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Abstract This article concerns the existence and multiplicity of solutions to a class of
p(x)-Laplacian-like equations.We introduce a revisedAmbrosetti–Rabinowitz condi-
tion, and show that the problem has a nontrivial solution and infinitely many solutions,
respectively.
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1 Introduction

Capillarity can be briefly explained by considering the effects of two opposing forces:
adhesion, i.e. the attractive (or repulsive) force between themolecules of the liquid and
those of the container; and cohesion, i.e. the attractive force between the molecules
of the liquid. The study of capillary phenomena has gained some attention recently.
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This increasing interest is motivated not only by fascination in naturally occurring
phenomena such as motion of drops, bubbles and waves but also its importance in
applied fields ranging from industrial and biomedical and pharmaceutical to microflu-
idic systems. Ni and Serrin [13] initiated the study of ground states for equations of
the form

−div

(
|∇u|√

1 + |∇u|2
)

= f (u), in RN

with very general right-hand side f .
Recently, the study of various mathematical problems with variable exponent

growth condition has received considerable attention in recent years; see e.g.
[6,7,11,12,14]. For background information, we refer the reader to [17,18]. The aim
of this paper is to discuss the existence and multiplicity of solutions of the following
p(x)-Laplacian-like equation in RN :

−div

⎛
⎝

⎛
⎝1 + |∇u|p(x)√

1 + ∣∣∇u
∣∣2p(x)

⎞
⎠ ∣∣∇u

∣∣p(x)−2∇u

⎞
⎠ + |u|p(x)−2u = K (x) f (u),

in RN , u ∈ W 1,p(x)(
R

N )
, (1.1)

where p(x) = p(|x |) ∈ C
(
R

N
)
with 2 ≤ N < p− := infRN p(x) ≤ p+ :=

supRN p(x) < +∞, K : R
N → R is a measurable function and f ∈ C(R,R).

Recently, the following equation also has been studied very well:

−�p(x)u + |u|p(x)−2u = f (x, u), in RN , u ∈ W 1,p(x)(
R

N )
.

(1.2)

when p(x) = p(|x |) ∈ C
(
R

N
)
with 2 ≤ N < p− ≤ p+ < +∞, the authors in

[2] proved the existence of infinitely many distinct homoclinic radially symmetric
solutions for (1.2), under adequate hypotheses about the nonlinearity at zero (and at
infinity). For p(x)-Laplacian-like operator, Rodrigues [16] established the existence
of nontrivial solutions for problem (1.1) on bounded area under the case of superlinear,
by assuming the following key condition:

(F1′) there exist θ > p+ and M > 0 such that

0 < θF(t) := θ

∫ t

0
f (s)ds ≤ f (t)t, ∀|t | ≥ M.

This condition is originally due toAmbrosetti andRabinowitz [1] in the case p(x) ≡ 2.
Actually, condition (F1′) is quite natural and important not only to ensure that the
Euler–Lagrange functional associated to problem (1.2) has a mountain pass geometry,
but also to guarantee that Palais–Smale sequence of the Euler–Lagrange functional
is bounded. But this condition is very restrictive eliminating many nonlinearities. In
this paper, we introduce a new condition (F1) (motivated by [10]), below, which is
different from the Ambrosetti–Rabinowitz-type condition (F1′).
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(F1) there exist a constant M ≥ 0 and a decreasing function τ in the space C(R \
(−M, M),R), such that

0 < (p+ + τ(t))F(t) := (p+ + τ(t))
∫ t

0
f (s)ds ≤ f (t)t, |t | ≥ M,

where τ(t) > 0, lim|t |→+∞ |t |τ(t) = +∞ and lim|t |→+∞
∫ |t |
M

τ(s)
s ds = +∞.

Remark 1.1 Obviously, when inf |t |≥M τ(t) > 0, conditions (F1) and (F1′) are equiv-
alent. However, condition (F1) is weaker than (F1′) when inf |t |≥M τ(t) = 0. For
example, let |t | ≥ M = 2, and assume that F(t) = |t |p+

ln|t |. Then f (t) =
(p+ + τ(t))sgn(t)|t |p+−1ln|t | satisfies condition (F1) not (F1′), where τ(t) = 1

lnt ∈
C(R \ (−M, M),R).

Remark 1.2 Condition (F1) was introduced in [10] to study p-Laplacian equation
in R

N . We can see that this new condition (F1) can also study p(x)-Laplacian-like
equation and another situation with p− > N when compared with the reference [16].

The aim of this paper is twofold. First, we want to handle the case when p− > N
and the unbounded area RN . Although important problems can be treated within this
framework, only a fewworks are available in this direction, see [2]. Themain difficulty
in studying problem (1.1) lies in the fact that no compact embedding is available for
W 1,p(x)

(
R

N
)

↪→ L∞(
R

N
)
. However, the subspace of radially symmetric functions

of W 1,p(x)
(
R

N
)
, denoted further by W 1,p(x)

r
(
R

N
)
, can be embedded compactly into

L∞(
R

N
)
whenever N < p− ≤ p+ < +∞ (cf. [2, Theorem 2.1]). Second, instead of

some usual assumption on the nonlinear term f , we assume that it satisfies a modified
Ambrosetti–Rabinowitz-type condition (F1).

To state our results, we first introduce the following assumptions:
(H1) K ∈ L1

(
R

N
) ∩ L∞(

R
N
)
is radial, K (x) ≥ 0 for any x ∈ R

N and
supd>0 ess inf |x |≤d K (x) > 0.

(H2) f (t) = o(t p
+−1) for t near 0.

Now, we are ready to state the main result of this paper.

Theorem 1.3 Suppose that (H1), (H2) and (F1) hold. Then problem (1.1) has a
nontrivial radially symmetric solution. Furthermore, if f (t) = f (−t), then problem
(1.1) has infinitely many pairs of radially symmetric solutions.

In the remainder of this section, we recall some definitions and basic properties of
variable spaces L p(x)

(
R

N
)
andW 1,p(x)

(
R

N
)
. For a deeper treatment on these spaces,

we refer to [4,5].
Let p ∈ L∞(

R
N
)
, p− > 1. The variable exponent Lebesgue space L p(x)

(
R

N
)
is

defined by

L p(x)(
R

N ) =
{
u:RN → R: u is measurable and

∫
RN

|u|p(x)dx < +∞
}
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1458 Y. Li, L. Li

endowed with the norm |u|p(x)
{
λ > 0 : ∫

RN | u
λ
|p(x)dx ≤ 1

}
. Then we define the vari-

able exponent Sobolev space

W 1,p(x)(
R

N ) = {
u ∈ L p(x)(

R
N ) : |∇u| ∈ L p(x)(

R
N )}

with the norm ‖u‖ = |u|p(x) + |∇u|p(x).
Proposition 1.4 ([3]) Set ψ(u) = ∫

RN (|∇u(x)|p(x) + |u(x)|p(x))dx. If u, uk ∈
W 1,p(x)

(
R

N
)
, then

1. ‖u‖ < 1(= 1;> 1) ⇔ ψ(u) < 1(= 1;> 1);
2. If ‖u‖ > 1, then ‖u‖p− ≤ ψ(u) ≤ ‖u‖p+

;
3. If ‖u‖ < 1, then ‖u‖p+ ≤ ψ(u) ≤ ‖u‖p−

;
4. limk→+∞ ‖uk‖ = 0 ⇔ limk→+∞ ψ(uk) = 0;

2 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 when inf |t |≥M τ(t) = 0. If inf |t |≥M τ(t) > 0,
then conditions (F1′) and (F1) are equivalent, and the proof is rather standard. Wemay
assume that M ≥ 1, and that there is constant N0 > 0 such that

|τ(t)| ≤ N0 (2.1)

for all t ∈ R \ (−M, M).
We introduce the energy functional ϕ associated to problem (1.1) defined by

ϕ(u) =
∫
RN

1

p(x)

(
|∇u(x)|p(x) +

√
1 + |∇u(x)|2p(x) + |u(x)|p(x)

)
dx

−
∫
RN

K (x)F(u)dx u ∈ W 1,p(x)
r

(
R

N )
.

Due to the principle of symmetric criticality of Palais (see [8]), the critical points of
ϕ|

W 1,p(x)
r

(
RN

) are critical points of ϕ as well, so radially symmetric weak solutions of

problem (1.1).

Claim 2.1 Let W = {w ∈ W 1,p(x)
r

(
R

N
): ‖w‖ = 1}. Then, for any w ∈ W, there

exist δw > 0 and λw > 0, such that

ϕ(λv) < 0, ∀v ∈ W ∩ B(w, δw),∀|λ| ≥ λw,

where B(w, δw) = {v ∈ W 1,p(x)
r

(
R

N
): ‖v − w‖ < δw}.

Proof Since the embedding W 1,p(x)
r

(
R

N
)

↪→ L∞(
R

N
)
is compact, there is constant

C > 0 such that |u|∞ ≤ C‖u‖. Thus, for all w ∈ W and a.e. x ∈ R
N , we have

|w(x)| ≤ C . By the definition of τ(t) and decreasing property of τ(t), we deduce that
there exists tλ ∈ {t ∈ R: M ≤ |t | ≤ |λ|C} such that τ(tλ) = minM≤|t |≤|λ|C τ(t).
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Then |λ| ≥ tλ
C and lim|λ|→+∞ |tλ| → +∞. From condition (F1), we conclude that

F(t) ≥ C1|t |p+
H(|t |) for all |t | ≥ M , where H(t) = exp

(∫ |t |
M

τ(s)
s ds

)
. Hence, using

lim|t |→+∞
∫ |t |
M

τ(s)
s ds = +∞, it follows that H(|t |) increases when |t | increases, and

lim|t |→+∞ H(|t |) = +∞.
Fix w ∈ W . By ‖w‖ = 1, we deduce that μ({x ∈ R

N : w(x) �= 0}) > 0, and that
there exists a tw > M such that μ({x ∈ R

N : |tww(x)| ≥ M}) > 0, where μ is the
Lebesgue measure.

Set 
1 := {x ∈ R
N : |tww(x)| ≥ M} and 
2 := R

N\
1. Then μ(
1) > 0.
Therefore, for any x ∈ 
1, we have that |w(x)| ≥ M

tw
. Now take δw = M

2Ctw
. Then, for

anyv ∈ W∩B(w, δw), |v−w|∞ ≤ C‖v−w‖ < M
2tw

. Hence, for all x ∈ 
1,wededuce

that |v(x)| ≥ M
2tw

and |λv(x)| ≥ M for any x ∈ 
1 and λ ∈ R with |λ| ≥ 2tw. Thus,

for |λ| ≥ 2tw, by the above estimates and H(|t |) increases when |t | increases, we have
∫


1

K (x)F(λv(x))dx ≥ C1|λ|p+
∫


1

K (x)|v(x)|p+
H(|λv(x)|)dx

≥ C1|λ|p+
(

M

2tw

)p+

H

(
|λ| M

2tw

) ∫

1

K (x)dx . (2.2)

On the other hand, by continuity, we deduce that there exists a C2 > 0 such that
F(t) ≥ −C2 when |t | ≤ M . Note that F(t) > 0 if |t | ≥ M . Hence,

∫

2

K (x)F(λv(x))dx =
∫


2∪{x∈RN :|λv(x)|≥M}
K (x)F(λv(x))dx

+
∫


2∪{x∈RN :|λv(x)|≤M}
K (x)F(λv(x))dx

≥
∫


2∪{x∈RN :|λv(x)|≤M}
K (x)F(λv(x))dx

≥ −C2|K |1. (2.3)

Hence, for v ∈ W ∩ B(w, δw) and |λ| > 1, from (2.2) to (2.3), we have

ϕ(λv) =
∫
RN

|λ|p(x)
p(x)

(∣∣∇v
∣∣p(x) +

√
1 + ∣∣∇v

∣∣2p(x) + |v|p(x)
)
dx

−
∫
RN

K (x)F(λv(x))dx

≤ 2|λ|p+ − C1|λ|p+
(

M

2tw

)p+

H

(
|λ| M

2tw

) ∫

1

K (x)dx + C2|K |1

= |λ|p+
[
2 − C1

(
M

2tw

)p+

H

(
|λ| M

2tw

) ∫

1

K (x)dx

]
+ C2|K |1 → −∞,

as |λ| → +∞, because lim|t |→+∞ H(|t |) = +∞. ��
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Claim 2.2 There exist ν > 0 and ρ > 0 such that inf‖u‖=ν ϕ(u) ≥ ρ > 0.

Proof Note that |u|∞ → 0 if ‖u‖ → 0. Then, by hypothesis (H2), we have∫
RN

K (x)F(u)dx = |K |1o
(|u|p+

∞
) = |K |1o

(‖u‖p+)
,

which implies

ϕ(u) =
∫
RN

1

p(x)

(∣∣∣∇u(x)
∣∣∣p(x) +

√
1 + ∣∣∇u

∣∣2p(x) + |u(x)‖p(x)
)
dx

−
∫
RN

K (x)F(u)dx ≥ 2

p+ ‖u‖p+ − |K |1o
(‖u‖p+)

.

Therefore, there exist 1 > ν > 0 and ρ > 0 such that inf‖u‖=ν ϕ(u) ≥ ρ > 0. ��
Claim 2.3 The functional ϕ satisfies the (PS) condition.

Proof Let {un} ⊂ W 1,p(x)
r

(
R

N
)
be a (PS) sequence of the functional ϕ; that is,

|ϕ(un)| ≤ c and |〈ϕ′(un), h〉| ≤ εn‖h‖ with εn → 0, for all h ∈ W 1,p(x)
r

(
R

N
)
.

We will prove that the sequence {un} is bounded in W 1,p(x)
r (RN ). Indeed, if {un}

is unbounded in W 1,p(x)
r (RN ), we may assume that ‖un‖ → ∞ as n → ∞. Let

un = λnwn , where λn ∈ R, wn ∈ W . It follows that |λn| → ∞.

Let 
n
1 := {x ∈ R

N : |λnwn(x)| ≥ M} and 
n
2 := R

N\
n
1. Then

−εn|λn| = −εn‖un‖ ≤ 〈ϕ′(un), un〉

=
∫
RN

(∣∣∣∇un
∣∣∣p(x) +

∣∣∇un
∣∣2p(x)√

1 + |∇un|2p(x)
+ |un|p(x)

)
dx

−
∫
RN

K (x) f (un)undx

≤
∫
RN

|λn|p(x)
(

|∇wn|p(x) + |∇wn|2p(x)√
1 + |∇wn|2p(x)

+ |wn|p(x)
)

−
∫


n
1

K (x) f (λnwn)λnwndx −
∫


n
2

K (x) f (λnwn)λnwndx,

which implies that∫

n
1

K (x) f (λnwn)λnwn dx

≤
∫
RN

|λn|p(x)
(∣∣∣∇wn

∣∣∣p(x) +
∣∣∇wn

∣∣2p(x)√
1 + |∇wn|2p(x)

+ |wn|p(x)
)
dx

+ εn|λn| −
∫


n
2

K (x) f (λnwn)λnwndx .
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Note that 0 < (p+ + τ(tλn ))F(λnwn) ≤ f (λnwn)λnwn in 
n
1. So,∫


n
1

K (x)F(λnwn)dx ≤ 1

p+ + τ(tλn )

∫

n
1

K (x) f (λnwn)λnwndx .

Then, by (2.1), it follows that

ϕ(un) = ϕ(λnwn)

=
∫
RN

|λn|p(x)
p(x)

(∣∣∇w
∣∣p(x) +

√
1 + |∇w|2p(x) + |w|p(x)

)
dx

−
∫
RN

K (x)F(λnwn)dx

=
∫
RN

|λn|p(x)
p(x)

(∣∣∇w
∣∣p(x) +

√
1 + ∣∣∇w

∣∣2p(x) + |w|p(x)
)
dx

−
∫


n
1

K (x)F(λnwn)dx −
∫


n
2

K (x)F(λnwn)dx

≥ 1

p+

∫
RN

|λn|p(x)
(∣∣∇w

∣∣p(x) +
√
1 + ∣∣∇w

∣∣2p(x) + |w|p(x)
)
dx

− 1

p+ + τ(tλn )

∫

n
1

K (x) f (λnwn)λnwndx −
∫


n
2

K (x)F(λnwn)dx

≥ 1

p+

∫
RN

|λn|p(x)
(
2
∣∣∇wn

∣∣p(x) + |wn|p(x)
)
dx

− 1

p+ + τ(tλn )

[∫
RN

|λn|p(x)
(
2
∣∣∇wn

∣∣p(x) + |wn|p(x)
)
dx + εn|λn|

]

+ 1

p+ + τ(tλn )

∫

n
2

K (x) f (λnwn)λnwndx −
∫


n
2

K (x)F(λnwn)dx

= τ(tλn )

p+(p+ + τ(tλn ))

∫
RN

|λn|p(x)
(
2
∣∣∇wn

∣∣p(x) + |wn|p(x)
)
dx

− 1

p+ + τ(tλn )
εn|λn| + T (λnwn)

≥ τ(tλn )

p+(p+ + N0)
|λn|p− − 1

p+ εn|λn| + T (λnwn)

= |λn|
[

|λn|p−−1τ(tλn )

p+(p+ + N0)
− εn

p+

]
+ T (λnwn)

≥ |λn|
[

|λn|p−−1τ(tλn )

p+(p+ + N0)
− εn

p+

]
− C2,

where

T (λnwn) = 1

p+ + τ(tλn )

∫

n
2

K (x) f (λnwn)λnwn dx −
∫


n
2

K (x)F(λnwn) dx
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1462 Y. Li, L. Li

is bounded from below.We know that |λn| → +∞, and so |tλn | → +∞, as n → +∞.
It follows from (F1) and p− > N ≥ 2 that

lim
n→+∞ |λn|p−−1τ(tλn ) ≥ lim

n→+∞
|tλn |τ(tλn )

M
= +∞.

This means that limn→+∞ ϕ(un) → +∞. This is a contradiction. So, the sequence
{un} is bounded inW 1,p(x)

r (RN ). Note that the embeddingW 1,p(x)
r (RN ) ↪→ L∞(RN )

is compact, there exists a u ∈ W 1,p(x)
r (RN ) such that passing to subsequence, still

denoted by {un}, it converges strongly to u in L∞(RN ), and in the same way as the
proof of [9, Proposition 3.1], we can conclude that un converges strongly also in
W 1,p(x)

r (RN ). Thus, ϕ satisfies the (PS) condition. ��
Proof of Theorem 1.3 Due to Claims 2.1, 2.2 and 2.3, we know that ϕ satisfies the
conditions of the classical mountain pass theorem due to Ambrosetti and Rabinowitz
[1]. Hence, we obtain a nontrivial critical point, which gives rise to a nontrivial radially
symmetric solution to problem (1.1).

Furthermore, if f (t) = f (−t), then ϕ is even.Wewill use the followingZ2 version
of the mountain pass theo in [15]. ��
Theorem 2.4 Let E be an infinite-dimensional Banach space, and ϕ ∈ C(E,R) be
even, satisfying the (PS) condition, and having ϕ(0) = 0. Assume that E = V ⊕ X,
where V is finite dimensional. Suppose that the following hold.

(a) There are constants ν, ρ > 0 such that inf∂Bν∪X ϕ ≥ ρ.
(b) For each finite-dimensional subspace Ê ⊂ E, there is an σ = σ(Ê) such that

ϕ ≤ 0 on Ê\Bσ .

Then ϕ possesses an unbounded sequence of critical values.

From Claims 2.1 and 2.2, ϕ satisfies (a) and the (PS) condition. For any finite-
dimensional subspace Ê ⊂ E , S∩ Ê = {w ∈ Ê : ‖w‖ = 1} is compact. By Claim 2.1
and the finite covering theo, it is easy to verify that ϕ satisfies condition (b). Hence, by
the Z2 version of the mountain pass theo, ϕ has a sequence of critical points {un}∞n=1.
That is, problem (1.1) has infinitely many pairs of radially symmetric solutions.

Acknowledgements The authors are very grateful to the anonymous referees for their knowledgeable
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17. Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math.
49(6), 565–609 (2004)

18. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad.
Nauk SSSR Ser. Math. 50(4), 710–877 (1986)

123


	0ptExistence and Multiplicity of Solutions for p(x)-Laplacian Equations in mathbbRN
	Abstract
	1 Introduction
	2 Proof of Theorem 1.3
	Acknowledgements
	References




