

Minimum Number of Components of 2-Factors in Iterated Line Graphs

Shengmei $Lv^{1,2}$ · Liming Xiong¹

Received: 20 December 2014 / Revised: 28 May 2015 / Published online: 12 June 2015 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract It is well known that it is NP-hard to determine the minimum number of components of a 2-factor in a graph, even for iterated line graphs. In this paper, we determine the minimum number of components of 2-factors in iterated line graphs of some special tree-like graphs. It extends some known results.

Keywords 2-Factor · Cut-branch · Iterated line graph · Hamiltonian index

Mathematics Subject Classification 05C38 · 05C45 · 05C76

1 Introduction

Throughout this paper, all graphs considered are simple and finite graphs. We follow the most common graph-theoretical terminology and for concepts and notations not defined here, see [1].

A 2-factor of a graph G is a spanning subgraph whose components are cycles. In particular, a hamiltonian graph has a 2-factor with exactly one component. There

Communicated by Xueliang Li.

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, People's Republic of China

² School of Mathematics and Statistics, Qinghai University for Nationalities, Xining 810007, People's Republic of China

 [☑] Liming Xiong lmxiong@bit.edu.cn
Shengmei Lv meizi3411@163.com

are many results on the existence of 2-factors with a given number of components, mainly on the existence of hamiltonian graphs, see the survey paper [5]. The *line* graph L(G) of a graph G is the graph with vertex set E(G), in which two vertices are adjacent if, and only if, the corresponding edges have a common end vertex in G. The *n*-time iterated line graph $L^{n}(G)$ is defined to be $L(L^{n-1}(G))$, and we assume that $E(L^{n-1}(G))$ is not empty. The hamiltonian index of a graph G is the minimum nonnegative integer n such that $L^{n}(G)$ is hamiltonian, denoted by h(G), the interested readers can consult [4]. The Hamilton-connected index of a graph G is the minimum nonnegative integer n such that $L^{n}(G)$ is Hamilton-connected, i.e., any two vertices in $L^n(G)$ are connected by a Hamilton path. We know that the Hamilton problem, i.e., the problem to decide whether a given graph is hamiltonian, is one of the classical NP-complete problems. In [8], the authors have proved that it is NP-hard to determine whether $L^{k}(G)$ is hamiltonian even for any large integer k. Thus, it is also NP-hard to determine the minimum number of components of a 2-factor in $L^{k}(G)$ for any large integer k. Wang and Xiong [10] provided an upper bound of minimum number of components of 2-factors in iterated line graph. In present paper, we consider the similar problem and determine the minimum number of components of 2-factors in iterated line graph of some special graphs. Before presenting our main results, we first introduce some additional terminology and notation.

A *branch* is a nontrivial path whose internal vertices have degree two and end vertices have degree other than two. The number of edges in a branch *B* is said to be its *length*, denoted by l(B). We denote by $\mathcal{B}(G)$ the set of branches of *G*. Note that a branch of length one has no internal vertex. A branch *B* of a graph *G* is called a *cutbranch* if the subgraph obtained from *G* by deleting all edges and internal vertices of *B* has more components than *G*, and we denote by $\mathcal{CB}(G)$ the set of all cut-branches of *G*. Let $\mathcal{B}_2(G) = \{B \in \mathcal{CB}(G) :$ both end vertices of *B* have degree at least 3 in *G*} and $\mathcal{B}_1(G) = \{B \in \mathcal{CB}(G) :$ at least one end vertex of *B* has degree 1 in *G*}, then it is obvious that $\mathcal{CB}(G) = \mathcal{B}_1(G) \cup \mathcal{B}_2(G)$.

For $i \in \{1, 2\}$, define

$$h_i(G) = \begin{cases} max\{l(B): B \in \mathcal{B}_i(G)\}, & \text{if } \mathcal{B}_i(G) \text{ is not empty,} \\ 0, & \text{otherwise.} \end{cases}$$

Now we state the main results as follows.

Theorem 1 Let G be a connected graph with $h_1(G) \le h_2(G) - 1$ and $h_2(G) \ge 2$, such that every nontrivial component of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G has hamiltonian index at most $h_2(G) - 1$. Then

- (1) $L^{h_2(G)-2}(G)$ has no 2-factor;
- (2) if $h_2(G) \ge 3$, then the minimum number of components of 2-factors in $L^{h_2(G)-1}(G)$ is

$$\left| \left\{ B \in \mathcal{B}_2(G) : l(B) \in \{h_2(G) - 1, h_2(G)\} \right\} \right| + 1;$$

(3) the minimum number of components of 2-factors in $L^{h_2(G)}(G)$ is

$$\left|\left\{B \in \mathcal{B}_2(G): l(B) = h_2(G)\right\}\right| + 1;$$

(4) $L^{h_2(G)+1}(G)$ is hamiltonian.

Theorem 2 Let G be a connected graph with $h_1(G) \ge h_2(G) \ge 1$, such that every nontrivial component of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least three in G has hamiltonian index at most $h_1(G)$. Then

- (1) $L^{h_1(G)-1}(G)$ and $L^{h_2(G)-1}(G)$ have no 2-factor;
- (2) if $h_1(G) = h_2(G) \ge 2$, then the minimum number of components of 2-factors in $L^{h_1(G)}(G)$ is $|\{B \in \mathcal{B}_2(G) : l(B) = h_2(G)\}| + 1;$
- (3) if $h_1(G) = h_2(G) \ge 1$, then $L^{h_1(G)+1}(G)$ is hamiltonian;
- (4) if $h_1(G) > h_2(G) \ge 1$, then $L^{h_1(G)}(G)$ is hamiltonian.

The proofs of Theorems 1 and 2 will be given in Sect. 3.

The authors in [4] gave a formula of the hamiltonian index h(T) for a tree T. We shall extend the result. Eminjan and Elkin [3] gave a relation between hamiltonian index and Hamilton-connected index of trees.

Since every nontrivial component of the graph obtained from *T* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G* has hamiltonian index at most $h_2(T) - 1$ under the condition $h_1(T) \le h_2(T) - 1$ and $h_2(T) \ge 2$, which satisfies the condition of Theorem 1. Let $l = max\{l(B): B \in \mathcal{B}_2(T)\}$, and $\mathcal{B}_2(T) = \mathcal{B}(T) \setminus \mathcal{B}_1(T)$, then we consequently have the following conclusion.

Corollary 3 Let $l \ge 2$ and let T be a tree with $l(B) \le l - 1$ for any $B \in \mathcal{B}_1(T)$. Then

- (1) $L^{l-2}(T)$ has no 2-factor;
- (2) if $l \ge 3$, then the minimum number of components of 2-factors in $L^{l-1}(T)$ is

$$\left|\left\{B \in \mathcal{B}(T) \setminus \mathcal{B}_1(T) : \left|E(B)\right| \in \{l-1,l\}\right\}\right| + 1;$$

(3) the minimum number of components of 2-factors in $L^{l}(T)$ is

$$\left|\left\{B \in \mathcal{B}(T) \setminus \mathcal{B}_1(T) : \left|E(B)\right| = l\right\}\right| + 1;$$

(4) $L^{l+1}(T)$ is hamiltonian.

By Corollary 3 and Theorem 2, we can obtain the following result:

Corollary 4 (Chartrand and Wall [4]) If T is a tree which is not a path, then

$$h(T) = max\{h_2(T) + 1, h_1(T)\}.$$

Proof By Corollary 3 (4), we have $h(T) = h_2(T) + 1$ if $h_1(T) \le h_2(T) - 1$ and $h_2(T) \ge 2$. Since any tree T with $h_1(T) \ge h_2(T) \ge 1$ satisfies the condition of Theorem 2, then we have $h(T) \le h_2(T) + 1$ if $h_1(T) = h_2(T) \ge 1$, and $h(T) \le h_1(T)$ if $h_1(T) > h_2(T) \ge 1$ by (3) and (4) of Theorem 2. Again by Theorem 2 (1), $h(T) > h_1(T) - 1$ and $h(T) > h_2(T) - 1$. Above all, we can obtain $h(T) = max\{h_2(T) + 1, h_1(T)\}$.

2 Preliminaries and Notations

As noted in the first section, for graph-theoretic notation not explained in this paper, we refer readers to [1]. Let G = (V(G), E(G)) be a graph with vertex set V(G)and edge set E(G). For a nonnegative integer k, we define $V_k(G)$ by $V_k(G) = \{x \in V(G): d_G(x) = k\}$, where $d_G(x)$ is the degree of x in G. Given two subgraphs G_1 and G_2 , we define the distance $d_G(G_1, G_2)$ between G_1 and G_2 by $d_G(G_1, G_2) =$ min $\{d_G(x_1, x_2): x_1 \in V(G_1), x_2 \in V(G_2)\}$. For subgraphs G_1, G_2, \ldots, G_k , their union $G_1 \cup G_2 \cup \cdots \cup G_k$ is the graph whose vertex set and edge set are $V(G_1) \cup$ $V(G_2) \cup \cdots \cup V(G_k)$ and $E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k)$, respectively. For $S \subseteq V(G)$, we denote by G[S] the subgraph of G induced by S.

A *circuit* is a connected graph with at least three vertices in which every vertex has even degree. A set of vertices S is said to *dominate* G if each edge of G has at least one end vertex in S. A circuit of G is called a *dominating circuit* of G if every edge of G either belongs to the circuit or is adjacent to an edge of the circuit. For a graph G of order at least three, its subgraph H is called a *k*-system that dominates if it comprises k edge-disjoint stars $(K(1, s), s \ge 3)$ and circuits, such that each edge of G is either contained in one of the circuits or stars, or is adjacent to one of the circuits. Harary and Nash-Williams [7] showed that for a connected graph G with at least three edges, L(G) has a hamiltonian cycle if and only if G has a dominating circuit. This characterization has been widely employed to study the properties of cycles in line graphs and iterated line graphs, see [2]. In 1999, Gould and Hynds presented a necessary and sufficient condition for the line graph L(G) of a graph G that has a 2-factor with exactly k components.

Lemma 5 (Gould and Hynds [6]) Let G be a graph such that each component of G has at least three edges. Then L(G) has a 2-factor with exactly k components if and only if G has a k-system that dominates.

We let $EU_n^k(G)$ denote the set of subgraphs *H* of *G* satisfying the following five conditions:

- (I) H is an even graph;
- (II) $V_0(H) \subseteq \bigcup_{i>3} V_i(G) \subseteq V(H);$
- (III) $|E(B)| \le n + 1$ for any branch B with $E(B) \cap E(H) = \emptyset$;
- (IV) $|E(B)| \leq n$ for any branch B in $\mathcal{B}_1(G)$;
- (V) *H* can be decomposed into at most *k* pairwise vertex-disjoint subgraphs H_1, \ldots, H_t ($t \le k$) such that for every *j* and for every induced subgraph *F* of H_j with $\emptyset \ne V(F) \subsetneq V(H_j)$, it holds $d_G(F, H_j V(F)) \le n 1$.

In [11], Xiong and Liu considered iterated line graphs and gave a characterization of the graphs G for which $L^n(G)$ is hamiltonian for $n \ge 2$, which has been used to study the hamiltonian index. We state it as follows.

Lemma 6 (Xiong and Liu [11]) Let G be a connected graph with at least three edges. Then for $n \ge 2$, $L^n(G)$ is hamiltonian if and only if $EU_n^1(G) \neq \emptyset$.

Saito and Xiong in [9] showed that the following result, which extends Lemma 6.

Lemma 7 (Saito and Xiong [9]) Let G be a connected graph with at least three edges and let k be a positive integer. Then for $n \ge 2$, $L^n(G)$ has a 2-factor with at most k components if and only if $EU_n^k(G) \ne \emptyset$.

Next, we provide the proofs of Theorem 1 and Theorem 2.

3 Proofs of Main Results

Proof of Theorem 1 (1) Let $B \in \mathcal{B}_2(G)$ and $l(B) = h_2(G)$. Then *B* becomes a branch *B'* of length 2 in $L^{h_2(G)-2}(G)$, whose end vertices belong to two distinct components. Let *u* be the vertex of degree 2 in *B'*, then *u* does not belong to any 2-factor component of $L^{h_2(G)-2}(G)$. Thus, $L^{h_2(G)-2}(G)$ has no 2-factor.

(2) Assume that the minimum number of components of 2-factors in $L^{h_2(G)-1}(G)$ is *k* and let $|\{B \in \mathcal{B}_2(G) : l(B) \in \{h_2(G) - 1, h_2(G)\}\}| = s$.

Let G_1, G_2, \ldots, G_t be the components of the graph obtained from G by deleting all edges and inner vertices of any branch in $\{B \in \mathcal{B}_2(G) : l(B) \in \{h_2(G) - 1, h_2(G)\}\}$. It is obvious that G_1, G_2, \ldots, G_t are pairwise vertex-disjoint and $l(B) \leq h_2(G) - 2$ for any branch $B \in \mathcal{B}_2(G_j) \cap \mathcal{B}_2(G), 1 \leq j \leq t$. Contracting G_j to a vertex, the resulting graph becomes a tree, then t = s + 1 since |V(T)| = |E(T)| + 1 in a tree T. Since any possible 2-factor has at least one component in every $L^{h_2(G)-1}(G_j)$, then $k \geq s + 1$. Now we verify that $k \leq s + 1$. By Lemma 7, we need to prove that $EU_{h_2(G)-1}^{s+1}(G) \neq \emptyset$.

Assume that every G_j $(1 \le j \le s + 1)$ is composed of i_j nontrivial components $G_{j,1}, G_{j,2}, \ldots, G_{j,i_j}$ of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G, i.e., $G_j = \bigcup_{k=1}^{i_j} G_{j,k}$. Then $G_{j,1}, G_{j,2}, \ldots, G_{j,i_j}$ are pairwise vertex-disjoint and $h(G_{j,k}) \le h_2(G) - 1$ for $1 \le k \le i_j, 1 \le j \le s + 1$ by the hypothesis of Theorem 1. By Lemma 6, $EU_{h_2(G)-1}^1(G_{j,k}) \ne \emptyset$. Suppose $H_{j,k} \in EU_{h_2(G)-1}^1(G_{j,k}), 1 \le j \le s + 1, 1 \le k \le i_j$. Then $H_{j,k}$ satisfies (I)-(V) in the definition of $EU_{h_2(G)-1}^1(G_{j,k})$, and $H_{j,1}, H_{j,2}, \ldots, H_{j,i_j}$ are pairwise vertex-disjoint. Let $H_j = \bigcup_{k=1}^{i_j} H_{j,k}, 1 \le j \le s + 1$. Next, we verify that $H_j \in EU_{h_2(G)-1}^1(G_j), 1 \le j \le s + 1$.

Since $H_{j,k}$ is even graph and $H_{j,k}$'s are mutually vertex-disjoint subgraphs, then H_j is even graph, and (I) follows. Since $V_0(H_{j,k}) \subseteq \bigcup_{i\geq 3} V_i(G_{j,k}) \subseteq V(H_{j,k}), 1 \leq k \leq i_j, \quad \bigcup_{k=1}^{i_j} V_0(H_{j,k}) \subseteq \bigcup_{k=1}^{i_j} \bigcup_{i\geq 3} V_i(G_{j,k}) \subseteq \bigcup_{k=1}^{i_j} V(H_{j,k})$, then $V_0(H_j) \subseteq \bigcup_{i\geq 3} V_i(G_j) \subseteq V(H_j)$, and (II) follows. Let B' be any branch with $E(B') \cap E(H_j) = \emptyset$. Assume that $|E(B')| \geq h_2(G) + 1$, which contradicts that $H_{j,k}$ satisfies (III) of

the definition of $EU_{h_2(G)-1}^1(G_{j,k})$, then $|E(B')| \leq h_2(G)$, and (III) follows. By the hypothesis of Theorem 1, we have $|E(B'')| \leq h_2(G) - 1$ for any branch $B'' \in \mathcal{B}_1(G_j)$, and (IV) follows. For any induced subgraph F of H_j with $\emptyset \neq V(F) \subsetneq V(H_j)$. If $F \cap H_{j,k} \neq \emptyset$, then $d_{G_j}(F, H_j - V(F)) = d_{G_{j,k}}(F, H_{j,k} - V(F)) \leq h_2(G) - 2$ by the fact that $H_{j,k}$ satisfies (V) in the definition of $EU_{h_2(G)-1}^1(G_{j,k})$. If $F \cap H_{j,k} = \emptyset$, then $d_{G_j}(F, H_j - V(F)) \leq h_2(G) - 2$. Thus, $d_{G_j}(F, H_j - V(F)) \leq h_2(G) - 2$ for any induced subgraph F of H_j with $\emptyset \neq V(F) \subsetneq V(H_j)$, and (V) follows. Then $H_j \in EU_{h_2(G)-1}^1(G_j)$, $1 \leq j \leq s + 1$. Then H_j satisfies (I)-(V) in the definition of $EU_{h_2(G)-1}^1(G_j)$, and $H_1, H_2, \ldots, H_{s+1}$ are pairwise vertex-disjoint. Let $H = \bigcup_{j=1}^{s+1} H_j$. Then we shall prove $H \in EU_{h_2(G)-1}^{s+1}(G)$, i.e., we shall show that Hsatisfies the conditions (I)-(V) for $n = h_2(G) - 1$ and k = s + 1 in Lemma 7.

Since H_j is even graph and disjoint union of even graphs is still even graph, H is even graph, and (I) follows. Further, $V_0(H_j) \subseteq \bigcup_{i\geq 3} V_i(G_j) \subseteq V(H_j)$, $1 \leq j \leq s+1$, $\bigcup_{j=1}^{s+1} V_0(H_j) \subseteq \bigcup_{j=1}^{s+1} \bigcup_{i\geq 3} V_i(G_j) \subseteq \bigcup_{j=1}^{s+1} V(H_j)$, then $V_0(H) \subseteq \bigcup_{i\geq 3} V_i(G) \subseteq V(H)$, and (II) follows. Let *B* be a branch of *G* with $E(B) \cap E(H) = \emptyset$. Assume that $|E(B)| \geq h_2(G) + 1$, which contradicts $h_2(G) = max\{l(B) : B \in \mathcal{B}_2(G)\}$, hence (III) follows. (IV) is obvious by the hypothesis of Theorem 1.

Next, we verify that H satisfies (V). By the construction of H, H can be decomposed into s + 1 pairwise vertex-disjoint subgraphs $H_1, H_2, \ldots, H_{s+1}$, and for every j and for every induced subgraph F of H_j with $\emptyset \neq V(F) \subsetneq V(H_j)$, we have $d_{G_j}(F, H_j - V(F)) \leq h_2(G) - 2$ by the condition (V) of $EU_{h_2(G)-1}^1(G_j)$. Furthermore, $d_G(F, H_j - V(F)) = d_{G_j}(F, H_j - V(F)) \leq h_2(G) - 2$ for every j and the same F, then (V) follows. Hence, $H \in EU_{h_2(G)-1}^{s+1}(G)$. Therefore, k = s + 1.

(3) The proof is similar to the proof of (2). Assume that the minimum number of components of 2-factors in $L^{h_2(G)}(G)$ is k' and let $|\{B \in \mathcal{B}_2(G) : l(B) = h_2(G)\}| = s'$.

Let G'_1, G'_2, \ldots, G'_t be the components of the graph obtained from *G* by deleting all edges and inner vertices of any branch in $\{B \in \mathcal{B}_2(G) : l(B) = h_2(G)\}$, then G'_1, G'_2, \ldots, G'_t are pairwise vertex-disjoint and $l(B) \le h_2(G) - 1$ for any branch $B \in \mathcal{B}_2(G'_j) \cap \mathcal{B}_2(G), 1 \le j \le t$. Contracting G'_j to a vertex, the resulting graph becomes a tree, then t = s' + 1. Since any possible 2-factor has at least one component in every $L^{h_2(G)}(G'_j)$, then $k' \ge s' + 1$. It remains to verify that $k' \le s' + 1$. By Lemma 7, we need to prove that $EU^{s'+1}_{h_2(G)}(G) \ne \emptyset$.

Assume that every G'_j $(1 \le j \le s' + 1)$ is composed of i_j nontrivial components $G'_{j,1}, G'_{j,2}, \ldots, G'_{j,i_j}$ of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G, i.e., $G'_j = \bigcup_{q=1}^{i_j} G'_{j,q}$. Then $G'_{j,1}, G'_{j,2}, \ldots, G'_{j,i_j}$ are pairwise vertex-disjoint, and $h(G'_{j,q}) \le h_2(G) - 1$ for $1 \le q \le i_j, 1 \le j \le s' + 1$ by the hypothesis of Theorem 1. This means that $L^{h_2(G)-1}(G'_{j,q})$ has a hamiltonian cycle. Then $L^{h_2(G)}(G'_{j,q})$ is hamiltonian. By Lemma 6, there exists a subgraph $H'_{j,q}$ of $G'_{j,q}$ such that $H'_{j,q} \in EU^1_{h_2(G)}(G'_{j,q}), 1 \le q \le i_j, 1 \le j \le s' + 1$. Let $H'_j = \bigcup_{q=1}^{i_j} H'_{j,q}, 1 \le j \le s' + 1$. Now, we shall show that $H'_j \in EU^1_{h_2(G)}(G'_j), 1 \le j \le s' + 1$.

Since $H'_{j,q}$'s $(1 \le j \le s' + 1, 1 \le q \le i_j)$ are mutually vertex-disjoint even subgraphs, and hence H'_j is also even subgraph, and (I) follows. Since $V_0(H'_{j,q}) \subseteq \bigcup_{i\ge 3} V_i(G'_{j,q}) \subseteq V(H'_{j,q}), 1 \le q \le i_j, \bigcup_{q=1}^{i_j} V_0(H'_{j,q}) \subseteq \bigcup_{q=1}^{i_j} \bigcup_{i\ge 3} V_i(G'_{j,q}) \subseteq \bigcup_{q=1}^{i_j} V(H'_{j,q})$, then $V_0(H'_j) \subseteq \bigcup_{i\ge 3} V_i(G'_j) \subseteq V(H'_j)$, and (II) follows. Let B' be any branch with $E(B') \cap E(H'_j) = \emptyset$. Assume that $|E(B')| \ge h_2(G) + 2$, which contradicts the fact that $H'_{j,q}$ satisfies (III) of the definition of $EU^1_{h_2(G)}(G'_{j,q})$, then $|E(B')| \le h_2(G) + 1$, and hence (III) follows. (IV) is obviously true by the hypothesis of Theorem 1. By the fact that $H'_{j,q}$ satisfies (V) of the definition of $EU^1_{h_2(G)}(G'_{j,q})$, we have $d_{G'_j}(F, H'_j - V(F)) = d_{G'_{j,q}}(F, H'_{j,q} - V(F)) \le h_2(G) - 1$ for any induced subgraph F of H'_j with $\emptyset \ne V(F) \subsetneq V(H'_j)$ if $F \cap H'_{j,q} \ne \emptyset$, and $d_{G'_j}(F, H'_j - V(F)) \le h_2(G) - 1$ for any induced subgraph F of H'_j with $\emptyset \ne V(F) \subsetneq V(H'_j)$, and (V) follows. Then $H'_j \in EU^1_{h_2(G)}(G'_j), 1 \le j \le s' + 1$. Let $H' = \bigcup_{j=1}^{s'+1} H'_j$. Then we shall verify that H' satisfies the conditions (I)-(V) in the definition of $EU^{s'+1}_{h_2(G)}(G)$.

H' is even graph since it is composed of those vertex-disjoint even subgraphs H'_j , and (I) follows. Since H'_j satisfies (II) in the definition of $EU^1_{h_2(G)}(G'_j)$, we have $V_0(H'_j) \subseteq \bigcup_{i\geq 3} V_i(G'_j) \subseteq V(H'_j)$, $1 \leq j \leq s' + 1$. Then $\bigcup_{j=1}^{s'+1} V_0(H'_j) \subseteq \bigcup_{j=1}^{s'+1} V(H'_j)$, that is, $V_0(H') \subseteq \bigcup_{i\geq 3} V_i(G) \subseteq V(H')$, and (II) follows. Let *B* be any branch of *G* with $E(B) \cap E(H') = \emptyset$. Then $|E(B)| \leq h_2(G) \leq h_2(G) + 1$, (III) follows. (IV) is obvious by the hypothesis of Theorem 1.

By the construction of H' and H'_j satisfies (V) in the definition of $EU^1_{h_2(G)}(G'_j)$, H'can be decomposed into s' + 1 pairwise vertex-disjoint subgraphs $H'_1, H'_2, \dots, H'_{s'+1}$, and for every j and for every induced subgraph F of H'_j with $\emptyset \neq V(F) \subsetneq V(H'_j)$, it holds $d_{G'_j}(F, H'_j - V(F)) \leq h_2(G) - 1$. Since $d_G(F, H'_j - V(F)) = d_{G'_j}(F, H'_j - V(F)) \leq h_2(G) - 1$ for every j and the same F, H' satisfies (V). Hence, $H' \in EU^{s'+1}_{h_2(G)}(G)$.

(4) By Theorem 1 (2), we have that $L^{h_2(G)-1}(G)$ has a 2-factor which has at least s + 1 components. Let $L^{h_2(G)-1}(G) = G^*$, we need to prove that $EU_2^1(G^*) \neq \emptyset$.

Assume that H_j is a 2-factor component of $L^{h_2(G)-1}(G)$, $1 \le j \le s + 1$. Let $H = \bigcup_{j=1}^{s+1} H_j$. Then H is a 2-factor of G^* since $\{H_j, 1 \le j \le s + 1\}$ is pairwise vertex-disjoint. It is obvious that H is an even graph of G^* , and (I) follows. Since $V_0(H) = \emptyset$ and H is a 2-factor of $G^*, \emptyset = V_0(H) \subseteq \bigcup_{i\ge 3} V_i(G^*) \subseteq V(H)$, and (II) follows. Let B be a branch with $E(B) \cap E(H) = \emptyset$. Then $|E(B)| = 1 \le 2 + 1$ by H is a 2-factor of G^* , hence (III) follows. (IV) holds by the hypothesis of Theorem 1. Now, we prove (V). Assume, by contradiction, that $d_{G^*}(F, H - V(F)) \ge 2$ for some induced subgraph F of H with $\emptyset \ne V(F) \subsetneq V(H)$. This implies that there exists a branch B of length at least 2 between F and H - F. Let x be the vertex of degree 2 in B, then $x \in V(B) \setminus V(H)$. This contradicts the fact that H is a 2-factor of G^* , hence H satisfies (V). Therefore, $H \in EU_2^1(G^*)$. By Lemma 6, $L^2(G^*) = L^{h_2(G)+1}(G)$ is hamiltonian.

Proof of Theorem 2 (1) Let $B \in \mathcal{B}_1(G)$ and $l(B) = h_1(G)$. Then *B* becomes a branch *B'* with an end vertex of degree 1 in $L^{h_1(G)-1}(G)$ and $L^{h_2(G)-1}(G)$, respectively. Therefore, $L^{h_1(G)-1}(G)$ and $L^{h_2(G)-1}(G)$ have no 2-factor.

(2) Assume that the minimum number of components of 2-factors in $L^{h_1(G)}(G)$ is k'' and let $|\{B \in \mathcal{B}_2(G) : l(B) = h_2(G) = h_1(G)\}| = s''$.

Let $G''_1, G''_2, \ldots, G''_t$ be the components of the graph obtained from *G* by deleting all edges and internal vertices of any branch in $\{B \in \mathcal{B}_2(G) : l(B) = h_2(G) = h_1(G) \ge 2\}$. Then $G''_1, G''_2, \ldots, G''_t$ are pairwise vertex-disjoint, and $l(B) \le h_1(G) - 1$ for any branch $B \in \mathcal{B}_2(G''_j) \cap \mathcal{B}_2(G), 1 \le j \le t$. Contracting G''_j to a vertex, the resulting graph becomes a tree, then t = s'' + 1 since |V(T)| = |E(T)| + 1 in a tree *T*. Since any possible 2-factor has at least one component in every $L^{h_1(G)}(G''_j)$, then $k'' \ge s'' + 1$. Next, we shall prove that $k'' \le s'' + 1$. According to Lemma 7, we shall prove that $EU_{h_1(G)}^{s''+1}(G) \ne \emptyset$.

Assume that every G''_j $(1 \le j \le s'' + 1)$ comprises i_j nontrivial components $G''_{j,1}, G''_{j,2}, \ldots, G''_{j,i_j}$ of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G, that is, $G''_j = \bigcup_{q=1}^{i_j} G''_{j,q}$. It is obvious that $G''_{j,1}, G''_{j,2}, \ldots, G''_{j,i_j}$ are pairwise vertex-disjoint. By the hypothesis of Theorem 2, $h(G''_{j,q}) \le h_1(G)$ for $1 \le q \le i_j, 1 \le j \le s'' + 1$. By Lemma 6, $EU^1_{h_1(G)}(G''_{j,q}) \ne \emptyset$. We may take $H''_{j,q} \in EU^1_{h_1(G)}(G''_{j,q}), 1 \le j \le s'' + 1, 1 \le q \le i_j$, then $H''_{j,q}$ satisfies (I)-(V) in the definition of $EU^1_{h_1(G)}(G''_{j,q})$, and $H''_{j,q}$'s are mutually vertex-disjoint subgraphs. Let $H''_j = \bigcup_{q=1}^{i_j} H''_{j,q}, 1 \le j \le s'' + 1$.

Since $H_{j,q}''$ is are mutually vertex-disjoint even subgraphs, H_j'' is even graph, and (I) follows. Since $V_0(H_{j,q}'') \subseteq \bigcup_{i \ge 3} V_i(G_{j,q}'') \subseteq V(H_{j,q}'')$, $1 \le q \le i_j$, and $\bigcup_{q=1}^{i_j} V_0(H_{j,q}'') \subseteq \bigcup_{q=1}^{i_j} \bigcup_{i \ge 3} V_i(G_{j,q}'') = \bigcup_{i \ge 3} V_i(G_j'') \subseteq \bigcup_{q=1}^{i_j} V(H_{j,q}')$, then $V_0(H_j'') \subseteq \bigcup_{i \ge 3} V_i(G_j'') \subseteq V(H_j'')$, and (II) follows. Let B' be any branch with $E(B') \cap E(H_j'') = \emptyset$. Assume that $|E(B')| \ge h_1(G) + 2$, which contradicts the fact that $H_{j,q}''$ satisfies (III) of $EU_{h_1(G)}^1(G_{j,q}'')$, then $|E(B')| \le h_1(G) + 1$, and (III) follows. (IV) is obvious by the hypothesis of Theorem 2. By the fact that $H_{j,q}''$ satisfies (V) of the definition of $EU_{h_1(G)}^1(G_{j,q}'')$, we have $d_{G_j''}(F, H_j'' - V(F)) = d_{G_{j,q}''}(F, H_{j,q}'' - V(F)) \le \le h_1(G) - 1$ for any induced subgraph F of H_j'' with $\emptyset \ne V(F) \subsetneq V(H_j'')$ when $F \cap H_{j,q}'' \ne \emptyset$, and $d_{G_j''}(F, H_j'' - V(F)) \le h_1(G) - 1$ when $F \cap H_{j,q}'' = \emptyset$. Then $d_{G_j''}(F, H_j'' - V(F)) \le h_1(G) - 1$ for any induced subgraph F of H_j'' with $\emptyset \ne V(F) \subseteq V(H_j'')$, and hence (V) follows. Then $H_j'' \in EU_{h_1(G)}^1(G_j'')$, $1 \le j \le s'' + 1$. Let $H'' = \bigcup_{j=1}^{s''+1} H_j''$. Next, we show that $H'' \in EU_{h_1(G)}^{s''+1}(G)$.

Since H''_j satisfies (I) and (II) of the definition of $EU^{1}_{h_1(G)}(G''_j)$, it is easy to deduce H'' is even graph and $V_0(H'') \subseteq \bigcup_{i\geq 3} V_i(G) \subseteq V(H'')$, then (I) (II) follow. Let B be a branch of G with $E(B) \cap E(H'') = \emptyset$. Then $|E(B)| \leq h_2(G) \leq h_2(G) + 1 = h_1(G) + 1$, and (III) follows. It is obvious that $|E(B)| \leq h_1(G)$ for any branch B in $\mathcal{B}_1(G)$, (IV) follows.

Now, we verify that (V) holds. By the construction of H'', H'' can be decomposed into s'' + 1 pairwise vertex-disjoint subgraphs $H''_1, H''_2, \dots, H''_{s''+1}$, and for every j and for every induced subgraph F of H''_j with $\emptyset \neq V(F) \subsetneq V(H''_j)$, we have $d_{G''_j}(F, H''_j - V(F)) \leq h_1(G) - 1$ by the fact that H''_j satisfies (V) of the definition of $EU^1_{h_1(G)}(G''_j)$. Furthermore, $d_G(F, H''_j - V(F)) = d_{G''_j}(F, H''_j - V(F)) \leq h_1(G) - 1$ for every j and the same F, then (V) follows. Hence, $H'' \in EU^{s''+1}_{h_1(G)}(G)$. \Box

(3) According to Lemma 6, we need to prove that $EU^1_{h_1(G)+1}(G) \neq \emptyset$ when $h_1(G) = h_2(G) \ge 1$. Let G_1, G_2, \ldots, G_q be those nontrivial components of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G. Then we have $h(G_i) \leq h_1(G)$ by the hypothesis of Theorem 2. It implies that $L^{h_1(G)+1}(G_i)$ is hamiltonian. By Lemma 6, there exists a subgraph $H_i \in EU_{h_1(G)+1}^1(G_i), 1 \le i \le q$. Then H_1, H_2, \ldots, H_q (some of these subgraphs maybe isolated vertices because there maybe some vertices v_k 's in G such that $d_G(v_k) \ge 3$ and the edges incident to v_k are all cut edges) are pairwise vertex-disjoint. Let $H = \bigcup_{i=1}^{q} H_i$. Then H is even graph since H_i 's are mutually vertex-disjoint even subgraphs, and (I) follows. Since $V_0(H_i) \subseteq \bigcup_{i\geq 3} V_i(G_i) \subseteq V(H_i)$ $(1 \leq i \leq q)$, $\bigcup_{i=1}^{q} V_0(H_i) \subseteq \bigcup_{i=1}^{q} \bigcup_{i \ge 3} V_i(G_i) = \bigcup_{i \ge 3} V_i(G) \subseteq \bigcup_{i=1}^{q} V(H_i), \text{ then } V_0(H) \subseteq V_i(G) \subseteq V_i(G)$ $\bigcup_{i\geq 3} V_i(G) \subseteq V(H)$, (II) follows. Since $|E(B')| \leq h_1(G) + 2$ for any branch B'with $E(B') \cap E(H_i) = \emptyset$ by H_i satisfies (III) in the definition of $EU^1_{h_1(G)+1}(G_i)$, and $|E(B'')| \leq h_2(G) = h_1(G) \leq h_1(G) + 2$ for any branch $B'' \in \mathcal{B}_2(G)$, then $|E(B)| \leq h_1(G) + 2$ for any branch B of G with $E(B) \cap E(H) = \emptyset$, and (III) follows. (IV) follows from the fact that $|E(B)| \leq h_1(G) \leq h_1(G) + 1$ for any branch B in $\mathcal{B}_1(G)$. For any induced subgraph F of H with $\emptyset \neq V(F) \subseteq V(H)$, we have $d_G(F, H - V(F)) = d_{G_i}(F, H_i - V(F)) \le h_1(G)$ if $F \cap H_i \ne \emptyset$ by the fact that H_i (Here H_i is the subgraph which is not an isolated vertex) satisfies (V) of the definition of $EU^1_{h_1(G)+1}(G_i)$. If $F \cap H_i = \emptyset$, then $d_G(F, H - V(F)) \leq d_G(F, H)$ $h_2(G) = h_1(G)$. Thus, $d_G(F, H - V(F)) \leq h_1(G)$ for any induced subgraph F of H with $\emptyset \neq V(F) \subseteq V(H)$, and (V) follows. Then $H \in EU^1_{h_1(G)+1}(G)$.

(4) Similar to the proof of Theorem 2 (3), we shall show that $EU_{h_1(G)}^1(G) \neq \emptyset$ when $h_1(G) > h_2(G) \ge 1$. We use G'_i $(1 \le i \le q)$ to denote those components of the graph obtained from G by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in G. Then $h(G'_i) \le$ $h_1(G)$ by the hypothesis of Theorem 2. This means that $L^{h_1(G)}(G'_i)$ is hamiltonian. By Lemma 6, $EU_{h_1(G)}^1(G'_i) \ne \emptyset$. Let $H'_i \in EU_{h_1(G)}^1(G'_i)$, $1 \le i \le q$, then H'_1, H'_2, \ldots, H'_q (some of these subgraphs maybe isolated vertices) are pairwise vertex-disjoint. Let $H' = \bigcup_{i=1}^q H'_i$. Then H' is even graph and $V_0(H') \subseteq$ $\bigcup_{i\ge 3} V_i(G) \subseteq V(H')$ by the fact that H'_i satisfies the conditions (I) and (II) in the definition of $EU_{h_1(G)}^1(G'_i)$, and hence (I), (II) follow. Since $|E(B')| \le h_1(G) + 1$ for any branch B' with $E(B') \cap E(H'_i) = \emptyset$ by the fact that H'_i satisfies (III) in the definition of $EU_{h_1(G)}^1(G'_i)$, and $|E(B'')| \le h_2(G) < h_1(G) + 1$ for any branch $B'' \in \mathcal{B}_2(G)$, then $|E(B)| \le h_1(G) + 1$ for any branch B of G with $E(B) \cap E(H') = \emptyset$, and (III) follows. (IV) is obviously true. By the fact that

Fig. 1 Condition (2) in both Theorems 1 and 2 is sharp

 H'_i (Here H'_i is the subgraph which is not an isolated vertex) satisfies the condition (V) in the definition of $EU^1_{h_1(G)}(G'_i)$, we have $d_{G'_i}(F, H'_i - V(F)) \leq h_1(G) - 1$ for every induced subgraph F of H'_i with $\emptyset \neq V(F) \subsetneq V(H'_i)$. Then $d_G(F, H' - V(F)) = d_{G'_i}(F, H'_i - V(F)) \leq h_1(G) - 1$ for any induced subgraph F of H' if $F \cap H'_i \neq \emptyset$. If $F \cap H'_i = \emptyset$, then $d_G(F, H' - V(F)) \leq h_2(G) \leq h_1(G) - 1$. Thus, $d_G(F, H' - V(F)) \leq h_1(G) - 1$ for any induced subgraph F of H' with $\emptyset \neq V(F) \subsetneq V(H')$, and hence (V) follows. Therefore, $H' \in EU^1_{h_1(G)}(G)$.

4 Remark

Our results in this paper provide two classes of graphs, such that as long as they satisfy the condition of Theorems 1 or 2, their iterated line graph has a 2-factor, and we determine the minimum number of components of 2-factors. Note that Theorem 1 is best possible in the sense: (1) The condition $h_2(G) \ge 2$ can not be replaced by $h_2(G) = 1$. Otherwise, we have $h_1(G) = h_2(G) - 1 = 0$. However, the graphs satisfying the condition " $h_1(G) = 0$, $h_2(G) = 1$ " could not reach the condition "every nontrivial component of the graph obtained from *G* by deleting all cut edges and by attaching at least three pendent edges at all vertices of degree at least 3 in *G* has hamiltonian index at most $h_2(G) \le 2$. This can be seen from the graph G^* in Fig. 1 with $h_2(G^*) = 2$, but there is no 2-factor in $L^{h_2(G^*)-1}(G^*) = L(G^*)$. In addition, Theorem 2 is also best possible in the sense: The condition $h_1(G) = h_2(G) \ge 2$ in Theorem 2 (2) can not be replaced by $h_1(G) = h_2(G^{**}) = 1$, but there is no 2-factor in $L(G^{**}) = 1$, but there is no 2-factor in $L(G^{**}) = 1$.

Acknowledgments This work has been supported by the National Natural Science Foundation (No.11471037 and No.11171129) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20131101110048).

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph theory with applications, Macmillan, London. Elsevier, New York (1976)
- Catlin, P.A., Iqblunnisa, T.N., Janakiraman, N.: Srinivasan, Hamilton cycles and closed trails in iterated line graphs. J. Graph Theory 14, 347–364 (1990)
- 3. Eminjan, S., Elkin, V.: Spanning connectivity of the power of a graph and Hamilton-connected index of a graph. Graphs Comb. **30**, 1551–1563 (2013). doi:10.1007/s00373-013-1362-4
- 4. Chartrand, G., Wall, C.E.: On the hamiltonian index of a graph. Studia Sci. Math. Hungar. **8**, 43–48 (1973)
- 5. Gould, R.: Recent advances on the hamiltonian problem: survey III. Graphs Comb. 30(1), 1-46 (2014)
- 6. Gould, R., Hynds, E.: A note on cycles in 2-factors of line graphs. Bull. ICA 26, 46–48 (1999)
- 7. Harary, F., Nash-Williams, C.StJA: On eulerian and hamiltonian graphs and line graphs. Can. Math. Bull. **8**, 701–709 (1965)
- Ryjáček, Z., Woeginger, G.J., Xiong, L.: Hamiltonian index is NP-complete. Discrete Appl. Math. 159, 246–250 (2011)
- Saito, A., Xiong, L.: Closure, stability and iterated line graphs with a 2-factor. Discrete Math. 309, 5000–5010 (2009)
- Wang, Q., Xiong, L.: Branch-bonds, two-factors in iterated line graphs and circuits in weighted graphs. Int. J. Comput. Math. 91, 1385–1396 (2014). doi:10.1080/00207160.2013.838229
- 11. Xiong, L., Liu, Z.: Hamiltonian iterated line graphs. Discrete Math. 256, 407-422 (2002)