
Bull. Malays. Math. Sci. Soc. (2016) 39:773–793
DOI 10.1007/s40840-015-0139-8

Viscosity ApproximationMethods for Zeros of Accretive
Operators and Fixed Point Problems in Banach Spaces

Pongsakorn Sunthrayuth1 · Yeol Je Cho2 ·
Poom Kumam1

Received: 1 March 2014 / Revised: 23 June 2014 / Published online: 16 May 2015
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract In this paper, we introduce iterative algorithms for finding a zero of
set-valued accretive operators by the viscosity approximation method based on Meir–
Keeler-type contractions in a reflexiveBanach spacewhich admits aweakly continuous
duality mapping. We obtain some strong convergence theorems under suitable con-
ditions. As applications, we apply our results for finding common fixed point of
nonexpansive semigroups and for solving equilibrium problem, optimization prob-
lem, and variational inequalities.

Keywords Viscosity approximation · Accretive operator · Strong convergence ·
Meir–Keeler-type contraction · Reflexive Banach spaces

Mathematics Subject Classification 47H09 · 47H10 · 47H20 · 47J20 · 47J25

Communicated by Mohammad Sal Mosleihan.

B Pongsakorn Sunthrayuth
sci_math@hotmail.com

Yeol Je Cho
yjcho@gnu.ac.kr

Poom Kumam
poom.kum@kmutt.ac.th

1 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology
Thonburi (KMUTT), Bang Mod, Thrung Khru, Bangkok 10140, Thailand

2 Department of Mathematics Education and the RINS, Gyeongsang National University,
Jinju 660-701, Republic of Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0139-8&domain=pdf


774 P. Sunthrayuth et al.

1 Introduction

Throughout this paper, we denote by X and X∗ a real Banach space and the dual space
of X , respectively. The duality mapping J : X −→ 2X∗

is defined by

J (x) = { f ∈ X∗ : 〈x, f 〉 = ‖x‖2, ‖ f ‖ = ‖x‖},
where 〈·, ·〉 denotes the duality pairing between X and X∗. If X := H is a real Hilbert
space, then J = I where I is the identity mapping. It is well known that if X is smooth,
then J is single-valued, which is denoted by j (see [30]). Let C be a nonempty, closed
and convex subset of X and T be a self-mapping on C . We denote the fixed points set
of the mapping S by Fix(T ) = {x ∈ C : T x = x}. A mapping T : C −→ C is said
to be L-Lipschitzian if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖, ∀x, y ∈ C.

If 0 < L < 1, then T is a contraction and if L = 1, then T is a nonexpansive
mapping.

Let A : X −→ 2X be a set-valued mapping. We denote D(A) by domain of A, that
is, D(A) = {x ∈ X : Ax 
= ∅}. A set-valued mapping A : D(A) ⊂ X −→ 2X is said
to be accretive if for all x, y ∈ D(A) there exist j (x − y) ∈ J (x − y) such that

〈u − v, j (x − y)〉 ≥ 0 for u ∈ Ax and v ∈ Ay.

In a Hilbert space, an accretive operator is also called monotone. Let A : D(A) ⊂
X −→ 2X be an accretive mapping, we can define a single-valued mapping J A

r :
X −→ D(A) by J A

r = (I + r A)−1, which is called the resolvent operator associated
with A, where r > 0 and also denote A−10 by the set of zeros of A, that is, A−10 =
{x ∈ D(A) : 0 ∈ Ax}. It is well known that J A

r is nonexpansive and Fix(J A
r ) = {x ∈

X : J A
r x = x} (see [30]). An operator A is called m-accretive if it is accretive and

R(I+r A), range of I+r A, is X for all r > 0; and A is said to satisfy the range condition
if D(A) = R(I + r A), ∀r > 0, where D(A) denotes the closure of the domain of A.

Interest in accretive mappings stems mainly from their firm connection with equa-
tions of evolution. It is known (see, e.g., [1]) that many physically significant problems
can be modeled by initial-value problems of the form

x ′(t) + Ax(t) = 0, x(0) = x0, (1.1)

where A is an accretive operator in an appropriate Banach space. Typical examples
where such evolution equations occur can be found in the heat, wave, or Schrödinger
equations. One of the fundamental results in the theory of accretive operators, due
to Browder [2], states that if A is locally Lipschitzian and accretive then A is m-
accretive. This result was subsequently generalized by Martin [3] to the continuous
accretive operators. If in (1.1) x(t) is independent of t , then (1.1) reduces to Au = 0
whose solutions correspond to the equilibrium points of system (1.1). Consequently,
considerable research effects have been devoted, especially within the past 20 years
or so, to iterative methods for approximating these equilibrium points.
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In recent years, many authors have constructed the several iterative methods which
is related fixed points problems in several settings, see, e.g., ([4–13,16–21]).

In 1974, Bruck [22] introduced an iteration process and proved, in Hilbert space
setting, the convergence of the process to a zero of a maximal monotone operator. In
[23], Reich extended this result to uniformly smooth Banach spaces provided that the
operator is m-accretive. By the inspiration of the regularization method for Rockafel-
lars proximal point algorithm [40] and the iterative methods of Halpern [24], in 2003,
Benavides et al. [25] studied theHalpern type iteration process (1.2) to find a zero of an
m-accretive operator A in a uniformly smooth Banach space with a weakly continuous
duality mapping Jϕ with gauge function ϕ in virtue of the resolvent Jr = (I + r A)−1

of A for all r > 0:

xn+1 = αnu + (1 − αn)Jrn xn, ∀n ≥ 1. (1.2)

On the other hand, Takahashi [14] introduced the following proximal point algo-
rithm in a reflexive Banach space with a uniformly Gâteaux differentiable norm by
the viscosity approximation method:

xn+1 = αn f (xn) + (1 − αn)Jrn xn, ∀n ≥ 1, (1.3)

where f : C −→ C is a contraction and Jr = (I + r A)−1 is a resolvent of A for all
r > 0. Under some mild conditions on the parameters {αn} and {rn}, he proved that
the sequence {xn} defined by (1.3) converges strongly to a point in A−10.

Later, Petruşel and Yao [15] also studied strong convergence theorem of proxi-
mal point algorithm (1.3) by the viscosity approximation method with a generalized
contraction mapping f .

Recently, Song et al. [17] studied the following strong convergence of the proxi-
mal point algorithm in a reflexive Banach space which admits a weakly sequentially
continuous duality mapping:

xn+1 = Jrn (αnu + (1 − αn)xn), ∀n ≥ 1, (1.4)

where {αn} ⊂ (0, 1), {rn} ⊂ (0,∞) and Jr = (I + r A)−1 is a resolvent of A for all
r > 0.

In this paper, motivated by Petruşel and Yao [15] and Song et al. [17], we introduce
iterative algorithms for finding a zero of set-valued accretive operators by the vis-
cosity approximation method based on Meir–Keeler-type contractions in a reflexive
Banach space which admits a weakly continuous duality mapping. We obtain some
strong convergence theorems under suitable conditions. As applications, we apply our
results for finding common fixed point of nonexpansive semigroups and for solving
equilibrium problem, optimization problem, and variational inequalities.

2 Preliminaries

A Banach space X is said to be strictly convex if ‖x+y‖
2 < 1 for all x, y ∈ X with

‖x‖ = ‖y‖ = 1 and x 
= y. A Banach space X is said to be uniformly convex if
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for each ε > 0, there exists δ > 0 such that for x, y ∈ X with ‖x‖, ‖y‖ ≤ 1 and
‖x − y‖ ≥ ε,

‖x+y‖
2 ≤ 1 − δ holds. It is well known that a uniformly convex Banach

space is reflexive and strictly convex (see [30]). Let S(X) = {x ∈ X : ‖x‖ = 1}
denote the unit sphere of a Banach space X . The norm of X is said to be Gâteaux
differentiable (or X is said to be smooth) if the limit

lim
t−→0

‖x + t y‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ S(X). The norm of X is said to be uniformly Gâteaux differen-
tiable, if for each y ∈ S(X), the limit (2.1) is attained uniformly for x ∈ S(X).

Let ϕ : [0,∞) := R
+ −→ R

+ be a continuous strictly increasing function such
that ϕ(0) = 0 and ϕ(t) −→ ∞ as t −→ ∞. This function ϕ is called a gauge function.
The duality mapping Jϕ : X −→ 2X∗

associated with a gauge function ϕ is defined
by

Jϕ(x) = { f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖ϕ(‖x‖), ‖ f ∗‖ = ϕ(‖x‖), ∀x ∈ X},

where 〈·, ·〉 denotes the generalized duality paring. In particular, the duality mapping
with the gauge function ϕ(t) = t , denoted by J is referred to as the normalized duality
mapping. Clearly, there holds the relation Jϕ(x) = ϕ(‖x‖)

‖x‖ J (x) for each x 
= 0 (see
[31]).

Browder [31] initiated the study of certain classes of nonlinear operators by means
of the duality mapping Jϕ . Following Browder [31], we say Banach space X has a
weakly continuous duality mapping if there exits a gauge function ϕ for which the
duality mapping Jϕ(x) is single-valued and continuous from the weak topology to the
weak∗ topology, that is, for each {xn} with xn ⇀ x , the sequence {J (xn)} converges
weakly∗ to Jϕ(x).

A Banach space X is said to satisfy Opials condition if, for any sequence {xn} in
X, xn ⇀ x implies

lim sup
n−→∞

‖xn − x‖ < lim sup
n−→∞

‖xn − y‖, ∀y ∈ X with x 
= y.

By Theorem 3.2.8 of [29], we know that, if X admits the weakly continuous duality
mapping Jϕ with gauge function ϕ, then X satisfy Opial’s condition.

Lemma 2.1 (Cioranescu [32]) Assume that a Banach space X has a weakly contin-
uous duality mapping Jϕ with gauge ϕ. For all x, y ∈ X, the following inequality
holds

�(‖x + y‖) ≤ �(‖x‖) + 〈y, Jϕ(x + y)〉.

A mapping ψ : R+ −→ R
+ is said to be an L-function if ψ(0) = 0, ψ(t) > 0

for each t > 0 and for every s > 0, there exists u > s such that ψ(t) ≤ s for each
t ∈ [s, u]. As a consequence, every L-function ψ satisfies ψ(t) < t , for each t > 0.
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Definition 2.2 Let (X, d) be a metric space. A mapping f : X −→ X is said to be

(1) a (ψ, L)-contraction if ψ : R+ −→ R
+ is an L-function and d( f (x), f (y)) <

ψ(d(x, y)), ∀x, y ∈ X , with x 
= y,
(2) a Meir–Keeler-type mapping if for each ε > 0 there exists δ = δ(ε) > 0 such

that for each x, y ∈ X , with ε ≤ d(x, y) < ε + δ, we have d( f (x), f (y)) < ε.

Lemma 2.3 (Lim [27]) Let (X, d) be a metric space and f : X −→ X be a mapping.
The following assertions are equivalent:

(i) f is a Meir–Keeler-type mapping;
(ii) there exists an L-function ψ : R+ −→ R

+ such that f is a (ψ, L)-contraction.

Lemma 2.4 (Petrusel and Yao [28]) Let C be a convex subset of a Banach space X.
Let T : C −→ C be a nonexpansive mapping and f be a (ψ, L)-contraction. Then
the following assertions hold

(i) T ◦ f is a (ψ, L)-contraction on C and has a unique fixed point in C;
(ii) for each α ∈ (0, 1), the mapping x −→ α f (x)+ (1−α)T x is Meir–Keeler-type

and it has a unique fixed point in C.

Lemma 2.5 (Suzuki [26]) Let C be a convex subset of a Banach space X. Let f :
C −→ C be a Meir–Keeler-type contraction. Then for each ε > 0 there exists
k ∈ (0, 1) such that

for each x, y ∈ C with ‖x − y‖ ≥ ε we have ‖ f (x) − f (y)‖ ≤ k‖x − y‖.

From now on, by a generalized contraction mapping, we mean a Meir–Keeler-
type mapping or a (ψ, L)-contraction. In the rest of paper, we suppose that the L-
function from the definition of (ψ, L)-contraction is continuous, strictly increasing
and limt−→∞ η(t) = ∞, where η(t) := t − ψ(t) ,∀t ∈ R

+. As a consequence, we
have that η is a bijection on R

+.

Lemma 2.6 (Xu [33]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1 − σn)an + δn,

where {σn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 σn = ∞;
(ii) lim supn−→∞ δn

σn
≤ 0 or

∑∞
n=0 |δn| < ∞.

Then, limn−→∞ an = 0.

3 Main Results

Theorem 3.1 Let C be a nonempty, closed and convex subset of a reflexive Banach
space X which admits a weakly continuous duality mapping Jϕ with gauge function ϕ.
Let T : C −→ C be a nonexpansive mapping such that Fix(T ) 
= ∅ and f : C −→ C
be a Meir–Keeler-type contraction. Then the net {xt } defined by
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xt = t f (xt ) + (1 − t)T xt . (3.1)

converges strongly to an element x∗ ∈ Fix(T ), where x∗ is the unique solution of the
variational inequality

〈 f (x∗) − x∗, Jϕ(z − x∗)〉 ≤ 0, ∀z ∈ Fix(T ). (3.2)

Proof Note that from Lemma 2.4(i), we have {xt } defined by (3.1) is well defined.
First, we show the uniqueness of a solution of the variational inequality (3.2). Suppose
that x̃, x∗ ∈ Fix(T ) are solutions of (3.2). Since f is a Meir–Keeler-type contraction,
then for each ε > 0 such that ‖x̃ − x∗‖ ≥ ε. By Lemma 2.5, there exists kε ∈ (0, 1)
such that ‖ f (x̃) − f (x∗)‖ ≤ kε‖x̃ − x∗‖. Then we have

〈 f (x∗) − x∗, Jϕ(x̃ − x∗)〉 ≤ 0. (3.3)

Interchange x∗ and x̃ to obtain

〈 f (x̃) − x̃, Jϕ(x∗ − x̃)〉 ≤ 0. (3.4)

Adding up (3.3) and (3.4), we have

0 ≥ 〈( f (x∗) − x∗) − ( f (x̃) − x̃), Jϕ(x̃ − x∗)〉
= 〈x̃ − x∗, Jϕ(x̃ − x∗)〉 − 〈 f (x̃) − f (x∗), Jϕ(x̃ − x∗)〉
≥ ‖x̃ − x∗‖ϕ(‖x̃ − x∗‖) − ‖ f (x̃) − f (x∗)‖‖Jϕ(x̃ − x∗)‖
≥ ‖x̃ − x∗‖ϕ(‖x̃ − x∗‖) − k‖x̃ − x∗‖ϕ(‖x̃ − x∗‖)
= (1 − k)�(‖x̃ − x∗‖),

which is a contradiction, we must have x̃ = x∗ and the uniqueness is proved. Below,
we use x∗ to denote the unique solution of the variational inequality (3.2).

Next, we show that {xt } is bounded. Take p ∈ Fix(T ), fixed ε0, for each t ∈ (0, 1).

Case 1 ‖xt − p‖ < ε0. In this case, it easy see that {xt } is bounded.
Case 2 ‖xt − p‖ ≥ ε0. By Lemma 2.5, there exists kε0 ∈ (0, 1) such that ‖ f (xt ) −

f (p)‖ ≤ kε0‖xt − p‖. Then, we have

‖xt − p‖ = ‖t ( f (xt ) − p) + (1 − t)(T xt − p)‖
≤ t‖ f (xt ) − p‖ + (1 − t)‖T xt − p‖
≤ t‖ f (xt ) − f (p)‖ + t‖ f (p) − p‖ + (1 − t)‖T xt − p‖
≤ (

1 − (1 − kε0)t
)‖xt − p‖ + t‖ f (p) − p‖.

It follows that

‖xt − p‖ ≤ 1

1 − kε0

‖ f (p) − p‖.

Thus, {xt } is bounded, so are { f (xt )} and {T xt }.
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By definition of {xt }, we have

‖xt − T xt‖ = ‖t f (xt ) + (1 − t)T xt − T xt‖
= t‖ f (xt ) − T xt‖ −→ 0 as t −→ 0. (3.5)

Assume that {tn} ⊂ (0, 1) is a sequence such that tn −→ 0 as n −→ ∞. Put
xn := xtn . By reflexivity of a Banach space X and boundedness of {xn}, there exists
a subsequence {xni } of {xn} such that xni ⇀ x̃ ∈ C as i −→ ∞. Let us to show
x̃ ∈ Fix(T ). Suppose that x̃ /∈ Fix(T ), i.e., x̃ 
= T x̃ . By the Opial’s condition and
(3.5), we have

lim infn−→∞ ‖xni − x̃‖ < lim infn−→∞ ‖xni − T x̃‖
≤ lim infn−→∞

(‖xni − T xni ‖ + ‖T xni − T x̃‖)
≤ lim infn−→∞ ‖xni − x̃‖,

which is a contradiction. Thus, we obtain x̃ ∈ Fix(T ).
Next, we show that {xn} is relatively sequentially compact. For each z ∈ Fix(T ),

suppose the contrary, there exists ε > 0 and a subsequence {xmi } of {xni } such that
‖xmi − z‖ ≥ ε. By Lemma 2.5, there exists kε ∈ (0, 1) such that ‖ f (xmi ) − f (z)‖ ≤
kε‖xmi − z‖. Then we have

�(‖xmi − z‖) = �(‖(1 − tmi )(T xmi − z) + tmi ( f (xmi ) − z)‖)
= �(‖(1 − tmi )(T xmi − z) + tmi ( f (xmi ) − f (z)) + tmi ( f (z) − z‖)
≤ �(‖(1 − tmi )(T xmi − z) + tmi ( f (xmi ) − f (z))‖) + tmi 〈 f (z)

−z, Jϕ(xmi − z)〉
≤ (

1 − (1 − kε)tmi

)
�(‖xmi − z‖) + tmi 〈 f (z) − z, Jϕ(xmi − z)〉.

It follows that

�(‖xmi − z‖) ≤ 1

1 − kε

〈 f (z) − z, Jϕ(xmi − z)〉. (3.6)

Since Jϕ is single-valued and weakly continuous duality mapping, it follows that
from (3.6) that�(‖xmi − x̃‖) −→ 0. By the properties� implies that xmi −→ x̃ , that
is ‖xmi − x̃‖ < ε, which is a contradiction. Thus, we obtain xni −→ x̃ as i −→ ∞.

Next, we show that x̃ solves the variational inequality (3.2). Since

xt = t f (xt ) + (1 − t)T xt ,

we can derive that

(I − f )xt = −1

t
(I − T )xt + (I − T )xt . (3.7)

Since T is nonexpansive, we have that I − T is accretive. Note that for all z ∈
Fix(T ), it follows from (3.7) that
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〈(I − f )xt , Jϕ(xt − z)〉 = −1

t
〈(I − T )xt − (I − T )z, Jϕ(xt − z)〉

+ 〈(I − T )xt , Jϕ(xt − z)〉
≤ 〈(I − T )xt , Jϕ(xt − z)〉
≤ ‖xt − T xt‖M, (3.8)

where M > 0 is a constant such that M = supt∈(0,1){‖Jϕ(xt − z)‖}. Now, replacing
t in (3.8) with tn and taking the limit as n −→ ∞, we noticing that xtn − T xtn −→
x̃ −T x̃ = 0 for x̃ ∈ Fix(T ), we obtain 〈( f − I )x̃, Jϕ(z− x̃)〉 ≤ 0. Hence x̃ ∈ Fix(T )

is the solution of the variational inequality (3.2). Consequently, x∗ = x̃ by uniqueness.
Therefore xt −→ x∗ as t −→ 0. This completes the proof. ��

Using Theorem 3.1, we get the following strong convergence theorems for proximal
point algorithm by the viscosity approximation method based on Meir–Keeler-type
contractions for zeros of accretive operators in Banach spaces. The proofs are similarly
related to Theorems 3.2 and 3.3 in [17]; see also, [21], [14] and [15].

Theorem 3.2 Let C be a nonempty, closed and convex subset of a reflexive Banach
space X which admits a weakly continuous duality mapping Jϕ with gauge function
ϕ. Let A : D(A) ⊂ X −→ 2X be an accretive operator such that A−10 
= ∅ which
satisfies the condition D(A) ⊂ C ⊂ ⋂

r>0 R(I + r A). Let Jr be the resolvent of A
for all r > 0 and f : C −→ C be a Meir–Keeler-type contraction. For given x1 ∈ C,
let {xn} be a sequence defined by

xn+1 = αn f (xn) + (1 − αn)Jrn xn, ∀n ≥ 1, (3.9)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ rn = ∞.

Then the sequence {xn} defined by (3.9) converges strongly to an element x∗ ∈ A−10,
where x∗ is the unique solution of the variational inequality

〈 f (x∗) − x∗, Jϕ(z − x∗)〉 ≤ 0, ∀z ∈ A−10. (3.10)

Proof First, we show that {xn} is bounded. Take p ∈ A−10, fixed ε0, for all n ≥ 1.

Case 1 ‖xn − p‖ < ε0. In this case, it easy see that {xn} is bounded.
Case 2 ‖xn − p‖ ≥ ε0. By Lemma 2.5, there exists kε0 ∈ (0, 1) such that ‖ f (xn) −

f (p)‖ ≤ kε0‖xn − p‖.
Then, we have

‖xn+1 − p‖ = ‖αn( f (xn) − p) + (1 − αn)(Jrn xn − p)‖
≤ αn‖ f (xn) − p‖ + (1 − αn)‖Jrn xn − p)‖
≤ αn‖ f (xn) − f (p)‖ + αn‖ f (p) − p‖ + (1 − αn)‖xn − p‖
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≤ (
1 − (1 − kε0)αn

)‖xn − p‖ + αn‖ f (p) − p‖
= (

1 − (1 − kε0)αn
)‖xn − p‖ + (1 − kε0)αn

‖ f (p) − p‖
1 − kε0

≤ max

{

‖xn − p‖, ‖ f (p) − p‖
1 − kε0

}

.

By induction, we have

‖xn − p‖ ≤ max

{

‖x1 − p‖, ‖ f (p) − p‖
1 − kε0

}

, ∀n ≥ 1.

Thus {xn} is bounded, so are { f (xn)} and {Jrn xn}.
Next, we show that limn−→∞ ‖xn − Jr xn‖ = 0. By the condition (C1), we have

‖xn+1 − Jrn xn‖ = αn‖ f (xn) − Jrn xn‖ −→ 0 as n −→ ∞. (3.11)

For r > 0, we note that

‖Jr Jrn xn − Jrn xn‖ = ‖(I − Jr )Jrn xn‖ = r‖Ar Jrn xn‖ ≤ r |AJrn xn| ≤ r‖Arn xn‖
= r

‖xn − Jrn xn‖
rn

.

It follows from the condition (C2) that

lim
n−→∞ ‖Jr Jrn xn − Jrn xn‖ = 0. (3.12)

We observe that

‖xn+1 − Jr xn+1‖ ≤ ‖xn+1 − Jrn xn‖ + ‖Jrn xn − Jr Jrn xn‖ + ‖Jr Jrn xn − Jr xn+1‖
≤ 2‖xn+1 − Jrn xn‖ + ‖Jrn xn − Jr Jrn xn‖.

It follows from (3.11) and (3.12) that limn−→∞ ‖xn+1 − Jr xn+1‖ = 0, and hence

lim
n−→∞ ‖xn − Jr xn‖ = 0, ∀r > 0. (3.13)

Next, we show that

lim supn−→∞〈 f (x∗) − x∗, Jϕ(xn − x∗)〉 ≤ 0,

where x∗ is the same as in Theorem 3.1. To show this, we take a subsequence {xni } of
{xn} such that

lim supn−→∞〈 f (x∗) − x∗, Jϕ(xn − x∗)〉 = limi−→∞〈 f (x∗) − x∗, Jϕ(xni − x∗)〉.
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By reflexivity of a Banach space X and boundedness of {xn}, there exists a sub-
sequence {xni } of {xn} such that xni ⇀ z as i −→ ∞. Let us to show z ∈ A−10.
Suppose that z /∈ A−10, i.e., z 
= Jr z. By the Opial’s condition and (3.13), we have

lim infn−→∞ ‖xni − z‖ < lim infn−→∞ ‖xni − Jr z‖
≤ lim infn−→∞

(‖xni − Jr xni ‖ + ‖Jr xni − Jr z‖)
≤ lim infn−→∞ ‖xni − z‖,

which is a contradiction. Thus, we obtain z ∈ A−10. Since Jϕ is single-valued and
weakly continuous duality mapping, we obtain that

lim sup
n−→∞

〈 f (x∗) − x∗, Jϕ(xn − x∗)〉 = lim
i−→∞〈 f (x∗) − x∗, Jϕ(xni − x∗)〉

= 〈 f (x∗) − x∗, Jϕ(z − x∗)〉 ≤ 0. (3.14)

Finally, we show that xn −→ x∗ as n −→ ∞. Suppose the contrary, {xn} does not
converge strongly to x∗ ∈ A−10. Then there exist ε > 0 and a subsequence {xn j } of
{xn} such that ‖xn j − x∗‖ ≥ ε for all j ∈ N. By Lemma 2.5, there exists kε ∈ (0, 1)
such that

‖ f (xn j ) − f (x∗)‖ ≤ kε‖xn j − x∗‖ for all j ∈ N.

By Lemma 2.1, we have

�(‖xn j +1 − x∗‖) = �(‖(1 − αn j )(Jrn j
xn j − x∗) + αn j ( f (xn j ) − x∗)‖)

= �(‖(1 − αn j )(Jrn j
xn j − x∗) + αn j ( f (xn j ) − f (x∗))

+αn j ( f (x∗) − x∗)‖)
≤ �(‖(1 − αn j )(Jrn j

xn j − x∗) + αn j ( f (xn j ) − f (x∗))‖)
+αn j 〈 f (x∗) − x∗, Jϕ(xn j +1 − x∗)〉

≤ (
1 − (1 − kε)αn j

)
�(‖xn j − x∗‖) + αn j 〈 f (x∗)

− x∗, Jϕ(xn j +1 − x∗)〉. (3.15)

Put σn j := (1 − kε)αn j and δn j := 1
1−kε

〈 f (x∗) − x∗, Jϕ(xn j +1 − x∗)〉. Then (3.15)
reduces to formula

�(‖xn j +1 − x∗‖) ≤ (1 − σn j )�(‖xn j − x∗‖) + σn j δn j .

It is easily seen that
∑∞

j=1 σn j = ∞ and (using (3.15))

lim sup j−→∞ δn j = lim sup j−→∞
1

1 − kε

〈 f (x∗) − x∗, Jϕ(xn j +1 − x∗)〉 ≤ 0.
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Then by Lemma 2.6, we have�(‖xn j − x∗‖) −→ 0. This implies that xn j −→ x∗,
that is‖xn j −x∗‖ < ε0,which is contradiction. Therefore,we conclude that xn −→ x∗.
This completes the proof. ��

Theorem 3.3 Let C be a nonempty, closed and convex subset of a reflexive Banach
space X which admits a weakly continuous duality mapping Jϕ with gauge function
ϕ. Let A : D(A) ⊂ X −→ 2X be an accretive operator such that A−10 
= ∅ which
satisfies the condition D(A) ⊂ C ⊂ ⋂

r>0 R(I + r A). Let Jr be the resolvent of A
for all r > 0 and f : C −→ C be a Meir–Keeler-type contraction. For given x1 ∈ C,
let {xn} be a sequence defined by

xn+1 = Jrn (αn f (xn) + (1 − αn)xn), ∀n ≥ 1, (3.16)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ rn = ∞.

Then the sequence {xn} defined by (3.16) converges strongly to an element x∗ ∈
A−10, where x∗ is the unique solution of the variational inequality (3.2).

Proof By the similar method to the proof technique of Theorem 3.2, we show that the
sequence {xn} is bounded firstly. Let yn = αn f (xn) + (1 − αn)xn . Take p ∈ A−10,
fixed ε0, for all n ≥ 1.

Case 1 ‖xn − p‖ < ε0. In this case, it easy see that {xn} is bounded.
Case 2 ‖xn − p‖ ≥ ε0. By Lemma 2.5, there exists kε0 ∈ (0, 1) such that ‖ f (xn) −

f (p)‖ ≤ kε0‖xn − p‖. Then, we have

‖xn+1 − p‖ = ‖Jrn yn − p‖ ≤ ‖yn − p‖
= ‖αn( f (xn) − p) + (1 − αn)(xn − p)‖
≤ αn‖ f (xn) − f (p)‖ + αn‖ f (p) − p‖ + (1 − αn)‖xn − p‖
≤ (

1 − (1 − kε0)
)‖xn − p‖ + αn‖ f (p) − p‖.

By induction, we have

‖xn − p‖ ≤ max

{

‖x1 − p‖, ‖ f (p) − p‖
1 − kε0

}

, ∀n ≥ 1.

Thus {xn} is bounded, so are { f (xn)} and {Jrn yn}.
Next, we show that limn−→∞ ‖yn − Jr yn‖ = 0. By the condition (C1), we have

‖yn − xn‖ = αn‖ f (xn) − xn‖ −→ 0 as n −→ ∞. (3.17)
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For r > 0, we note that

‖xn+1 − Jr xn+1‖ = ‖Jrn yn − Jr Jrn yn‖ = ‖(I − Jr )Jrn yn‖
= r‖Ar Jrn yn‖ ≤ r |AJrn yn| ≤ r‖Arn yn‖ = r

‖yn − Jrn yn‖
rn

.

It follows from the condition (C2) that limn−→∞ ‖xn+1− Jr xn+1‖ = 0, and hence

lim
n−→∞ ‖xn − Jr xn‖ = 0, ∀r > 0. (3.18)

Observe that

‖yn − Jr yn‖ ≤ ‖yn − xn‖ + ‖xn − Jr xn‖ + ‖Jr xn − Jr yn‖
≤ 2‖xn − yn‖ + ‖xn − Jr xn‖.

It follows from (3.17) and (3.18) that

lim
n−→∞ ‖yn − Jr yn‖ = 0. (3.19)

Next, we show that

lim supn−→∞〈 f (x∗) − x∗, Jϕ(yn − x∗)〉 ≤ 0,

where x∗ is the same as in Theorem 3.1. To show this, we take a subsequence {yni } of
{yn} such that

lim supn−→∞〈 f (x∗) − x∗, Jϕ(yn − x∗)〉 = limi−→∞〈 f (x∗) − x∗, Jϕ(yni − x∗)〉.

By reflexivity of a Banach space X and boundedness of {yn}, there exists a sub-
sequence {yni } of {yn} such that yni ⇀ z as i −→ ∞. Let us to show z ∈ A−10.
Suppose that z /∈ A−10, i.e., z 
= Jr z. By the Opial’s condition and (3.19), we have

lim infn−→∞ ‖yni − z‖ < lim infn−→∞ ‖yni − Jr z‖
≤ lim infn−→∞

(‖yni − Jr yni ‖ + ‖Jr yni − Jr z‖)
≤ lim infn−→∞ ‖yni − z‖,

which is a contradiction. Thus, we obtain z ∈ A−10. Since Jϕ is single-valued and
weakly continuous duality mapping, we obtain that

lim sup
n−→∞

〈 f (x∗) − x∗, Jϕ(yn − x∗)〉 = lim
i−→∞〈 f (x∗) − x∗, Jϕ(yni − x∗)〉

= 〈 f (x∗) − x∗, Jϕ(z − x∗)〉 ≤ 0. (3.20)

Finally, we show that xn −→ x∗ as n −→ ∞. Suppose the contrary, {xn} does not
converge strongly to x∗ ∈ A−10. Then there exist ε > 0 and a subsequence {xn j } of
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{xn} such that ‖xn j − x∗‖ ≥ ε for all j ∈ N. By Lemma 2.5, there exists kε ∈ (0, 1)
such that

‖ f (xn j ) − f (x∗)‖ ≤ kε‖xn j − x∗‖ for all j ∈ N.

By Lemma 2.1, we have

�(‖xn j +1 − x∗‖) = �(‖Jrn j
yn j − x∗‖) ≤ �(‖yn j − x∗‖)

= �(‖(1 − αn j )(xn j − x∗) + αn j ( f (xn j ) − x∗)‖)
= �(‖(1 − αn j )(xn j − x∗) + αn j ( f (xn j ) − f (x∗))

+αn j ( f (x∗) − x∗)‖)
≤ �(‖(1 − αn j )(xn j − x∗) + αn j ( f (xn j ) − f (x∗))‖)

+αn j 〈 f (x∗) − x∗, Jϕ(yn j − x∗)〉
≤ (

1 − (1 − kε)αn j

)
�(‖xn j − x∗‖) + αn j 〈 f (x∗) − x∗,

Jϕ(yn j − x∗)〉. (3.21)

Put σn j := (1 − kε)αn j and δn j := 1
1−kε

〈 f (x∗) − x∗, Jϕ(yn j − x∗)〉. Then (3.21)
reduces to formula

�(‖xn j +1 − x∗‖) ≤ (1 − σn j )�(‖xn j − x∗‖) + σn j δn j .

It is easily seen that
∑∞

j=1 σn j = ∞ and (using (3.20))

lim sup j−→∞ δn j = lim sup j−→∞
1

1 − kε

〈 f (x∗) − x∗, Jϕ(yn j − x∗)〉 ≤ 0.

Then by Lemma 2.6, we have�(‖xn j − x∗‖) −→ 0. This implies that xn j −→ x∗,
that is‖xn j −x∗‖ < ε0,which is contradiction. Therefore,we conclude that xn −→ x∗.
This completes the proof. ��

4 Application to Nonexpansive Semigroup

Definition 4.1 Let C be a nonempty, closed and convex subset of a real Banach space
X . A one-parameter family S = {T (t) : t > 0} from C into itself is said to be a
nonexpansive semigroup on C if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C ;
(ii) T (s + t)x = T (s)T (t)x for all x ∈ C and s, t > 0;
(iii) for each x ∈ C the mapping t �→ T (t)x is continuous;
(iv) ‖T (t)x − T (t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t > 0.

Remark 4.2 We denote by Fix(S) the set of all common fixed points of S, that
is Fix(S) := ⋂

t>0 Fix(T (t)) = {x ∈ C : T (t)x = x}. We know that Fix(S) is
nonempty if C is bounded (see [44]).
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Now, we present the concept of a uniformly asymptotically regular semigroup (see
[34–36]).

Definition 4.3 Let C be a nonempty, closed and convex subset of a real Banach space
X and S = {T (t) : t > 0} be a semigroup of nonexpansive operators. Then S is called
uniformly asymptotically regular (in short, u.a.r.) on C if for all h ≥ 0 and for any
bounded subset B of C such that

lim
t−→∞ sup

x∈B
‖T (h)T (t)x − T (t)x‖ = 0.

The nonexpansive semigroup {σt : t > 0} defined by the following lemma is an
example of u.a.r. operator semigroup. Other examples of u.a.r. operator semigroup can
be found in [34]. The following lemma found in [37].

Lemma 4.4 (see [37]) Let C be a nonempty, closed and convex subset of a smooth
Banach space X and let S = {T (h) : h > 0} be a u.a.r. nonexpansive semigroup on
C such that Fix(S) = ⋂

h>0 Fix(T (h)) 
= ∅ and at least there exists a T (h) which
is demicompact. Then, for each x ∈ C, there exists a sequence {T (tk) : tk > 0, k ∈
N} ⊂ {T (h) : h > 0} such that {T (tk)x} converges strongly to some point in Fix(S),
where limk−→∞ tk = ∞.

Using Lemma 4.4 and Theorems 3.2 and 3.3, we have the following results.

Theorem 4.5 Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X which admits a weakly continuous duality mapping Jϕ with gauge
function ϕ. Let S = {T (t) : t > 0} be a u.a.r. nonexpansive semigroup from C into
itself such that Fix(S) := ⋂

h>0 Fix(T (h)) 
= ∅ and least there exists a T (h) which
is demicompact and f : C −→ C be a Meir–Keeler-type contraction. For given
x1 ∈ C, let {xn} be a sequence defined by

xn+1 = αn f (xn) + (1 − αn)T (tn)xn, ∀n ≥ 1, (4.1)

where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ tn = ∞.

Then the sequence {xn} defined by (4.1) converges strongly to an element x∗ ∈ Fix(S).

Proof By using the same arguments and techniques as those of Theorem 3.2, we only
need show that

limn−→∞ ‖xn − T xn‖ = 0.

By the condition (C1), we have

‖xn+1 − T (tn)xn‖ = αn‖ f (xn) − T (tn)xn‖ −→ 0 as n −→ ∞. (4.2)

Since {T (t) : t > 0} is a u.a.r. nonexpansive semigroup and limn−→∞ tn = ∞,
then for all h > 0, and for any bounded subset B of C containing {xn}, we obtain that
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lim
n−→∞ ‖T (h)T (tn)xn − T (tn)xn‖ ≤ lim

n−→∞ sup
ω∈B

‖T (h)T (tn)ω − T (tn)ω‖ = 0.

(4.3)

For all h > 0, observe that

‖xn+1 − T (h)xn+1‖ ≤ ‖xn+1 − T (tn)xn‖ + ‖T (tn)xn − T (h)T (tn)xn‖
+‖T (h)T (tn) − T (h)xn+1‖

≤ 2‖xn+1 − T (tn)xn‖ + ‖T (tn)xn − T (h)T (tn)xn‖.

It follows from (4.2) and (4.3) that limn−→∞ ‖xn+1 − T (h)xn+1‖ = 0, and hence

lim
n−→∞ ‖xn − T (h)xn‖ = 0 for all h ≥ 0. (4.4)

Since {T (h) : h > 0} is a u.a.r. nonexpansive semigroup, by Lemma 4.4, for each
x ∈ C , there exists a sequence {T (tk) : tk > 0, k ∈ N} ⊂ {T (h) : h > 0} such that
{T (tk)x} converges strongly to some point in Fix(S), where tk −→ ∞ as k −→ ∞.
Define a mapping T : C −→ C by

T x = limk−→∞ T (tk)x, ∀x ∈ C.

By [37, Remark 3.4], we see that the mapping T is nonexpansive such that
Fix(T ) = Fix(S). From (4.4), we obtain that

limn−→∞ ‖xn − T xn‖ = limn−→∞ limk−→∞ ‖xn − T (tk)xn‖
= limk−→∞ limn−→∞ ‖xn − T (tk)xn‖ = 0.

This completes the proof. ��
Theorem 4.6 Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X which admits a weakly continuous duality mapping Jϕ with gauge
function ϕ. Let S = {T (t) : t > 0} be a u.a.r. nonexpansive semigroup from C into
itself such that Fix(S) := ⋂

h>0 Fix(T (h)) 
= ∅ and least there exists a T (h) which
is demicompact and f : C −→ C be a Meir–Keeler-type contraction. For given
x1 ∈ C, let {xn} be a sequence defined by

xn+1 = T (tn)[αn f (xn) + (1 − αn)xn], ∀n ≥ 1, (4.5)

where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ tn = ∞.

Then the sequence {xn} defined by (4.5) converges strongly to an element x∗ ∈
Fix(S).
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5 Application to Equilibrium Problem

LetC be a nonempty, closed convex subset of a realHilbert space H and� : C×C −→
R be a bifunction, where R is the set of all real numbers. The equilibrium problem is
to find x ∈ C such that

�(x, y) ≥ 0, ∀y ∈ C. (5.1)

The set of solutions of the equilibrium problem (5.1) is denoted by E P(�). Given a
mapping T : C −→ H , let�(x, y) = 〈T x, y − x〉 for all x, y ∈ C . Then z ∈ E P(�)

if and only if 〈T x, y − x〉 ≥ 0 for all y ∈ C , i.e., z is a solution of the variational
inequality.

Numerous problems in physics, optimization and economics reduce to find a solu-
tion of the equilibrium problem (5.1). Some methods have been proposed to solve the
equilibrium problems (see, for instance, BlumOettli [38] andCombettes andHirstoaga
[39]).

For solving the equilibrium problem, let us assume that a bifunction� : C ×C −→
R satisfies the following conditions:

(A1) �(x, x) = 0 for all x ∈ C ;
(A2) � is monotone, i.e., �(x, y) + �(y, x) ≤ 0 for each x, y ∈ C ;
(A3) � is upper-semicontinuous, i.e., for each x, y, z ∈ C ,

lim supt−→0+ �(t z + (1 − t)x, y) ≤ �(x, y);

(A4) �(x, ·) is convex and weakly lower semicontinuous for each x ∈ C .

The following lemmas were also given in [38] and [39], respectively.

Lemma 5.1 (see [38, corollary 1]) Let C be a nonempty, closed and convex subset
of H and let � : C × C −→ R satisfying the conditions (A1)–(A4). Let r > 0 and
x ∈ H. Then there exists z ∈ C such that

�(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 5.2 (see [39, lemma 2.12]) Assume that � : C × C −→ R satisfies the
conditions (A1)–(A4). For r > 0 and x ∈ H, define a mapping Tr : H −→ C as
follows:

Tr (x) = {
z ∈ C : �(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ H.

Then the following hold

(1) Tr is single-valued.
(2) Tr is firmly nonexpansive, i.e., for each x, y ∈ H,

‖Tr x − Tr y‖2 ≤ 〈Tr x − Tr y, x − y〉.
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(3) Fix(Tr ) = E P(�).
(4) E P(�) is closed and convex.

Theorem 5.3 Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let � : C × C −→ R be a bifunction satisfies the conditions (A1)–(A4) with
E P(�) 
= ∅. Let f : C −→ C be a Meir–Keeler contraction-type. For given x1 ∈ C,
let {xn} be a sequence defined by

{
�(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0,

xn+1 = αn f (xn) + (1 − αn)un, ∀n ≥ 1,
(5.2)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ rn = ∞.

Then the sequence {xn} defined by (5.2) converges strongly to an element x∗ ∈ E P(�).

Proof By using the same arguments and techniques as those of Theorem 3.2, we only
need show that there exists a number r > 0 such that

limn−→∞ ‖xn − Tr xn‖ = 0.

From definition of Tr , we have

�(Trn xn, y) + 1

rn
〈y − Trn xn, Trn xn − xn〉 ≥ 0, ∀y ∈ C, (5.3)

and

�(Tr Trn xn, y) + 1

rn
〈y − Tr Trn xn, Tr Trn xn − xn〉 ≥ 0, ∀y ∈ C. (5.4)

Substituting y = Tr Trn xn in (5.3) and y = Trn xn in (5.4). Then, add these two
inequalities and from the condition (A2), we obtain

〈

Trn xn − Tr Trn xn,
Tr Trn xn − xn

r
− Trn xn − xn

rn

〉

≥ 0,

and hence, for each r > 0,

‖Tr Trn xn − Trn xn‖2
r

≤
〈

Trn xn − Tr Trn xn,
1

rn
(xn − Trn xn)

〉

≤ ‖Tr Trn xn − Trn xn‖ 1

rn
‖Trn xn − xn‖,
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which implies that

‖Tr Trn xn − Trn xn‖ ≤ r‖Trn xn − xn‖
rn

.

It follows from the condition (C2) that

lim
n−→∞ ‖Tr Trn xn − Trn xn‖ = 0. (5.5)

Noticing un = Trn xn , we note that

‖xn+1 − Tr xn+1‖ ≤ ‖xn+1 − Trn xn‖ + ‖Trn xn − Tr Trn xn‖ + ‖Tr Trn xn − Tr xn+1‖
≤ 2‖xn+1 − un‖ + ‖Trn xn − Tr Trn xn‖

It follows from (5.5) that limn−→∞ ‖xn+1 − Tr xn+1‖ = 0, and hence

limn−→∞ ‖xn − Tr xn‖ = 0, ∀r > 0.

This completes the proof. ��

6 Application to Optimization Problem

Let H be a real Hilbert space and φ : H −→ (−∞,+∞] a proper convex lower
semicontinuous function. Then the subdifferential ∂φ of φ is defined as follows:

∂φ = {
y ∈ H : φ(z) ≥ φ(x) + 〈z − x, y〉, z ∈ H

} ∀x ∈ H.

From [40], we know that ∂φ is maximal monotone. It is easy to verify that 0 ∈ ∂φ

if and only if φ(x) = miny∈H φ(y) see also [40–42].
Consider a kind of optimization problem with a nonempty set of solutions

minx∈C h(x), (6.1)

whereh(x) is a convex and lower semicontinuous functional definedona closed convex
subset C of a real Hilbert space H . We denote by arg min(h) the set of solutions of
(6.1). Define a bifunction � : C × C −→ R by �(x, y) := h(y)− h(x). It is obvious
that E P(�) = arg min(h). In addition, it is easy to see that �(x, y) satisfies the
conditions (A1)–(A4) in the Sect. 5.

Using Theorem 5.3, we have the following result.

Theorem 6.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let h be a convex and lower semicontinuous functional on C such that arg min(h) 
= ∅.
Let f : C −→ C be a Meir–Keeler-type contraction. For given x1 ∈ C, let {xn} be a
sequence defined by
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⎧
⎪⎨

⎪⎩

un = arg miny∈C

{

h(y) + 1

2rn
‖y − xn‖2

}

,

xn+1 = αn f (xn) + (1 − αn)un, ∀n ≥ 1,

(6.2)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ rn = ∞.

Then the sequence {xn} defined by (6.2) converges strongly to an element x∗ ∈
arg min(h).

7 Application to Variational Inequalities

Let C be a nonempty, closed and convex subset of a real Hilbert space H and A :
C −→ H be a mapping. The classical variational inequality is to find x ∈ C such
that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (7.1)

The set of solutions of the classical variational inequality (7.1) is denoted by
V I (C, A). We recall that a mapping A : C −→ H is monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

The following lemmas found in [43].

Lemma 7.1 (Bose [43]) Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Let A be a continuous monotone mapping of C into H. Define a
bifunction � : C × C −→ R as follows:

�(x, y) := 〈Ax, y − x〉, ∀x, y ∈ C.

Then the following hold

(1) � is satisfies the conditions (A1)–(A4) in Sect. 5 and V I (C, A) = E P(�).
(2) for each x ∈ H, z ∈ C and r > 0,

�(z, y) + 1

r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C,⇐⇒ z = PC (x − r Ax),

where PC is projection operator from H into C.

Using Lemma 7.1 and Theorem 5.3, we have the following result.

Theorem 7.2 Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let A be a continuous monotone mapping of C such that V I (C, A) 
= ∅. Let
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f : C −→ C be a Meir–Keeler-type contraction. For given x1 ∈ C, let {xn} be a
sequence defined by

{
un = PC (xn − rn Axn),

xn+1 = αn f (xn) + (1 − αn)un, ∀n ≥ 1,
(7.2)

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) are sequences which satisfy the following
conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) limn−→∞ rn = ∞.

Then the sequence {xn} defined by (7.2) converges strongly to an element x∗ ∈
V I (C, A).
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