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Abstract It is well known that it is NP-hard to determine the minimum number of
components of a 2-factor in a graph, even for iterated line graphs. In this paper, we
determine the minimum number of components of 2-factors in iterated line graphs of
some special tree-like graphs. It extends some known results.
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1 Introduction

Throughout this paper, all graphs considered are simple and finite graphs. We follow
the most common graph-theoretical terminology and for concepts and notations not
defined here, see [1].

A 2-factor of a graph G is a spanning subgraph whose components are cycles.
In particular, a hamiltonian graph has a 2-factor with exactly one component. There
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are many results on the existence of 2-factors with a given number of components,
mainly on the existence of hamiltonian graphs, see the survey paper [5]. The line
graph L(G) of a graph G is the graph with vertex set E(G), in which two vertices
are adjacent if, and only if, the corresponding edges have a common end vertex in G.
The n-time iterated line graph Ln(G) is defined to be L(Ln−1(G)), and we assume
that E(Ln−1(G)) is not empty. The hamiltonian index of a graph G is the mini-
mum nonnegative integer n such that Ln(G) is hamiltonian, denoted by h(G), the
interested readers can consult [4]. The Hamilton-connected index of a graph G is
the minimum nonnegative integer n such that Ln(G) is Hamilton-connected, i.e., any
two vertices in Ln(G) are connected by a Hamilton path. We know that the Hamil-
ton problem, i.e., the problem to decide whether a given graph is hamiltonian, is
one of the classical NP-complete problems. In [8], the authors have proved that it
is NP-hard to determine whether Lk(G) is hamiltonian even for any large integer
k. Thus, it is also NP-hard to determine the minimum number of components of a
2-factor in Lk(G) for any large integer k. Wang and Xiong [10] provided an upper
bound of minimum number of components of 2-factors in iterated line graph. In
present paper, we consider the similar problem and determine the minimum num-
ber of components of 2-factors in iterated line graph of some special graphs. Before
presenting our main results, we first introduce some additional terminology and nota-
tion.

A branch is a nontrivial path whose internal vertices have degree two and end
vertices have degree other than two. The number of edges in a branch B is said to be
its length, denoted by l(B). We denote by B(G) the set of branches of G. Note that a
branch of length one has no internal vertex. A branch B of a graph G is called a cut-
branch if the subgraph obtained from G by deleting all edges and internal vertices of
B has more components thanG, and we denote by CB(G) the set of all cut-branches of
G. Let B2(G) = {B ∈ CB(G) : both end vertices of B have degree at least 3 in G}
and B1(G) = {B ∈ CB(G) : at least one end vertex of B has degree 1 in G}, then it
is obvious that CB(G) = B1(G) ∪ B2(G).

For i ∈ {1, 2}, define

hi (G) =
{
max{l(B):B ∈ Bi (G)}, if Bi (G) is not empty,

0, otherwise.

Now we state the main results as follows.

Theorem 1 Let G be a connected graph with h1(G) ≤ h2(G) − 1 and h2(G) ≥ 2,
such that every nontrivial component of the graph obtained from G by deleting all cut
edges and by attaching at least three pendent edges at all vertices of degree at least 3
in G has hamiltonian index at most h2(G) − 1. Then

(1) Lh2(G)−2(G) has no 2-factor;
(2) if h2(G) ≥ 3, then the minimum number of components of 2-factors in

Lh2(G)−1(G) is∣∣∣{B ∈ B2(G):l(B) ∈ {h2(G) − 1, h2(G)}}∣∣∣ + 1;
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(3) the minimum number of components of 2-factors in Lh2(G)(G) is

∣∣∣{B ∈ B2(G):l(B) = h2(G)
}∣∣∣ + 1;

(4) Lh2(G)+1(G) is hamiltonian.

Theorem 2 Let G be a connected graph with h1(G) ≥ h2(G) ≥ 1, such that every
nontrivial component of the graph obtained from G by deleting all cut edges and by
attaching at least three pendent edges at all vertices of degree at least three in G has
hamiltonian index at most h1(G). Then

(1) Lh1(G)−1(G) and Lh2(G)−1(G) have no 2-factor;
(2) if h1(G) = h2(G) ≥ 2, then the minimum number of components of 2-factors in

Lh1(G)(G) is |{B ∈ B2(G) : l(B) = h2(G)}| + 1;
(3) if h1(G) = h2(G) ≥ 1, then Lh1(G)+1(G) is hamiltonian;
(4) if h1(G) > h2(G) ≥ 1, then Lh1(G)(G) is hamiltonian.

The proofs of Theorems 1 and 2 will be given in Sect. 3.
The authors in [4] gave a formula of the hamiltonian index h(T ) for a tree T . We

shall extend the result. Eminjan and Elkin [3] gave a relation between hamiltonian
index and Hamilton-connected index of trees.

Since every nontrivial component of the graph obtained from T by deleting all
cut edges and by attaching at least three pendent edges at all vertices of degree at
least 3 in G has hamiltonian index at most h2(T ) − 1 under the condition h1(T ) ≤
h2(T ) − 1 and h2(T ) ≥ 2, which satisfies the condition of Theorem 1. Let l =
max{l(B):B ∈ B2(T )}, and B2(T ) = B(T )\B1(T ), then we consequently have the
following conclusion.

Corollary 3 Let l ≥ 2 and let T be a tree with l(B) ≤ l −1 for any B ∈ B1(T ). Then

(1) Ll−2(T ) has no 2-factor;
(2) if l ≥ 3, then the minimum number of components of 2-factors in Ll−1(T ) is

∣∣∣{B ∈ B(T ) \ B1(T ) : ∣∣E(B)∣∣ ∈ {l − 1, l}}∣∣∣ + 1;

(3) the minimum number of components of 2-factors in Ll(T ) is

∣∣∣{B ∈ B(T ) \ B1(T ) : ∣∣E(B)∣∣ = l
}∣∣∣ + 1;

(4) Ll+1(T ) is hamiltonian.

By Corollary 3 and Theorem 2, we can obtain the following result:

Corollary 4 (Chartrand and Wall [4]) If T is a tree which is not a path, then

h(T ) = max{h2(T ) + 1, h1(T )}.
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Proof By Corollary 3 (4), we have h(T ) = h2(T ) + 1 if h1(T ) ≤ h2(T ) − 1 and
h2(T ) ≥ 2. Since any tree T with h1(T ) ≥ h2(T ) ≥ 1 satisfies the condition of
Theorem2, thenwe have h(T ) ≤ h2(T )+1 if h1(T ) = h2(T ) ≥ 1, and h(T ) ≤ h1(T )
if h1(T ) > h2(T ) ≥ 1 by (3) and (4) of Theorem 2. Again by Theorem 2 (1),
h(T ) > h1(T ) − 1 and h(T ) > h2(T ) − 1. Above all, we can obtain h(T ) =
max{h2(T ) + 1, h1(T )}. ��

2 Preliminaries and Notations

As noted in the first section, for graph-theoretic notation not explained in this paper,
we refer readers to [1]. Let G = (V (G), E(G)) be a graph with vertex set V (G)

and edge set E(G). For a nonnegative integer k, we define Vk(G) by Vk(G) = {x ∈
V (G) : dG(x) = k}, where dG(x) is the degree of x in G. Given two subgraphs G1
and G2, we define the distance dG(G1,G2) between G1 and G2 by dG(G1,G2) =
min{dG(x1, x2) : x1 ∈ V (G1), x2 ∈ V (G2)}. For subgraphs G1, G2, . . . ,Gk , their
union G1 ∪ G2 ∪ · · · ∪ Gk is the graph whose vertex set and edge set are V (G1) ∪
V (G2)∪· · ·∪V (Gk) and E(G1)∪E(G2)∪· · ·∪E(Gk), respectively. For S ⊆ V (G),
we denote by G[S] the subgraph of G induced by S.

A circuit is a connected graph with at least three vertices in which every vertex
has even degree. A set of vertices S is said to dominate G if each edge of G has at
least one end vertex in S. A circuit of G is called a dominating circuit of G if every
edge of G either belongs to the circuit or is adjacent to an edge of the circuit. For a
graph G of order at least three, its subgraph H is called a k-system that dominates if
it comprises k edge-disjoint stars (K (1, s), s ≥ 3) and circuits, such that each edge of
G is either contained in one of the circuits or stars, or is adjacent to one of the circuits.
Harary and Nash-Williams [7] showed that for a connected graph G with at least
three edges, L(G) has a hamiltonian cycle if and only if G has a dominating circuit.
This characterization has been widely employed to study the properties of cycles in
line graphs and iterated line graphs, see [2]. In 1999, Gould and Hynds presented a
necessary and sufficient condition for the line graph L(G) of a graph G that has a
2-factor with exactly k components.

Lemma 5 (Gould and Hynds [6]) Let G be a graph such that each component of G
has at least three edges. Then L(G) has a 2-factor with exactly k components if and
only if G has a k-system that dominates.

We let EUk
n (G) denote the set of subgraphs H of G satisfying the following five

conditions:

(I) H is an even graph;
(II) V0(H) ⊆ ⋃

i≥3
Vi (G) ⊆ V (H);

(III) |E(B)| ≤ n + 1 for any branch B with E(B) ∩ E(H) = ∅;
(IV) |E(B)| ≤ n for any branch B in B1(G);
(V) H can be decomposed into at most k pairwise vertex-disjoint subgraphs

H1, . . . , Ht (t ≤ k) such that for every j and for every induced subgraph F
of Hj with ∅ �= V (F) � V (Hj ), it holds dG(F, Hj − V (F)) ≤ n − 1.
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In [11], Xiong and Liu considered iterated line graphs and gave a characterization
of the graphs G for which Ln(G) is hamiltonian for n ≥ 2, which has been used to
study the hamiltonian index. We state it as follows.

Lemma 6 (Xiong and Liu [11]) Let G be a connected graph with at least three edges.
Then for n ≥ 2, Ln(G) is hamiltonian if and only if EU1

n (G) �= ∅.
Saito and Xiong in [9] showed that the following result, which extends Lemma 6.

Lemma 7 (Saito and Xiong [9]) Let G be a connected graph with at least three edges
and let k be a positive integer. Then for n ≥ 2, Ln(G) has a 2-factor with at most k
components if and only if EUk

n (G) �= ∅.
Next, we provide the proofs of Theorem 1 and Theorem 2.

3 Proofs of Main Results

Proof of Theorem 1 (1) Let B ∈ B2(G) and l(B) = h2(G).Then B becomes a branch
B ′ of length 2 in Lh2(G)−2(G),whose end vertices belong to two distinct components.
Let u be the vertex of degree 2 in B ′, then u does not belong to any 2-factor component
of Lh2(G)−2(G). Thus, Lh2(G)−2(G) has no 2-factor. ��

(2) Assume that the minimum number of components of 2-factors in Lh2(G)−1(G)

is k and let
∣∣{B ∈ B2(G) : l(B) ∈ {h2(G) − 1, h2(G)}}∣∣ = s.

LetG1,G2, . . . ,Gt be the components of the graph obtained fromG by deleting all
edges and inner vertices of any branch in

{
B ∈ B2(G) : l(B) ∈ {h2(G)−1, h2(G)}}.

It is obvious that G1,G2, . . . ,Gt are pairwise vertex-disjoint and l(B) ≤ h2(G) − 2
for any branch B ∈ B2(G j ) ∩ B2(G), 1 ≤ j ≤ t. Contracting G j to a vertex, the
resulting graph becomes a tree, then t = s + 1 since |V (T )| = |E(T )| + 1 in a tree
T . Since any possible 2-factor has at least one component in every Lh2(G)−1(G j ),

then k ≥ s + 1. Now we verify that k ≤ s + 1. By Lemma 7, we need to prove that
EUs+1

h2(G)−1(G) �= ∅.
Assume that every G j (1 ≤ j ≤ s + 1) is composed of i j nontrivial components

G j,1, G j,2, . . . ,G j,i j of the graph obtained from G by deleting all cut edges and
by attaching at least three pendent edges at all vertices of degree at least 3 in G,

i.e., G j = ⋃i j
k=1 G j, k . Then G j,1,G j,2, . . . ,G j,i j are pairwise vertex-disjoint and

h(G j,k) ≤ h2(G)− 1 for 1 ≤ k ≤ i j , 1 ≤ j ≤ s + 1 by the hypothesis of Theorem 1.
By Lemma 6, EU 1

h2(G)−1(G j,k) �= ∅. Suppose Hj,k ∈ EU 1
h2(G)−1(G j,k), 1 ≤ j ≤

s + 1, 1 ≤ k ≤ i j . Then Hj,k satisfies (I)-(V) in the definition of EU 1
h2(G)−1(G j,k),

and Hj,1, Hj,2, . . . , Hj,i j are pairwise vertex-disjoint. Let Hj = ⋃i j
k=1 Hj,k, 1 ≤

j ≤ s + 1. Next, we verify that Hj ∈ EU 1
h2(G)−1(G j ), 1 ≤ j ≤ s + 1.

Since Hj,k is even graph and Hj,k
,s are mutually vertex-disjoint subgraphs, then

Hj is even graph, and (I) follows. Since V0(Hj,k) ⊆ ⋃
i≥3 Vi (G j,k) ⊆ V (Hj,k), 1 ≤

k ≤ i j ,
⋃i j

k=1 V0(Hj,k) ⊆ ⋃i j
k=1

⋃
i≥3 Vi (G j,k) ⊆ ⋃i j

k=1 V (Hj,k), then V0(Hj ) ⊆⋃
i≥3 Vi (G j ) ⊆ V (Hj ), and (II) follows. Let B ′ be any branchwith E(B ′)∩E(Hj ) =

∅. Assume that |E(B ′)| ≥ h2(G) + 1, which contradicts that Hj,k satisfies (III) of
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the definition of EU 1
h2(G)−1(G j,k), then |E(B ′)| ≤ h2(G), and (III) follows. By the

hypothesis of Theorem 1, we have |E(B ′′)| ≤ h2(G)−1 for any branch B ′′ ∈ B1(G j ),
and (IV) follows. For any induced subgraph F of Hj with ∅ �= V (F) � V (Hj ). If
F ∩ Hj,k �= ∅, then dG j (F, Hj − V (F)) = dG j,k (F, Hj,k − V (F)) ≤ h2(G) − 2 by
the fact that Hj,k satisfies (V) in the definition of EU 1

h2(G)−1(G j,k). If F ∩ Hj,k = ∅,
then dG j (F, Hj − V (F)) ≤ h2(G) − 2. Thus, dG j (F, Hj − V (F)) ≤ h2(G) − 2
for any induced subgraph F of Hj with ∅ �= V (F) � V (Hj ), and (V) follows.
Then Hj ∈ EU 1

h2(G)−1(G j ), 1 ≤ j ≤ s + 1. Then Hj satisfies (I)-(V) in the

definition of EU 1
h2(G)−1(G j ), and H1, H2, . . . , Hs+1 are pairwise vertex-disjoint. Let

H = ⋃s+1
j=1 Hj . Then we shall prove H ∈ EUs+1

h2(G)−1(G), i.e., we shall show that H
satisfies the conditions (I)-(V) for n = h2(G) − 1 and k = s + 1 in Lemma 7.

Since Hj is even graph and disjoint union of even graphs is still even graph, H
is even graph, and (I) follows. Further, V0(Hj ) ⊆ ⋃

i≥3 Vi (G j ) ⊆ V (Hj ), 1 ≤
j ≤ s + 1,

⋃s+1
j=1 V0(Hj ) ⊆ ⋃s+1

j=1
⋃

i≥3 Vi (G j ) ⊆ ⋃s+1
j=1 V (Hj ), then V0(H) ⊆⋃

i≥3 Vi (G) ⊆ V (H), and (II) follows.Let B be abranchofGwith E(B)∩E(H) = ∅.
Assume that |E(B)| ≥ h2(G) + 1, which contradicts h2(G) = max{l(B) : B ∈
B2(G)}, hence (III) follows. (IV) is obvious by the hypothesis of Theorem 1.

Next, we verify that H satisfies (V). By the construction of H , H can be decom-
posed into s + 1 pairwise vertex-disjoint subgraphs H1, H2, . . . , Hs+1, and for every
j and for every induced subgraph F of Hj with ∅ �= V (F) � V (Hj ), we have
dG j (F, Hj − V (F)) ≤ h2(G) − 2 by the condition (V) of EU 1

h2(G)−1(G j ). Further-
more, dG(F, Hj − V (F)) = dG j (F, Hj − V (F)) ≤ h2(G) − 2 for every j and the

same F , then (V) follows. Hence, H ∈ EUs+1
h2(G)−1(G). Therefore, k = s + 1. ��

(3) The proof is similar to the proof of (2). Assume that the minimum number of
components of 2-factors in Lh2(G)(G) is k′ and let

∣∣{B ∈ B2(G) : l(B) = h2(G)
}∣∣ =

s′.
Let G ′

1,G
′
2, . . . ,G

′
t be the components of the graph obtained from G by deleting

all edges and inner vertices of any branch in
{
B ∈ B2(G) : l(B) = h2(G)

}
, then

G ′
1,G

′
2, . . . ,G

′
t are pairwise vertex-disjoint and l(B) ≤ h2(G) − 1 for any branch

B ∈ B2(G ′
j ) ∩ B2(G), 1 ≤ j ≤ t. Contracting G ′

j to a vertex, the resulting graph
becomes a tree, then t = s′+1. Since any possible 2-factor has at least one component
in every Lh2(G)(G ′

j ), then k
′ ≥ s′+1. It remains to verify that k′ ≤ s′+1.ByLemma7,

we need to prove that EUs′+1
h2(G)(G) �= ∅.

Assume that every G ′
j (1 ≤ j ≤ s′ + 1) is composed of i j nontrivial components

G ′
j,1, G ′

j,2, . . . , G ′
j,i j

of the graph obtained from G by deleting all cut edges and by

attaching at least three pendent edges at all vertices of degree at least 3 inG, i.e.,G ′
j =⋃i j

q=1 G
′
j, q . Then G ′

j,1,G
′
j,2, . . . ,G

′
j,i j

are pairwise vertex-disjoint, and h(G ′
j,q) ≤

h2(G)−1 for 1 ≤ q ≤ i j , 1 ≤ j ≤ s′+1 by the hypothesis of Theorem 1. This means
that Lh2(G)−1(G ′

j,q) has a hamiltonian cycle. Then Lh2(G)(G ′
j,q) is hamiltonian. By

Lemma 6, there exists a subgraph H ′
j,q of G

′
j,q such that H

′
j,q ∈ EU 1

h2(G)(G
′
j,q), 1 ≤

q ≤ i j , 1 ≤ j ≤ s′ + 1. Let H ′
j = ⋃i j

q=1 H
′
j,q , 1 ≤ j ≤ s′ + 1. Now, we shall show

that H ′
j ∈ EU 1

h2(G)(G
′
j ), 1 ≤ j ≤ s′ + 1.
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Since H ′
j,q

,s (1 ≤ j ≤ s′ + 1, 1 ≤ q ≤ i j ) are mutually vertex-disjoint even
subgraphs, and hence H ′

j is also even subgraph, and (I) follows. Since V0(H ′
j,q) ⊆⋃

i≥3 Vi (G
′
j,q) ⊆ V (H ′

j,q), 1 ≤ q ≤ i j ,
⋃i j

q=1 V0(H
′
j,q) ⊆ ⋃i j

q=1

⋃
i≥3 Vi (G

′
j,q) ⊆⋃i j

q=1 V (H ′
j,q), then V0(H ′

j ) ⊆ ⋃
i≥3 Vi (G

′
j ) ⊆ V (H ′

j ), and (II) follows. Let B ′ be
any branch with E(B ′) ∩ E(H ′

j ) = ∅. Assume that |E(B ′)| ≥ h2(G) + 2, which

contradicts the fact that H ′
j,q satisfies (III) of the definition of EU 1

h2(G)(G
′
j,q), then

|E(B ′)| ≤ h2(G)+1, and hence (III) follows. (IV) is obviously true by the hypothesis
of Theorem 1. By the fact that H ′

j,q satisfies (V) of the definition of EU 1
h2(G)(G

′
j,q),

we have dG ′
j
(F, H ′

j −V (F)) = dG ′
j,q
(F, H ′

j,q −V (F)) ≤ h2(G)−1 for any induced

subgraph F of H ′
j with ∅ �= V (F) � V (H ′

j ) if F ∩ H ′
j,q �= ∅, and dG ′

j
(F, H ′

j −
V (F)) ≤ h2(G) − 1 if F ∩ H ′

j,q = ∅. Thus, dG ′
j
(F, H ′

j − V (F)) ≤ h2(G) − 1 for

any induced subgraph F of H ′
j with ∅ �= V (F) � V (H ′

j ), and (V) follows. Then

H ′
j ∈ EU 1

h2(G)(G
′
j ), 1 ≤ j ≤ s′ + 1. Let H ′ = ⋃s′+1

j=1 H ′
j . Then we shall verify that

H ′ satisfies the conditions (I)-(V) in the definition of EUs′+1
h2(G)(G).

H ′ is even graph since it is composed of those vertex-disjoint even subgraphs
H ′

j , and (I) follows. Since H ′
j satisfies (II) in the definition of EU 1

h2(G)(G
′
j ), we

have V0(H ′
j ) ⊆ ⋃

i≥3 Vi (G
′
j ) ⊆ V (H ′

j ), 1 ≤ j ≤ s′ + 1. Then
⋃s′+1

j=1 V0(H ′
j ) ⊆⋃s′+1

j=1
⋃

i≥3 Vi (G
′
j ) ⊆ ⋃s′+1

j=1 V (H ′
j ), that is, V0(H

′) ⊆ ⋃
i≥3 Vi (G) ⊆ V (H ′), and

(II) follows. Let B be any branch of G with E(B) ∩ E(H ′) = ∅. Then |E(B)| ≤
h2(G) ≤ h2(G) + 1, (III) follows. (IV) is obvious by the hypothesis of Theorem 1.

By the construction of H ′ and H ′
j satisfies (V) in the definition of EU

1
h2(G)(G

′
j ), H ′

can be decomposed into s′+1 pairwise vertex-disjoint subgraphs H ′
1, H

′
2, · · · , H ′

s′+1,

and for every j and for every induced subgraph F of H ′
j with ∅ �= V (F) � V (H ′

j ), it
holds dG ′

j
(F, H ′

j − V (F)) ≤ h2(G) − 1. Since dG(F, H ′
j − V (F)) = dG ′

j
(F, H ′

j −
V (F)) ≤ h2(G) − 1 for every j and the same F , H ′ satisfies (V). Hence, H ′ ∈
EUs′+1

h2(G)(G). ��
(4) By Theorem 1 (2), we have that Lh2(G)−1(G) has a 2-factor which has at least

s + 1 components. Let Lh2(G)−1(G) = G∗, we need to prove that EU 1
2 (G

∗) �= ∅.
Assume that Hj is a 2-factor component of Lh2(G)−1(G), 1 ≤ j ≤ s + 1. Let

H = ⋃s+1
j=1 Hj . Then H is a 2-factor of G∗ since {Hj , 1 ≤ j ≤ s + 1} is pairwise

vertex-disjoint. It is obvious that H is an even graph of G∗, and (I) follows. Since
V0(H) = ∅ and H is a 2-factor of G∗, ∅ = V0(H) ⊆ ⋃

i≥3 Vi (G
∗) ⊆ V (H), and (II)

follows. Let B be a branch with E(B)∩ E(H) = ∅. Then |E(B)| = 1 ≤ 2+ 1 by H
is a 2-factor of G∗, hence (III) follows. (IV) holds by the hypothesis of Theorem 1.
Now, we prove (V). Assume, by contradiction, that dG∗(F, H − V(F)) ≥ 2 for some
induced subgraph F of H with ∅ �= V(F) � V(H). This implies that there exists a
branch B of length at least 2 between F and H − F . Let x be the vertex of degree 2 in
B, then x ∈ V (B) \ V (H). This contradicts the fact that H is a 2-factor of G∗, hence
H satisfies (V). Therefore, H ∈ EU 1

2 (G
∗). By Lemma 6, L2(G∗) = Lh2(G)+1(G) is

hamiltonian. ��
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Proof of Theorem 2 (1) Let B ∈ B1(G) and l(B) = h1(G).Then B becomes a branch
B ′ with an end vertex of degree 1 in Lh1(G)−1(G) and Lh2(G)−1(G), respectively.
Therefore, Lh1(G)−1(G) and Lh2(G)−1(G) have no 2-factor. ��

(2) Assume that the minimum number of components of 2-factors in Lh1(G)(G) is
k′′ and let

∣∣{B ∈ B2(G) : l(B) = h2(G) = h1(G)}∣∣ = s′′.
LetG ′′

1,G
′′
2, . . . ,G

′′
t be the components of the graph obtained fromG by deleting all

edges and internal vertices of any branch in
{
B ∈ B2(G) : l(B) = h2(G) = h1(G) ≥

2
}
. Then G ′′

1,G
′′
2, . . . ,G

′′
t are pairwise vertex-disjoint, and l(B) ≤ h1(G)− 1 for any

branch B ∈ B2(G ′′
j ) ∩ B2(G), 1 ≤ j ≤ t. Contracting G ′′

j to a vertex, the resulting
graph becomes a tree, then t = s′′+1 since |V (T )| = |E(T )|+1 in a tree T . Since any
possible 2-factor has at least one component in every Lh1(G)(G ′′

j ), then k′′ ≥ s′′ + 1.
Next, we shall prove that k′′ ≤ s′′ + 1. According to Lemma 7, we shall prove that
EUs′′+1

h1(G)(G) �= ∅.
Assume that every G ′′

j (1 ≤ j ≤ s′′ + 1) comprises i j nontrivial components
G ′′

j,1, G ′′
j,2, . . . , G ′′

j,i j
of the graph obtained from G by deleting all cut edges and by

attaching at least three pendent edges at all vertices of degree at least 3 in G, that is,

G ′′
j = ⋃i j

q=1 G
′′
j,q . It is obvious thatG

′′
j,1,G

′′
j,2, . . . ,G

′′
j,i j

are pairwise vertex-disjoint.

By the hypothesis of Theorem 2, h(G ′′
j,q) ≤ h1(G) for 1 ≤ q ≤ i j , 1 ≤ j ≤ s′′ + 1.

By Lemma 6, EU 1
h1(G)(G

′′
j,q) �= ∅. We may take H ′′

j,q ∈ EU 1
h1(G)(G

′′
j,q), 1 ≤ j ≤

s′′ +1, 1 ≤ q ≤ i j , then H ′′
j,q satisfies (I)-(V) in the definition of EU

1
h1(G)(G

′′
j,q), and

H ′′
j,q

,s are mutually vertex-disjoint subgraphs. Let H ′′
j = ⋃i j

q=1 H
′′
j,q , 1 ≤ j ≤ s′′+1.

Next, we shall show that H ′′
j ∈ EU 1

h1(G)(G
′′
j ), 1 ≤ j ≤ s′′ + 1.

Since H ′′
j,q

,s are mutually vertex-disjoint even subgraphs, H ′′
j is even graph, and

(I) follows. Since V0(H ′′
j,q) ⊆ ⋃

i≥3 Vi (G
′′
j,q) ⊆ V (H ′′

j,q), 1 ≤ q ≤ i j , and⋃i j
q=1 V0(H

′′
j,q) ⊆ ⋃i j

q=1

⋃
i≥3 Vi (G

′′
j,q) = ⋃

i≥3 Vi (G
′′
j ) ⊆ ⋃i j

q=1 V (H ′′
j,q),

then V0(H ′′
j ) ⊆ ⋃

i≥3 Vi (G
′′
j ) ⊆ V (H ′′

j ), and (II) follows. Let B ′ be any branch with
E(B ′)∩E(H ′′

j ) = ∅.Assume that |E(B ′)| ≥ h1(G)+2,which contradicts the fact that

H ′′
j,q satisfies (III) of EU

1
h1(G)(G

′′
j,q), then |E(B ′)| ≤ h1(G)+1, and (III) follows. (IV)

is obvious by the hypothesis of Theorem 2. By the fact that H ′′
j,q satisfies (V) of the def-

inition of EU 1
h1(G)(G

′′
j,q), we have dG ′′

j
(F, H ′′

j − V (F)) = dG ′′
j,q
(F, H ′′

j,q − V (F)) ≤
h1(G) − 1 for any induced subgraph F of H ′′

j with ∅ �= V (F) � V (H ′′
j ) when

F ∩ H ′′
j,q �= ∅, and dG ′′

j
(F, H ′′

j − V (F)) ≤ h1(G) − 1 when F ∩ H ′′
j,q = ∅. Then

dG ′′
j
(F, H ′′

j − V (F)) ≤ h1(G) − 1 for any induced subgraph F of H ′′
j with ∅ �=

V (F) � V (H ′′
j ), and hence (V) follows. Then H ′′

j ∈ EU 1
h1(G)(G

′′
j ), 1 ≤ j ≤ s′′ + 1.

Let H ′′ = ⋃s′′+1
j=1 H ′′

j . Next, we show that H ′′ ∈ EUs′′+1
h1(G)(G).

Since H ′′
j satisfies (I) and (II) of the definition of EU

1
h1(G)(G

′′
j ), it is easy to deduce

H ′′ is even graph and V0(H ′′) ⊆ ⋃
i≥3 Vi (G) ⊆ V (H ′′), then (I) (II) follow. Let B

be a branch of G with E(B) ∩ E(H ′′) = ∅. Then |E(B)| ≤ h2(G) ≤ h2(G) + 1 =
h1(G) + 1, and (III) follows. It is obvious that |E(B)| ≤ h1(G) for any branch B in
B1(G), (IV) follows.
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Now, we verify that (V) holds. By the construction of H ′′, H ′′ can be decomposed
into s′′ + 1 pairwise vertex-disjoint subgraphs H ′′

1 , H
′′
2 , · · · , H ′′

s′′+1, and for every
j and for every induced subgraph F of H ′′

j with ∅ �= V (F) � V (H ′′
j ), we have

dG ′′
j
(F, H ′′

j −V (F)) ≤ h1(G)−1 by the fact that H ′′
j satisfies (V) of the definition of

EU 1
h1(G)(G

′′
j ). Furthermore, dG(F, H ′′

j −V (F)) = dG ′′
j
(F, H ′′

j −V (F)) ≤ h1(G)−1

for every j and the same F , then (V) follows. Hence, H ′′ ∈ EUs′′+1
h1(G)(G). ��

(3) According to Lemma 6, we need to prove that EU 1
h1(G)+1(G) �= ∅ when

h1(G) = h2(G) ≥ 1. LetG1,G2, . . . ,Gq be those nontrivial components of the graph
obtained fromG by deleting all cut edges and by attaching at least three pendent edges
at all vertices of degree at least 3 inG. Thenwe have h(Gi ) ≤ h1(G) by the hypothesis
of Theorem 2. It implies that Lh1(G)+1(Gi ) is hamiltonian. By Lemma 6, there exists a
subgraph Hi ∈ EU 1

h1(G)+1(Gi ), 1 ≤ i ≤ q. Then H1, H2, . . . , Hq (someof these sub-
graphs maybe isolated vertices because there maybe some vertices vk ,s in G such that
dG(vk) ≥ 3 and the edges incident to vk are all cut edges) are pairwise vertex-disjoint.
Let H = ⋃q

i=1 Hi . Then H is even graph since Hi
,s are mutually vertex-disjoint even

subgraphs, and (I) follows. Since V0(Hi ) ⊆ ⋃
i≥3 Vi (Gi ) ⊆ V (Hi ) (1 ≤ i ≤ q),⋃q

i=1 V0(Hi ) ⊆ ⋃q
i=1

⋃
i≥3 Vi (Gi ) = ⋃

i≥3 Vi (G) ⊆ ⋃q
i=1 V (Hi ), then V0(H) ⊆⋃

i≥3 Vi (G) ⊆ V (H), (II) follows. Since |E(B ′)| ≤ h1(G) + 2 for any branch B ′
with E(B ′) ∩ E(Hi ) = ∅ by Hi satisfies (III) in the definition of EU 1

h1(G)+1(Gi ),

and |E(B ′′)| ≤ h2(G) = h1(G) ≤ h1(G) + 2 for any branch B ′′ ∈ B2(G), then
|E(B)| ≤ h1(G) + 2 for any branch B of G with E(B) ∩ E(H) = ∅, and (III)
follows. (IV) follows from the fact that |E(B)| ≤ h1(G) ≤ h1(G) + 1 for any
branch B in B1(G). For any induced subgraph F of H with ∅ �= V (F) � V (H),

we have dG(F, H − V (F)) = dGi (F, Hi − V (F)) ≤ h1(G) if F ∩ Hi �= ∅ by the
fact that Hi (Here Hi is the subgraph which is not an isolated vertex) satisfies (V)
of the definition of EU 1

h1(G)+1(Gi ). If F ∩ Hi = ∅, then dG(F, H − V (F)) ≤
h2(G) = h1(G). Thus, dG(F, H − V (F)) ≤ h1(G) for any induced subgraph
F of H with ∅ �= V (F) � V (H), and (V) follows. Then H ∈ EU1

h1(G)+1(G).

��
(4) Similar to the proof of Theorem 2 (3), we shall show that EU 1

h1(G)(G) �= ∅
when h1(G) > h2(G) ≥ 1. We use G ′

i (1 ≤ i ≤ q) to denote those compo-
nents of the graph obtained from G by deleting all cut edges and by attaching at
least three pendent edges at all vertices of degree at least 3 in G. Then h(G ′

i ) ≤
h1(G) by the hypothesis of Theorem 2. This means that Lh1(G)(G ′

i ) is hamil-
tonian. By Lemma 6, EU 1

h1(G)(G
′
i ) �= ∅. Let H ′

i ∈ EU 1
h1(G)(G

′
i ), 1 ≤ i ≤ q,

then H ′
1, H ′

2, . . . , H
′
q (some of these subgraphs maybe isolated vertices) are pair-

wise vertex-disjoint. Let H ′ = ⋃q
i=1 H

′
i . Then H ′ is even graph and V0(H ′) ⊆⋃

i≥3 Vi (G) ⊆ V (H ′) by the fact that H ′
i satisfies the conditions (I) and (II) in the

definition of EU 1
h1(G)(G

′
i ), and hence (I), (II) follow. Since |E(B ′)| ≤ h1(G) + 1

for any branch B ′ with E(B ′) ∩ E(H ′
i ) = ∅ by the fact that H ′

i satisfies (III)
in the definition of EU 1

h1(G)(G
′
i ), and |E(B ′′)| ≤ h2(G) < h1(G) + 1 for any

branch B ′′ ∈ B2(G), then |E(B)| ≤ h1(G) + 1 for any branch B of G with
E(B) ∩ E(H ′) = ∅, and (III) follows. (IV) is obviously true. By the fact that
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G* G**

Fig. 1 Condition (2) in both Theorems 1 and 2 is sharp

H ′
i (Here H ′

i is the subgraph which is not an isolated vertex) satisfies the con-
dition (V) in the definition of EU 1

h1(G)(G
′
i ), we have dG ′

i
(F, H ′

i − V (F)) ≤
h1(G) − 1 for every induced subgraph F of H ′

i with ∅ �= V (F) � V (H ′
i ). Then

dG(F, H ′ − V (F)) = dG ′
i
(F, H ′

i − V (F)) ≤ h1(G) − 1 for any induced sub-
graph F of H ′ if F ∩ H ′

i �= ∅. If F ∩ H ′
i = ∅, then dG(F, H ′ − V (F)) ≤

h2(G) ≤ h1(G) − 1. Thus, dG(F, H ′ − V (F)) ≤ h1(G) − 1 for any induced sub-
graph F of H ′ with ∅ �= V (F) � V (H ′), and hence (V) follows. Therefore, H ′
∈ EU 1

h1(G)(G). ��

4 Remark

Our results in this paper provide two classes of graphs, such that as long as they
satisfy the condition of Theorems 1 or 2, their iterated line graph has a 2-factor, and
we determine the minimum number of components of 2-factors. Note that Theorem 1
is best possible in the sense: (1) The condition h2(G) ≥ 2 can not be replaced by
h2(G) = 1. Otherwise, we have h1(G) = h2(G) − 1 = 0. However, the graphs
satisfying the condition “h1(G) = 0, h2(G) = 1” could not reach the condition
“every nontrivial component of the graph obtained from G by deleting all cut edges
and by attaching at least three pendent edges at all vertices of degree at least 3 in G
has hamiltonian index at most h2(G)−1”. (2) The condition h2(G) ≥ 3 in Theorem 1
(2) can not be replaced by h2(G) ≤ 2. This can be seen from the graph G∗ in Fig. 1
with h2(G∗) = 2, but there is no 2-factor in Lh2(G∗)−1(G∗) = L(G∗). In addition,
Theorem 2 is also best possible in the sense: The condition h1(G) = h2(G) ≥ 2 in
Theorem 2 (2) can not be replaced by h1(G) = h2(G) = 1. This can be seen from
the graph G∗∗ in Fig. 1 with h1(G∗∗) = h2(G∗∗) = 1, but there is no 2-factor in
L(G∗∗).
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