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Abstract Under new conditions on Banach algebra elements a and b, we derive
explicit expressions for the generalized Drazin inverse of the sum a + b. As an appli-
cation of our results, we present new representations for the generalizedDrazin inverse
of a block matrix in a Banach algebra.
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1 Introduction

Let A be a complex unital Banach algebra with unit 1. The sets of all invertible,
nilpotent, and quasinilpotent elements ofA will be denoted byA−1,Anil , andAqnil ,
respectively.

Let us recall that the generalized Drazin inverse of a ∈ A (or Koliha–Drazin inverse
of a [9]) is the unique element ad ∈ A which satisfies

adaad = ad , aad = ada, a − a2ad ∈ Aqnil .

We use aπ = 1 − aad to denote the spectral idempotent of a corresponding to the
set {0}. Notice that, if a ∈ Aqnil , then ad = 0. The set Ad consists of all generalized
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1466 D. Mosić

Drazin invertible elements of A. If a − a2ad ∈ Anil in the above definition, then
ad = aD is ordinary Drazin inverse. The group inverse is a special case of the Drazin
inverse for which a = aada instead of a − a2ad ∈ Anil . We use a# to denote the
group inverse of a, and A# to denote the set of all group invertible elements of A.

The next auxiliary result, which is proved in [7, Lemma 2.1] for bounded linear
operators, has been extended to Banach algebra elements in [4].

Lemma 1.1 [4, Lemma 2.1] Let a, b ∈ Aqnil . If ab = ba or ab = 0, then a + b ∈
Aqnil .

Let p = p2 ∈ A be an idempotent. Then we can represent element a ∈ A as

a =
[
a11 a12
a21 a22

]
,

where a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, and a22 = (1 − p)a(1 − p).
If a ∈ Ad , we can write

a =
[
a1 0
0 a2

]

relative to p = aad , where a1 ∈ (pAp)−1 and a2 ∈ ((1− p)A(1− p))qnil . Then the
generalized Drazin inverse of a can be expressed as

ad =
[
ad 0
0 0

]
=

[
a−1
1 0
0 0

]
.

We use the following lemma.

Lemma 1.2 [2, Theorem 2.3] Let x =
[
a 0
c b

]
∈ A relative to the idempotent p ∈ A

and let y =
[
b c
0 a

]
∈ A relative to the idempotent 1 − p.

(i) If a ∈ (pAp)d and b ∈ ((1 − p)A(1 − p))d , then x, y ∈ Ad and

xd =
[
ad 0
u bd

]
, yd =

[
bd u
0 ad

]
,

where

u =
∞∑
n=0

(bd)n+2canaπ +
∞∑
n=0

bπbnc(ad)n+2 − bdcad .

(ii) If x ∈ Ad and a ∈ (pAp)d , then b ∈ ((1 − p)A(1 − p))d and xd is given as in
part (i).
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Additive Results for the Generalized... 1467

In this paper, we studied additive properties of the generalized Drazin inverse in
a Banach algebra. Precisely, we find explicit formulae for the generalized Drazin
inverse (a + b)d in the cases that ab = bπbabπ or ab = aπbπbabπ . Applying these
expressions, some representations for the generalized Drazin inverse of a block matrix
are presented.

2 Main Results

We start with an important special case of our main theorem.

Theorem 2.1 If a ∈ Aqnil , b ∈ Ad , and ab = bπbabπ , then a + b ∈ Ad and

(a + b)d =
∞∑
n=0

(bd)n+1an . (1)

Proof If b ∈ Aqnil , by bπ = 1 and ab = bπbabπ , we get ab = ba. Applying Lemma
1.1, a + b ∈ Aqnil and the formula (1) is satisfied.

Suppose that b /∈ Aqnil . Then, relative to p = bbd , we have the following repre-
sentations of b and a:

b =
[
b1 0
0 b2

]
and a =

[
a1 a2
a3 a4

]
,

where b1 ∈ (pAp)−1 and b2 ∈ ((1 − p)A(1 − p))qnil . So

bd =
[
b−1
1 0
0 0

]
and bπ =

[
0 0
0 1 − p

]
.

The equalities

[
a1b1 a2b2
a3b1 a4b2

]
= ab = bπbabπ =

[
0 0
0 b2a4

]

imply a1b1 = 0, a2b2 = 0, a3b1 = 0, and a4b2 = b2a4. Because b1 is invertible,
a1 = 0 and a3 = 0. Now, since a ∈ Aqnil , a4 ∈ ((1 − p)A(1 − p))qnil . By Lemma
1.1, a4 + b2 ∈ ((1 − p)A(1 − p))qnil and (a4 + b2)d = 0.

Using Lemma 1.2, a2b2 = 0 and a4b2 = b2a4, we conclude that a + b ∈ Ad and

(a + b)d =
[
b1 a2
0 a4 + b2

]d
=

⎡
⎣b−1

1

∞∑
n=0

b−(n+2)
1 a2an4

0 0

⎤
⎦

= bd +
∞∑
n=0

(bd)n+2an+1 =
∞∑
n=0

(bd)n+1an .

��
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Castro-González and Koliha obtained the formula (1) for (a + b)d in [2, Corol-
lary 3.4] when ab = 0 instead of ab = bπbabπ in Theorem 2.1.

Notice that the conditions ab = 0 and ab = bπbabπ are independent, but in the
both cases we obtain the same expressions for (a + b)d . In the first example, we have
that the condition ab = 0 holds, but the condition ab = bπbabπ is not satisfied.

Example 2.1 LetA be the algebra of all complex 3×3 matrices and let a, b ∈ A such
that

a =
⎡
⎣0 1 0
0 0 0
0 0 0

⎤
⎦ , b =

⎡
⎣0 0 0
0 0 0
1 0 0

⎤
⎦ .

Thus, ab = 0. From b2 = 0, we have bπ = 1 and

bπbabπ = ba =
⎡
⎣0 0 0
0 0 0
0 1 0

⎤
⎦ �= ab.

In the second example, we consider matrices a and b in the algebraA of all complex
3 × 3 matrices such that ab = bπbabπ is satisfied but ab = 0 does not hold.

Example 2.2 LetA be the algebra of all complex 3×3 matrices and let a, b ∈ A such
that

a = b =
⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦ .

Then

a2 =
⎡
⎣0 0 1
0 0 0
0 0 0

⎤
⎦

and a3 = 0 implying ad = 0 and aπ = 1. Hence, 0 �= ab = a2 = aπa2aπ =
bπbabπ .

Now, we prove our main theorem.

Theorem 2.2 If a, b ∈ Ad and ab = aπbπbabπ , then a + b ∈ Ad and

(a + b)d = bπad + bdaπ +
∞∑
n=1

(bd)n+1anaπ +
∞∑
n=0

bπ (a + b)nb(ad)n+2. (2)

Proof First, if we assume that a ∈ Aqnil , by Theorem 2.1, we get (2). For a ∈ A−1,
we obtain ab = 0 and the formula (2) holds by [2, Example 4.5].
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Further, if a is neither invertible nor quasinilpotent, we have the following matrix
representations of a and b relative to p = aad :

a =
[
a1 0
0 a2

]
, b =

[
b1 b2
b3 b4

]
,

where a1 ∈ (pAp)−1 and a2 ∈ ((1 − p)A(1 − p))qnil .
From ab = aπbπbabπ , we obtain a1b1 = 0 and a1b2 = 0. Since a1 is invertible,

then b1 = 0 and b2 = 0. Now

b =
[
0 0
b3 b4

]

and, using Lemma 1.2, we observe that b4 ∈ ((1 − p)A(1 − p))d ,

bd =
[

0 0
(bd4 )

2b3 bd4

]
and bπ =

[
p 0

−bd4b3 bπ
4

]
.

Also, the equalities

[
0 0

a2b3 a2b4

]
= ab = aπbπbabπ =

[
0 0

bπ
4 b3a1 − bπ

4 b4a2b
d
4b3 bπ

4 b4a2b
π
4

]

give a2b3 = bπ
4 b3a1 − bπ

4 b4a2b
d
4b3 and a2b4 = bπ

4 b4a2b
π
4 . By Theorem 2.1, we

conclude that a2 + b4 ∈ ((1 − p)A(1 − p))d and

(a2 + b4)
d =

∞∑
n=0

(bd4 )
n+1an2 .

Now, from Lemma 1.2, a + b ∈ Ad and

(a + b)d =
[
a1 0
b3 a2 + b4

]d
=

[
a−1
1 0
u (a2 + b4)d

]
, (3)

where

u =
∞∑
n=0

(a2 + b4)
π (a2 + b4)

nb3a
−(n+2)
1 − (a2 + b4)

db3a
−1
1 .

Because a2b4 = bπ
4 b4a2b

π
4 , we get a2b

d
4 = 0 and bd4a2b4 = 0. By a2b3 = bπ

4 b3a1 −
bπ
4 b4a2b

d
4b3, we obtain a2b3 = bπ

4 b3a1 and bd4a2b3 = 0. Since

bd4a2a2b3 = bd4a2b
π
4 b3a1 = bd4a2b3a1 = 0
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1470 D. Mosić

and

bd4a2a2b4 = bd4a2b
π
4 b4a2b

π
4 = bd4a2b4a2b

π
4 = 0,

then bd4a
n
2b3 = 0 and bd4a

n
2b4 = 0, for all n ≥ 1, which imply (bd4 )

k+1ak+1
2 (a2 +

b4)nb3 = 0, for all k, n ≥ 0. Thus,

(a2 + b4)
π = (1 − p) − (a2 + b4)(a2 + b4)

d = (1 − p) − b4

∞∑
n=0

(bd4 )
n+1an2

= bπ
4 −

∞∑
n=0

(bd4 )
n+1an+1

2

which yields

u =
∞∑
n=0

bπ
4 (a2 + b4)

nb3a
−(n+2)
1 −

∞∑
n=0

∞∑
k=0

(bd4 )
k+1ak+1

2 (a2 + b4)
nb3a

−(n+2)
1

−bd4b3a
−1
1 −

∞∑
n=1

(bd4 )
n+1an2b3a

−1
1

=
∞∑
n=0

bπ
4 (a2 + b4)

nb3a
−(n+2)
1 − bd4b3a

−1
1 .

Using the equalities

X1 = bdaπ +
∞∑
n=1

(bd)n+1anaπ =
[
0 0
0 bd4

]
+

∞∑
n=1

[
0 0
0 (bd4 )

n+1an2

]

=
⎡
⎣0 0

0
∞∑
n=0

(bd4 )
n+1an2

⎤
⎦ =

[
0 0
0 (a2 + b4)d

]
,

X2 =
∞∑
n=0

bπ (a + b)nb(ad)n+2 =
⎡
⎣0 0

∞∑
n=0

bπ
4 (a2 + b4)nb3a

−(n+2)
1 0

⎤
⎦ ,

X3 = bπad =
[

a−1
1 0

−bd4b3a
−1
1 0

]

and (3), we deduce that

(a + b)d = X1 + X2 + X3

and the formula (2) is satisfied. ��
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Note that under the conditions of Theorem 2.2, it can be verified that bdab = 0.
Precisely, bd4a

n
2b3 = 0 and bd4a

n
2b4 = 0 imply bdanb = 0 for all n ≥ 1.

In [2, Theorem 3.5], Castro-González and Koliha presented the expression for
the generalized Drazin inverse of a + b in the case that aπb = b, abπ = a, and
bπabaπ = 0. Observe that matrices a and b introduced in Example 2.2 satisfy the
conditions of Theorem 2.2, but the assumption bπabaπ = 0 of [2, Theorem 3.5] does
not hold.

Liu andQin [10] derived a formula for (a+b)d under the conditions ab = aπbabπ .
The following example describes two matrices a and b in the algebra of all complex
2 × 2 matrices which do not satisfy the conditions of [10, Theorem 2.2], whereas the
conditions of Theorem 2.2 are met, which allows us to compute (a + b)d .

Example 2.3 LetA be the algebra of all complex 2×2 matrices and let a, b ∈ A such
that

a =
[
0 2
0 0

]
, b =

[
1 0
0 0

]
.

Since a2 = 0 and b2 = b, then aπ = 1 and

bπ = 1 − b =
[
0 0
0 1

]
.

Thus, 0 = ab �= aπbabπ = a and ab = 0 = aπbπbabπ .

3 Applications

The problem of finding explicit representations for the Drazin inverse of a 2×2 block
matrix in terms of its blocks was posed by Campbell and Meyer [1]. There have been
many papers on this subject, under different conditions [3,5,8,11–14], but it is still a
hard problem to find an explicit formula for the Drazin inverse of a block matrix.

In this section, as an application of Theorem 2.2, we obtain representations for the
generalized Drazin inverse of a block matrix x ∈ A given by

x =
[
a b
c d

]
(4)

relative to the idempotent p ∈ A, where a ∈ (pAp)d and d ∈ ((1 − p)A(1 − p))d .
Throughout this section, if the lower limit of a sum is greater than its upper limit, we
always define the sum to be 0. For example, the sum

∑0
k=1 ∗ = 0.

Theorem 3.1 Let x be defined as in (4). If

aπbc = 0, aπbd = ab, and
∞∑
n=0

(dd)ncanb = 0, (5)
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then x ∈ Ad and

xd =
[
ad 0
u dd

]
+

∞∑
n=0

xn

⎡
⎣ in −

n∑
k=1

b(dd)k+1c(ad)n+2−k b(dd)n+2

0 0

⎤
⎦ , (6)

where

u =
∞∑
n=0

(dd)n+2canaπ +
∞∑
n=0

dπdnc(ad)n+2 − ddcad ,

in =
∞∑
k=0

bdπdkc(ad)n+k+3−bddc(ad)n+2+
∞∑
k=0

b(dd)n+k+3cakaπ − b(dd)n+2cad ,

(7)

for n ≥ 0.

Proof Let

x =
[
a 0
c d

]
+

[
0 b
0 0

]
:= y + z. (8)

Applying Lemma 1.2, we have that y ∈ Ad ,

yd =
[
ad 0
u dd

]
and yπ =

[
aπ 0

−cad − du dπ

]
,

where u is defined as in (7). Observe that z2 = 0 implies zd = 0 and zπ = 1.
Then

yz =
[
0 ab
0 cb

]
and yπ zπ zyzπ =

[
aπbc aπbd

(−cad − du)bc (−cad − du)bd

]
.

The hypothesis aπbd = ab gives adb = 0 and bd = ab. Now, from aπbc = 0, we
get bc = 0. By the third equality in (5), we obtain

cb + dubd = cb +
∞∑
n=0

(dd)n+1canbd = cb +
∞∑
n=0

(dd)n+1can+1b

=
∞∑
n=0

(dd)ncanb = 0.
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Hence, yz = yπ zπ zyzπ which yields, by Theorem 2.2, x ∈ Ad and

xd = yd +
∞∑
n=0

xnz(yd)n+2

=
[
ad 0
u dd

]
+

∞∑
n=0

xn

⎡
⎣

n+1∑
k=0

b(dd)ku(ad)n+1−k b(dd)n+2

0 0

⎤
⎦

=
[
ad 0
u dd

]

+
∞∑
n=0

xn

⎡
⎣bu(ad)n+1 −

n∑
k=1

b(dd)k+1c(ad)n+2−k + b(dd)n+1u b(dd)n+2

0 0

⎤
⎦

implying that the equality (6) is satisfied. ��

Observe that the third equality in (5) can be replaced by weaker assumption cb = 0,
since the equalities cb = 0 and bd = ab give canb = 0, for n ≥ 0.

In the following theorem, we derive a formula for the generalized Drazin inverse
of x under some rather complicated conditions, but the theorem itself will have useful
consequences which will include much simpler conditions.

Theorem 3.2 Let x be defined as in (4) and let u be defined as in (7). If

aπabdπ = bd, (−cad − du)ab + dπcb = 0, and
∞∑
n=0

bdnc(ad)n = 0, (9)

then x ∈ Ad and

xd =
[
ad (ad)2b
u dd + i

]
, (10)

where

i =
∞∑
n=0

dπdnc(ad)n+3b − ddc(ad)2b +
∞∑
n=0

(dd)n+3canaπb − (dd)2cadb.

Proof If we suppose that x is represented as in (8) and denote by t = (−cad−du)ab+
dπcb, we have

zy =
[
bc bd
0 0

]
and yπ yzyπ =

[
aπab(−cad − du) aπabdπ

t (−cad − du) tdπ

]
.
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From the condition aπabdπ = bd, we obtain bdd = 0 and aπab = bd. So, using the
assumptions (9), note that t = 0,

aπab(−cad − du) = −bdcad − bd2u = −bdcad −
∞∑
n=1

bdn+1c(ad)n+1

= −
∞∑
n=1

bdnc(ad)n = bc

and zy = zπ yπ yzyπ . Applying Theorem 2.1, we conclude that x ∈ Ad and

xd = yd + (yd)2z =
[
ad (ad)2b
u dd + uadb + ddub

]
,

which yields that (10) holds. ��
The following corollary presents conditions weaker than those given in Theorem

3.2 under which we have simpler expression for xd .

Corollary 3.1 Let x be defined as in (4) and let u be defined as in (7).

(i) If aπabdπ = bd, cadab = dπcb, dca = 0, and bc = 0, then x ∈ Ad and

xd =
[

ad (ad)2b
(dd)2c + c(ad)2 dd + c(ad)3b + (dd)3cb

]
.

(ii) If aπabdπ = bd, caπb = 0, dc = 0, and bc = 0, then x ∈ Ad and

xd =
[

ad (ad)2b
c(ad)2 dd + c(ad)3b

]
.

(iii) If ab = 0, bd = 0, dπcb = 0, and bc = 0, then x ∈ Ad and

xd =
[
ad 0
u dd + (dd)3cb

]
.

(iv) If ab = 0, bd = 0, cb = 0, and bc = 0, then x ∈ Ad and

xd =
[
ad 0
u dd

]
.

The formula for the generalized Drazin inverse given in part (ii) of Corollary 3.1
was obtained for operatormatrices in [6, Theorem 5.3] in the case that bd = 0, dc = 0,
and bc = 0.

If we suppose that a and d are group invertible in Theorems 3.1 and 3.2, we get the
following representations of xd .
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Corollary 3.2 Let x be defined as in (4), a ∈ (pAp)# and d ∈ ((1 − p)A(1 − p))#.

(i) If the equalities (5) hold, then x ∈ Ad and

xd =
[

a# 0
(d#)2caπ + dπc(a#)2 − d#ca# d#

]

+
∞∑
n=0

xn

⎡
⎣ i ′n −

n∑
k=1

b(d#)k+1c(a#)n+2−k b(d#)n+2

0 0

⎤
⎦ ,

where i ′n = bdπc(a#)n+3 − bd#c(a#)n+2 + b(d#)n+3caπ − b(d#)n+2ca#, for
n ≥ 0.

(ii) If bd = 0, (−ca# − dd#ca#)ab + dπcb = 0, and bc = 0, then x ∈ Ad and

xd =
[

a# (a#)2b
(d#)2caπ + dπc(a#)2 − d#ca# d# + i ′

]
,

where i ′ = dπc(a#)3b − d#c(a#)2b + (d#)3caπb − (d#)2ca#b.

In a similar way as it was done in the previous theorems, using the another splitting,
we present new expressions for the generalized Drazin inverse of a block matrix in a
Banach algebra.

Theorem 3.3 Let x be defined as in (4). If

dπcb = 0, dπca = dc and
∞∑
n=0

(ad)nbdnc = 0, (11)

then x ∈ Ad and

xd =
[
ad v

0 dd

]
+

∞∑
n=0

xn

⎡
⎣ 0 0

c(ad)n+2 jn −
n∑

k=1
c(ad)n+2−kb(dd)k+1

⎤
⎦ , (12)

where

v =
∞∑
n=0

(ad)n+2bdndπ +
∞∑
n=0

aπanb(dd)n+2 − adbdd ,

jn =
∞∑
k=0

c(ad)n+k+3bdkdπ − c(ad)n+2bdd+
∞∑
k=0

caπakb(dd)n+k+3−cadb(dd)n+2,

(13)

for n ≥ 0.
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Proof If we write

x =
[
a b
0 d

]
+

[
0 0
c 0

]
:= y + z, (14)

then z2 = 0 = zd , zπ = 0,

yd =
[
ad v

0 dd

]
and yπ =

[
aπ −av − bdd

0 dπ

]
.

The equalities (11) give yz = yπ zπ zyzπ . By Theorem 2.2, similarly as in the proof
of Theorem 3.1, we have that x ∈ Ad and xd is represented as in (12). ��

Instead of the third condition of (11), we can assume that weaker condition bc = 0
holds.

Theorem 3.4 Let x be defined as in (4) and let v be defined as in (13). If

dπdcaπ = ca, (−av − bdd)dc + aπbc = 0, and
∞∑
n=0

canb(dd)n = 0,

then x ∈ Ad and

xd =
[
ad + j v

(dd)2c dd

]
,

where

j =
∞∑
n=0

(ad)n+3bdndπc − (ad)2bddc +
∞∑
n=0

aπanb(dd)n+3c − adb(dd)2c.

Proof Using the decomposition (14) of x , as Theorem 3.2, we prove this result. ��
Remark that, if b = 0 in Theorem 3.1 (or Theorem 3.2) and c = 0 in Theorem 3.3

(or Theorem 3.4), we obtain Lemma 1.2 (i).
As a consequence of Theorem 3.4, we get the next result.

Corollary 3.3 Let x be defined as in (4) and let v be defined as in (13).

(i) If dπdcaπ = ca, bdddc = aπbc, abd = 0, and cb = 0, then x ∈ Ad and

xd =
[
ad + (ad)3bc + b(dd)3c (ad)2b + b(dd)2

(dd)2c dd

]
.

(ii) If dπdcaπ = ca, bdπc = 0, ab = 0, and bc = 0, then x ∈ Ad and

xd =
[
ad + b(dd)3c b(dd)2

(dd)2c dd

]
.
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(iii) If dc = 0, ca = 0, aπbc = 0, and cb = 0, then x ∈ Ad and

xd =
[
ad + (ad)3bc v

0 dd

]
.

(iv) If dc = 0, ca = 0, bc = 0, and cb = 0, then x ∈ Ad and

xd =
[
ad v

0 dd

]
.

Applying Theorems 3.3 and 3.4, we verify the following corollary.

Corollary 3.4 Let x be defined as in (4), a ∈ (pAp)# and d ∈ ((1 − p)A(1 − p))#.

(i) If the equalities (11) hold, then x ∈ Ad and

xd =
[
a# (a#)2bdπ + aπb(d#)2 − a#bd#

0 d#

]

+
∞∑
n=0

xn

⎡
⎣ 0 0

c(a#)n+2 j ′n −
n∑

k=1
c(a#)n+2−kb(d#)k+1

⎤
⎦ ,

where j ′n = c(a#)n+3bdπ − c(a#)n+2bd# + caπb(d#)n+3 − ca#b(d#)n+2, for
n ≥ 0.

(ii) If ca = 0, (−aa#bd# − bd#)dc + aπbc = 0, and cb = 0, then x ∈ Ad and

xd =
[
a# + j ′ (a#)2bdπ + aπb(d#)2 − a#bd#

(d#)2c d#

]
,

where j ′ = (a#)3bdπc − (a#)2bd#c + aπb(d#)3c − a#b(d#)2c.
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