1$ for every induced subgraph *F* of H'_i with $\emptyset \neq V(F) \subsetneq V(H'_i)$. Then $d_G(F, H' - V(F)) = d_{G'_i}(F, H'_i - V(F)) \leq h_1(G) - 1$ for any induced subgraph *F* of *H'* if $F \n\cap H_i' \neq \emptyset$. If $F \n\cap H_i' = \emptyset$, then $d_G(F, H' - V(F)) \leq$ $h_2(G) \leq h_1(G) - 1$. Thus, $d_G(F, H' - V(F)) \leq h_1(G) - 1$ for any induced subgraph *F* of *H'* with $\emptyset \neq V(F) \subsetneq V(H')$, and hence (V) follows. Therefore, *H'* $\in EU^{1}_{h_1(G)}$ *(G)*.

4 Remark

Our results in this paper provide two classes of graphs, such that as long as they satisfy the condition of Theorems [1](#page-1-0) or [2,](#page-2-0) their iterated line graph has a 2-factor, and we determine the minimum number of components of 2-factors. Note that Theorem [1](#page-1-0) is best possible in the sense: (1) The condition $h_2(G) \geq 2$ can not be replaced by $h_2(G) = 1$. Otherwise, we have $h_1(G) = h_2(G) - 1 = 0$. However, the graphs satisfying the condition " $h_1(G) = 0$, $h_2(G) = 1$ " could not reach the condition "every nontrivial component of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G* has hamiltonian index at most $h_2(G) - 1$ $h_2(G) - 1$ ". (2) The condition $h_2(G) \geq 3$ in Theorem 1 (2) can not be replaced by $h_2(G) < 2$. This can be seen from the graph G^* in Fig. [1](#page-9-0) with $h_2(G^*) = 2$, but there is no 2-factor in $L^{h_2(G^*)-1}(G^*) = L(G^*)$. In addition, Theorem [2](#page-2-0) is also best possible in the sense: The condition $h_1(G) = h_2(G) \geq 2$ in Theorem [2](#page-2-0) (2) can not be replaced by $h_1(G) = h_2(G) = 1$. This can be seen from the graph G^{**} in Fig. [1](#page-9-0) with $h_1(G^{**}) = h_2(G^{**}) = 1$, but there is no 2-factor in *L(G*∗∗*)*.

Acknowledgments This work has been supported by the National Natural Science Foundation (No.11471037 and No.11171129) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20131101110048).

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph theory with applications, Macmillan, London. Elsevier, New York (1976)
- 2. Catlin, P.A., Iqblunnisa, T.N., Janakiraman, N.: Srinivasan, Hamilton cycles and closed trails in iterated line graphs. J. Graph Theory **14**, 347–364 (1990)
- 3. Eminjan, S., Elkin, V.: Spanning connectivity of the power of a graph and Hamilton-connected index of a graph. Graphs Comb. **30**, 1551–1563 (2013). doi[:10.1007/s00373-013-1362-4](http://dx.doi.org/10.1007/s00373-013-1362-4)
- 4. Chartrand, G., Wall, C.E.: On the hamiltonian index of a graph. Studia Sci. Math. Hungar. **8**, 43–48 (1973)
- 5. Gould, R.: Recent advances on the hamiltonian problem: survey III. Graphs Comb. **30**(1), 1–46 (2014)
- 6. Gould, R., Hynds, E.: A note on cycles in 2-factors of line graphs. Bull. ICA **26**, 46–48 (1999)
- 7. Harary, F., Nash-Williams, C.StJA: On eulerian and hamiltonian graphs and line graphs. Can. Math. Bull. **8**, 701–709 (1965)
- 8. Ryjáček, Z., Woeginger, G.J., Xiong, L.: Hamiltonian index is NP-complete. Discrete Appl. Math. **159**, 246–250 (2011)
- 9. Saito, A., Xiong, L.: Closure, stability and iterated line graphs with a 2-factor. Discrete Math. **309**, 5000–5010 (2009)
- 10. Wang, Q., Xiong, L.: Branch-bonds, two-factors in iterated line graphs and circuits in weighted graphs. Int. J. Comput. Math. **91**, 1385–1396 (2014). doi[:10.1080/00207160.2013.838229](http://dx.doi.org/10.1080/00207160.2013.838229)
- 11. Xiong, L., Liu, Z.: Hamiltonian iterated line graphs. Discrete Math. **256**, 407–422 (2002)