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Abstract It is well known that it is NP-hard to determine the minimum number of
components of a 2-factor in a graph, even for iterated line graphs. In this paper, we
determine the minimum number of components of 2-factors in iterated line graphs of
some special tree-like graphs. It extends some known results.
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1 Introduction

Throughout this paper, all graphs considered are simple and finite graphs. We follow
the most common graph-theoretical terminology and for concepts and notations not
defined here, see [1].

A 2-factor of a graph G is a spanning subgraph whose components are cycles.
In particular, a hamiltonian graph has a 2-factor with exactly one component. There
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are many results on the existence of 2-factors with a given number of components,
mainly on the existence of hamiltonian graphs, see the survey paper [5]. The line
graph L(G) of a graph G is the graph with vertex set E(G), in which two vertices
are adjacent if, and only if, the corresponding edges have a common end vertex in G.
The n-time iterated line graph L'(G) is defined to be L(L"~!(G)), and we assume
that E(L"~'(G)) is not empty. The hamiltonian index of a graph G is the mini-
mum nonnegative integer n such that L(G) is hamiltonian, denoted by /(G), the
interested readers can consult [4]. The Hamilton-connected index of a graph G is
the minimum nonnegative integer n such that L"(G) is Hamilton-connected, i.e., any
two vertices in L"(G) are connected by a Hamilton path. We know that the Hamil-
ton problem, i.e., the problem to decide whether a given graph is hamiltonian, is
one of the classical NP-complete problems. In [8], the authors have proved that it
is NP-hard to determine whether LG) is hamiltonian even for any large integer
k. Thus, it is also NP-hard to determine the minimum number of components of a
2-factor in LX(G) for any large integer k. Wang and Xiong [10] provided an upper
bound of minimum number of components of 2-factors in iterated line graph. In
present paper, we consider the similar problem and determine the minimum num-
ber of components of 2-factors in iterated line graph of some special graphs. Before
presenting our main results, we first introduce some additional terminology and nota-
tion.

A branch is a nontrivial path whose internal vertices have degree two and end
vertices have degree other than two. The number of edges in a branch B is said to be
its length, denoted by /(B). We denote by B(G) the set of branches of G. Note that a
branch of length one has no internal vertex. A branch B of a graph G is called a cut-
branch if the subgraph obtained from G by deleting all edges and internal vertices of
B has more components than G, and we denote by C3(G) the set of all cut-branches of
G. Let Bo(G) = {B € CB(G) : both end vertices of B have degree at least 3 in G}
and B1(G) = {B € CB(G) : at least one end vertex of B has degree 1 in G}, then it
is obvious that CB(G) = B{(G) U BAG).

Fori € {1, 2}, define

max{l(B):B € B;(G)}, if B;(G) is not empty,
0, otherwise.

hi(G) = {

Now we state the main results as follows.

Theorem 1 Let G be a connected graph with hi(G) < hoG) — 1 and ho(G) > 2,

such that every nontrivial component of the graph obtained from G by deleting all cut

edges and by attaching at least three pendent edges at all vertices of degree at least 3

in G has hamiltonian index at most ho(G) — 1. Then

(1) L"G)=2(G) has no 2-factor;

(2) if ha(G) > 3, then the minimum number of components of 2-factors in
L O-1(G) is

(B € B(G)(B) € 1ha(G) — 1, oG} | + 1
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(3) the minimum number of components of 2-factors in L"2(%) (G) is
‘{B € By(G):l(B) = hz(G)}‘ 1

(4) LM O*YG) is hamiltonian.

Theorem 2 Let G be a connected graph with hi(G) > ho(G) > 1, such that every
nontrivial component of the graph obtained from G by deleting all cut edges and by
attaching at least three pendent edges at all vertices of degree at least three in G has
hamiltonian index at most h(G). Then

(1) L"©O=YG) and L' ©~1(G) have no 2-factor;

(2) if h1(G) = ho(G) > 2, then the minimum number of components of 2-factors in
LM(©)(G) is |{B € By(G) : I(B) = ha(G)}| + I;

(3) if h1(G) = ha(G) = 1, then L"G©*YY(G) is hamiltonian;

(4) if h1(G) > ha(G) > 1, then L" O (G) is hamiltonian.

The proofs of Theorems 1 and 2 will be given in Sect. 3.

The authors in [4] gave a formula of the hamiltonian index A(T') for a tree T. We
shall extend the result. Eminjan and Elkin [3] gave a relation between hamiltonian
index and Hamilton-connected index of trees.

Since every nontrivial component of the graph obtained from 7 by deleting all
cut edges and by attaching at least three pendent edges at all vertices of degree at
least 3 in G has hamiltonian index at most 4y(7T) — 1 under the condition i ((T) <
ho(T) — 1 and hyT) > 2, which satisfies the condition of Theorem 1. Let [ =
max{l(B):B € By(T)}, and Bo(T) = B(T)\B1(T), then we consequently have the
following conclusion.

Corollary 3 Letl > 2 andlet T be a tree withl(B) <1 — 1 forany B € B\(T). Then

(1) L'"2(T) has no 2-factor;
(2) ifl > 3, then the minimum number of components of 2-factors in L'=1(T) is

(B e B\ BTy : [E®B)| € 1= 1,0} +1:
(3) the minimum number of components of 2-factors in L'(T) is
(B e B\ BT : [E®B)| =1}| +1;

(4) L'TN(T) is hamiltonian.
By Corollary 3 and Theorem 2, we can obtain the following result:

Corollary 4 (Chartrand and Wall [4]) If T is a tree which is not a path, then

W(T) = max{ho(T) + 1, b\ (T)}.
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Proof By Corollary 3 (4), we have h(T) = ho(T) + 1 if hi(T) < ho(T) — 1 and
ha(T) > 2. Since any tree T with h1(T) > ho(T) > 1 satisfies the condition of
Theorem 2, then we have h(T) < ho(T)+1ifh((T) = ho(T) > 1,and h(T) < h(T)
if hi(T) > ha(T) > 1 by (3) and (4) of Theorem 2. Again by Theorem 2 (1),
h(T) > hi(T) — 1 and h(T) > ho(T) — 1. Above all, we can obtain h(T) =
max{hy(T) + 1, h{(T)}. O

2 Preliminaries and Notations

As noted in the first section, for graph-theoretic notation not explained in this paper,
we refer readers to [1]. Let G = (V(G), E(G)) be a graph with vertex set V(G)
and edge set E(G). For a nonnegative integer k, we define Vi (G) by Vi (G) = {x €
V(G): dg(x) = k}, where dg(x) is the degree of x in G. Given two subgraphs G
and G», we define the distance dg(G1, G2) between G| and G, by dg(G1, G2) =
min{dg(x1, x2): x1 € V(G1),x2 € V(Gy)}. For subgraphs G1, G», ..., G, their
union G| U Gy U - - - U Gy, is the graph whose vertex set and edge set are V(G1) U
V(Gy)U---UV(Gy)and E(G1)UE(Gp)U---UE(Gy), respectively. For § € V(G),
we denote by G[S] the subgraph of G induced by S.

A circuit is a connected graph with at least three vertices in which every vertex
has even degree. A set of vertices S is said to dominate G if each edge of G has at
least one end vertex in S. A circuit of G is called a dominating circuit of G if every
edge of G either belongs to the circuit or is adjacent to an edge of the circuit. For a
graph G of order at least three, its subgraph H is called a k-system that dominates if
it comprises k edge-disjoint stars (K (1, ), s > 3) and circuits, such that each edge of
G is either contained in one of the circuits or stars, or is adjacent to one of the circuits.
Harary and Nash-Williams [7] showed that for a connected graph G with at least
three edges, L(G) has a hamiltonian cycle if and only if G has a dominating circuit.
This characterization has been widely employed to study the properties of cycles in
line graphs and iterated line graphs, see [2]. In 1999, Gould and Hynds presented a
necessary and sufficient condition for the line graph L(G) of a graph G that has a
2-factor with exactly k components.

Lemma 5 (Gould and Hynds [6]) Let G be a graph such that each component of G
has at least three edges. Then L(G) has a 2-factor with exactly k components if and
only if G has a k-system that dominates.

We let E U,’; (G) denote the set of subgraphs H of G satisfying the following five
conditions:

(I) H is an even graph;
an Vo(H) < ,U3 Vi(G) € V(H);
1>

() |E(B)| < n + 1 for any branch B with E(B) N E(H) = ;

(IV) |E(B)| < n for any branch B in B{(G);

(V) H can be decomposed into at most k pairwise vertex-disjoint subgraphs
Hy, ..., H; (t < k) such that for every j and for every induced subgraph F
of H; with ¥ # V(F) C V(H;),itholds dg(F, Hj — V(F)) <n — 1.
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In [11], Xiong and Liu considered iterated line graphs and gave a characterization
of the graphs G for which L"(G) is hamiltonian for n > 2, which has been used to
study the hamiltonian index. We state it as follows.

Lemma 6 (Xiong and Liu [11]) Let G be a connected graph with at least three edges.
Then for n > 2, L"(G) is hamiltonian if and only ifEU,} (G) #0.

Saito and Xiong in [9] showed that the following result, which extends Lemma 6.

Lemma 7 (Saito and Xiong [9]) Let G be a connected graph with at least three edges
and let k be a positive integer. Then for n > 2, L"(G) has a 2-factor with at most k
components if and only ifEU,’,‘(G) # 0.

Next, we provide the proofs of Theorem 1 and Theorem 2.

3 Proofs of Main Results

Proof of Theorem 1 (1)Let B € By(G) and[(B) = h(G). Then B becomes a branch
B’ of length 2 in L"2(9~2(G), whose end vertices belong to two distinct components.
Let u be the vertex of degree 2 in B, then u does not belong to any 2-factor component
of L"(G=2(G). Thus, L">(©)=2(G) has no 2-factor. O

(2) Assume that the minimum number of components of 2-factors in Lh(6)-1 (G)
is k and let |{B € B2(G) : [(B) € {h2(G) — 1, ha(G)}}| = 5.

LetGy, Ga, ..., G; be the components of the graph obtained from G by deleting all
edges and inner vertices of any branch in {B € B2(G) : [(B) € {h2(G) — 1, h2(G)}}.
It is obvious that G1, G, ..., G; are pairwise vertex-disjoint and [(B) < ha(G) — 2
for any branch B € B>(G;) N B2(G),1 < j < t. Contracting G; to a vertex, the
resulting graph becomes a tree, then t = s + 1 since |V(T)| = |E(T)| + 1 in a tree
T. Since any possible 2-factor has at least one component in every LhZ(G)_l(Gj),
then k > s 4+ 1. Now we verify that k < s 4+ 1. By Lemma 7, we need to prove that
EU 6 _1(G) # 0.

Assume that every G; (1 < j < s + 1) is composed of i; nontrivial components
Gji1, Gja,...,Gj;; of the graph obtained from G by deleting all cut edges and
by attaching at least three pendent edges at all vertices of degree at least 3 in G,
ie,Gj = ;(j:l Gj k- Then Gj1,Gja,...,Gj;; are pairwise vertex-disjoint and
h(Gjr) < hy(G)—1forl <k <ij, 1< j <s+1 by the hypothesis of Theorem 1.
By Lemma 6, EU;z(G)_l(Gj,k) # (. Suppose Hj ;. € EU;Z(G)_I(GJ-J{), 1<j<
s+1, 1 <k <ij;. Then Hj satisfies (I)-(V) in the definition of EU}}Z(G)_I(Gj,k),

and Hj1, Hjo, ..., Hj;; are pairwise vertex-disjoint. Let H; = U;{jzl Hjp, 1<
J < s+ 1. Next, we verify that H; € EUhlz(G)_l(Gj), 1<j<s+1

Since Hj is even graph and H; ;s are mutually vertex-disjoint subgraphs, then
Hj is even graph, and (I) follows. Since Vo(H; ) C Ui>3 Vi(Gjx) S V(Hjp), 1=

k<ij, Uy Vo(Hj) € Uiy Uiss Vi(Gjw) € U, V(Hjg), then Vo(Hj) S
Ui=3 Vi(Gj) € V(H}), and (IT) follows. Let B’ be any branch with E(B")NE(H;) =
@. Assume that |E(B)| > ha(G) + 1, which contradicts that H; ; satisfies (III) of
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the definition of EUi}z(G)fl (Gjk), then |[E(B")| < hy(G), and (II) follows. By the
hypothesis of Theorem 1, we have |E(B”)| < h2(G)—1 for any branch B” € B (G ),
and (IV) follows. For any induced subgraph F' of H; with ¥ # V(F) C V(H;). If
FNHjy#9, thendg,;(F, Hj — V(F)) =dg,,(F, Hjx — V(F)) < h2(G) — 2 by
the fact that H ; satisfies (V) in the definition of EU}% (G)— (G EFNHj =0,

then dg; (F, Hj — V(F)) < h2(G) — 2. Thus, dg; (F H; — V(F)) < hy(G) —2
for any 1nduced subgraph F of H; with  # V(F ) € V(H ), and (V) follows.

Then H; € Eth(G)—l(G i), 1 < j < s+ 1. Then H; satisfies (I)-(V) in the

definition of EU}} G)— 1(Gj),and Hy, Ha, ..., Hgy are pairwise vertex-disjoint. Let

H = UH'1 H;. Then we shall prove H € EU}:‘% _1(G), i.e., we shall show that H
satisfies the condltlons D-(V) forn = hy(G) — l and k =5+ 1inLemma 7.

Since Hj; is even graph and disjoint union of even graphs is still even graph, H
is even graph, and (I) follows. Further, Vo(H;) C Ul>3 Vi(Gj) € V(Hj), 1 <
J<s+1L U vdE) € U Uises Vi(G)) € US“ V(H;), then Vo(H) g
U;>3 Vi(G) € V(H), and (II) follows Let B beabranch ofG with E(B)NE(H) =
Assume that |E(B)| > ho(G) + 1, which contradicts h2(G) = max{l(B) : B €
B>2(G)}, hence (III) follows. (IV) is obvious by the hypothesis of Theorem 1.

Next, we verify that H satisfies (V). By the construction of H, H can be decom-
posed into s + 1 pairwise vertex-disjoint subgraphs Hy, Hz, ..., Hy11, and for every
J and for every induced subgraph F of H; with @ # V(F) C V(H;), we have
de(F, H; — V(F)) < h(G) — 2 by the condition (V) of EUJZ(G)—l(GJ')' Further-
more, dg(F, H; — V(F)) = dG (F,H; — V(F)) < ha(G) — 2 for every j and the
same F, then (V) follows. Hence, H € EU, SH 1(G) Therefore, k = s + 1. O

(3) The proof is similar to the proof of (2) Assume that the minimum number of
components of 2-factors in L"2(%)(G) is k" and let |{B € B,(G) : I(B) = h2(G)}| =
s’

Let G, G}, ..., G} be the components of the graph obtained from G by deleting
all edges and inner vertices of any branch in {B € By(G) : I(B) = hz(G)}, then
G, G}, ..., G; are pairwise vertex-disjoint and /(B) < h2(G) — 1 for any branch
B € Bz(G’j) N B>(G),1 < j < t. Contracting G’j to a vertex, the resulting graph
becomes a tree, then ¢ = s”+ 1. Since any possible 2-factor has at least one component
inevery LhZ(G)(G/,) thenk’ > s'+1. Itremains to verify thatk” < s’4+1. By Lemma 7,
we need to prove that EU; 24('5) (G) #0.

Assume that every G’ (1 < j <s'+1) is composed of i; nontrivial components
G’J L G’] g - G’j’ of the graph obtained from G by deleting all cut edges and by
attaching at least three pendent edges at all vertices of degree atleast 3in G, i.e., G’/ =

U/, G . Then G .G’ . ....
hy(G)—1 forl < g <ij,1 < j <s'+1bythe hypothesis of Theorem 1. This means

that L2(6)—1 (G’/,q) has a hamiltonian cycle. Then Lh2(G)(G’j’q) is hamiltonian. By
Lemma 6, there exists a subgraph HJ/.,q of G’. such that H’. € EU}IZ(G)(G’, ), 1 <

A

G/j ;. are pairwise vertex-disjoint, and h(G/j =
sty s

q<ij, 1§j§s’+1.LetHj’.=U”
that Hj € EU}, (G, 1< j <5 + 1.

jq,l <j<s +1 Now, we shall show
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Since H’ s =j= s+ 1, 1 < ¢q < ij) are mutually vertex-disjoint even
subgraphs, and hence H " is also even subgraph, and (I) follows. Since VO(H ! ) -
U,>3v,(G’ Y VL)1 = =5 Uy Vot ) € Uy Upss Vi(Gh ) €

V(H’ ) then VO(H ) € Uiss V(G’) C V(H ), and (II) follows. Let B’ be
any branch w1th E(B)N E(H ) = 0. Assume that |E(B )| = h2(G) + 2, which

/
contradicts the fact that H’. ia sat1sﬁes (IIT) of the definition of EU} hy (G)(G i q), then

|E(B")| < h2(G)+1, and hence (IIT) follows. (IV) is obviously true by the hypothesis
of Theorem 1. By the fact that H; ! , satisfies (V) of the definition of EU, ;}2 ©) (G/j’ )

we have dG/ (F, H/ V(F)) = dG/ (F H/ —V(F)) < h(G) — 1 for any induced
subgraph F of H/ with ) # V(F) V(Hj) if F N HJ’.q # @, and dg (F, H//. —
’ J
V(F)) < ha(G) — 1if F N H} = @. Thus, dg: (F, H} — V(F)) < hy(G) — 1 for
’ J
any induced subgraph F of H j’ with @ # V(F) C V(H ]’.), and (V) follows. Then
Hj € EUp, (G, 1< j<s'+1.LetH = J; i H]’./. Then we shall verify that
H' satisfies the conditions (I)-(V) in the definition of E UZ;{(I;)(G).

H' is even graph since it is composed of those vertex-disjoint even subgraphs
H ]/., and (I) follows. Since H ! satisfies (II) in the definition of E U}}Z(G)(G/ ), we
have Vo(H}) € U;»3 Vi(G}) € V(H), 1 < j < '+ 1. Then U, + Vo(H}) <
US| F Uies Vi(G)) < USZ B V(HY), that is, Vo(H") € U,23 Vi(G) C V(H'), and
In follows Let B be any branch of G with E(B) N E(H') = (. Then |E(B)| <
h2(G) < ha(G) + 1, (IID) follows. (IV) is obvious by the hypothesis of Theorem 1.

By the construction of H' and H J/ satisfies (V) in the definition of EU i:z(G) (G/ ), H’
can be decomposed into 5"+ 1 pairwise vertex-disjoint subgraphs H{, H,, - - H [y
and for every j and for every induced subgraph F of H j/ with¥ # V(F) C V(H ) it
holds dg (F, H} — V(F)) < h(G) — 1. Since dg (F, H]/. — V(F)) =dg (F, H]’. —

J J
V(F)) < h2(G) — 1 for every j and the same F, H' satisfies (V). Hence, H' €
'+1
EU; 6)(G). o

(4) By Theorem 1 (2), we have that Lh2(6)-1 (G) has a 2-factor which has at least
s + 1 components. Let L"2(9~1(G) = G*, we need to prove that EUZI(G*) # .

Assume that H; is a 2-factor component of LhZ(G)_l(G), 1 <j<s+1. Let
H = Ujill H;. Then H is a 2-factor of G* since {H;, 1 < j < s + 1} is pairwise
vertex-disjoint. It is obvious that H is an even graph of G*, and (I) follows. Since
Vo(H) = @ and H is a 2-factor of G*, ) = Vo(H) C | ;-5 Vi(G*) € V(H), and (II)

1>

follows. Let B be a branch with E(B) N E(H) = @. Then3|E(B)| =1<2+1byH
is a 2-factor of G*, hence (II) follows. (IV) holds by the hypothesis of Theorem 1.
Now, we prove (V). Assume, by contradiction, that dg=(F, H — V(F)) > 2 for some
induced subgraph F of H with # # V(F) C V(H). This implies that there exists a
branch B of length at least 2 between F and H — F. Let x be the vertex of degree 2 in
B, then x € V(B) \ V(H). This contradicts the fact that H is a 2-factor of G*, hence
H satisfies (V). Therefore, H € EU21 (G*). By Lemma 6, L*>(G*) = L"(@+1(G) is
hamiltonian. O
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Proof of Theorem 2 (1) Let B € B1(G) and[(B) = h{(G). Then B becomes a branch
B’ with an end vertex of degree 1 in th(G)_l(G) and LG)-1(G), respectively.
Therefore, L' (9 ~1(G) and L"2(©)~1(G) have no 2-factor. m|

(2) Assume that the minimum number of components of 2-factors in LG (G) s
k" and let [{B € B2(G) : [(B) = ha(G) = hi(G)}| = 5"

Let G, G7, ..., G} be the components of the graph obtained from G by deleting all
edges and internal vertices of any branch in {B € Br(G) : I(B) = hy(G) = h1(G) >
2}. Then G/, G7, ..., G are pairwise vertex-disjoint, and /(B) < h(G) — 1 for any
branch B € BQ(G;() N By(G), 1 < j < t. Contracting G’j( to a vertex, the resulting
graph becomes a tree, thent = s” +1since |V (T)| = |E(T)|+1inatree T. Since any
possible 2-factor has at least one component in every L"1(%) (G’j’ ), thenk” > 5" + 1.
Next, we shall prove that k” < s” 4+ 1. According to Lemma 7, we shall prove that
EU; (G) # 0.

Assume that every G/]f (1 < j < s” + 1) comprises i; nontrivial components
G",, G, .
VA R
attaching at least three pendent edges at all vertices of degree at least 3 in G, that is,

ces G’jf’ i of the graph obtained from G by deleting all cut edges and by

G’lf = lqj:l G’/.”q. Itis obvious that G’Jfﬁl, G//'/,Z’ e G’I.’J.j are pairwise vertex-disjoint.
By the hypothesis of Theorem 2, h(G’j.”q) <h(G)forl <g<ij,1<j<s"+1
By Lemma 6, EU, (G} ) # #. We may take H/, € EUy (G} ), 1 <j <
s"+1,1<gq <ij, then HJ’.fq satisfies (I)-(V) in the definition of EU}EI(G)(G/].”q), and

HY s are mutually vertex-disjoint subgraphs. Let H = U;j=1 H  1=<j=<s"+1
Next, we shall show that H} € EU, ((G]), 1< j <s"+1.
Since H J’/ ; § are mutually vertex-disjoint even subgraphs, H J’.’ is even graph, and

0 follows. Since VO(H]’.Cq) C Uiss V,-(G/]f’q) C V(HJ’.fq), 1 < g < ij, and

i g i
UL VolH! ) € Uy Unsa Vi@l = Uiss VG € U, V!,
then VO(H,’.’) C Ui23 W(G’/.’) C V(Hj/.’), and (IT) follows. Let B’ be any branch with
E(B’)ﬂE(HJ’/) = (0. Assume that | E(B’)| > h1(G)+2, which contradicts the fact that
H]/.’,q satisfies (III) ofEU}:1 ©) (G’]f,q), then |E(B")| < h1(G)+1, and (IIT) follows. (IV)
is obvious by the hypothesis of Theorem 2. By the fact that H j/f q satisfies (V) of the def-
inition of EUill(G)(G/]{,q)’ we have dc/j/(F, H]/./ —V(F)) = dG/j/_q (F, H]/{q —V(F)) <
hi1(G) — 1 for any induced subgraph F of H]/.’ with § # V(F) C V(H]//) when
Fn H]/./q # 0, and dgn (F, Hj// — V(F)) < hi(G) — 1 when F N H]//q = (. Then

. ] .
de (F, H]’/ — V(F)) < h1(G) — 1 for any induced subgraph F of H]// with ¢ #

J
V(F) C V(H]’./), and hence (V) follows. Then H]’./ € EU,ll(G)(G/Jf), 1<j<s"+1.
Let H" = (J52}! H/. Next, we show that H” € EU; ) (G).

Since H J’.’ satisfies (I) and (IT) of the definition of EU ,11(0) (G/j’ ), it is easy to deduce
H" is even graph and Vo(H") € J;3 Vi(G) € V(H"), then (I) (IT) follow. Let B
be a branch of G with E(B) N E(H”) = §. Then |E(B)| < h2(G) < ha(G) + 1 =
h1(G) + 1, and (III) follows. It is obvious that | E(B)| < h1(G) for any branch B in
B1(G), (IV) follows.
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Now, we verify that (V) holds. By the construction of H”, H” can be decomposed
into s” + 1 pairwise vertex-disjoint subgraphs H{', Hy,---, H}, , and for every
J and for every induced subgraph F of H j// with @ # V(F) C V(H j/f ), we have
dgn (F, HJ/./ —V(F)) < h{(G) — 1 by the fact that H]/./ satisfies (V) of the definition of

J
EU}}I(G)(G/;). Furthermore, dg (F, H]’/—V(F)) =dg(F, HJ/_/_ V(F)) < hi(G)—1

J

for every j and the same F, then (V) follows. Hence, H” € EU ;;/(*Gl)(G). O

(3) According to Lemma 6, we need to prove that EU,%I(G)_H(G) # ) when
h1(G) = h2(G) = 1.Let Gy, G, ..., G4 be those nontrivial components of the graph
obtained from G by deleting all cut edges and by attaching at least three pendent edges
atall vertices of degree at least 3 in G. Then we have 7 (G;) < h1(G) by the hypothesis
of Theorem 2. It implies that L"1(@+1(G;) is hamiltonian. By Lemma 6, there exists a
subgraph H; € EU}}I(G)H(G,-),I <i <q.Then Hy, Ha,..., H; (some of these sub-
graphs maybe isolated vertices because there maybe some vertices vi’s in G such that
dg(vx) > 3 and the edges incident to vy are all cut edges) are pairwise vertex-disjoint.
LetH = Ul.q:1 H;. Then H is even graph since H; s are mutually vertex-disjoint even
subgraphs, and (I) follows. Since Vy(H;) C Ui>3 Vi(Gi) C V(H) (1 <i <q),
Ui Vo(H) € U Uizs Vi(Gi) = Ui=3 Vi(G) € UL, V(H,), then Vo(H) <
U;>3 Vi(G) € V(H), () follows. Since |E(B’)| < h1(G) + 2 for any branch B’
with E(B’) N E(H;) = @ by H; satisfies (II) in the definition of EU}}I(G)_H(GZ-),
and |[E(B")| < h2(G) = hi1(G) < h1(G) + 2 for any branch B” € B,(G), then
|E(B)| < hi{(G) + 2 for any branch B of G with E(B) N E(H) = @, and (III)
follows. (IV) follows from the fact that |E(B)| < hi1(G) < h1(G) + 1 for any
branch B in B;(G). For any induced subgraph F' of H with ¥ # V(F) C V(H),
we have dg(F, H — V(F)) = dg,(F, H, — V(F)) < h1(G) if F N H; # {0 by the
fact that H; (Here H; is the subgraph which is not an isolated vertex) satisfies (V)
of the definition of EU}L(G)H(G,-). If FNH = @, then dg(F,H — V(F)) <
h2(G) = h1(G). Thus, dg(F, H — V(F)) < h1(G) for any induced subgraph
F of H with ¥ # V(F) € V(H), and (V) follows. Then H € EU}}I(G)H(G).

O

(4) Similar to the proof of Theorem 2 (3), we shall show that E Uﬁl(c)(G) * 0
when h1(G) > ha(G) = 1. We use G (I < i < g) to denote those compo-
nents of the graph obtained from G by deleting all cut edges and by attaching at
least three pendent edges at all vertices of degree at least 3 in G. Then h(G)) <
h1(G) by the hypothesis of Theorem 2. This means that th(G)(Gg) is hamil-
tonian. By Lemma 6, EU;I(G)(G;) # . Let H € EU,}I(G)(G;), 1 <i <gq,
then Hy, Hj, ..., H, (some of these subgraphs maybe isolated vertices) are pair-
wise vertex-disjoint. Let H' = (J{_, H/. Then H’ is even graph and Vy(H') <
Ui=3 Vi(G) € V(H’) by the fact that H satisfies the conditions (I) and (II) in the
definition of EU}:I(G)(Gg), and hence (I), (I) follow. Since |E(B")| < h1(G) + 1
for any branch B” with E(B') N E(H!) = { by the fact that H/ satisfies (III)
in the definition of EU,:I(G)(G;), and |E(B")| < ha(G) < hi(G) + 1 for any
branch B” € B(G), then |[E(B)| < h1(G) + 1 for any branch B of G with
E(B) N E(H') = @, and (1) follows. (IV) is obviously true. By the fact that
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S

G* G**

Fig. 1 Condition (2) in both Theorems 1 and 2 is sharp

H! (Here H] is the subgraph which is not an isolated vertex) satisfies the con-
dition (V) in the definition of EU,}](G)(G;), we have dG;(F, H' — V(F)) <
h1(G) — 1 for every induced subgraph F of H/ with # # V(F) C V(H/). Then
dg(F,H — V(F)) = dG;(F, H! — V(F)) < hi(G) — 1 for any induced sub-
graph F of H' if F N\ H # @.1f F N H = @, then dg(F, H' — V(F)) <
h7(G) < hi(G) — 1. Thus, dg(F, H — V(F)) < h1(G) — 1 for any induced sub-
graph F of H' with @ # V(F) C V(H’), and hence (V) follows. Therefore, H’
€ EUy (6. o

4 Remark

Our results in this paper provide two classes of graphs, such that as long as they
satisfy the condition of Theorems 1 or 2, their iterated line graph has a 2-factor, and
we determine the minimum number of components of 2-factors. Note that Theorem 1
is best possible in the sense: (1) The condition 42(G) > 2 can not be replaced by
hy(G) = 1. Otherwise, we have h1(G) = h2(G) — 1 = 0. However, the graphs
satisfying the condition “A1(G) = 0, h2(G) = 17 could not reach the condition
“every nontrivial component of the graph obtained from G by deleting all cut edges
and by attaching at least three pendent edges at all vertices of degree at least 3 in G
has hamiltonian index at most > (G) — 1”. (2) The condition /27 (G) > 3 in Theorem 1
(2) can not be replaced by /,(G) < 2. This can be seen from the graph G* in Fig. 1
with /12(G*) = 2, but there is no 2-factor in L"2()=1(G*) = L(G*). In addition,
Theorem 2 is also best possible in the sense: The condition 41(G) = h2(G) > 2 in
Theorem 2 (2) can not be replaced by /1(G) = hy(G) = 1. This can be seen from
the graph G** in Fig. 1 with h1(G**) = hy(G**) = 1, but there is no 2-factor in
L(G™).
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