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1 Introduction

In this paper, all Hilbert spaces are separable over the fieldC of complex numbers. As
usual, N is the set of all non-negative integers, Z is the set of all integers, and B(H) is
the space of all continuous linear operators on a Hilbert space H.

An operator T is called hypercyclic if there is some vector x ∈ H such that
Orb(T, x) = {T nx : n ∈ N} is dense inH, where such a vector x is calledhypercyclic
for T . The first example of hypercyclic operator was given by Rolewicz in [11]. He
proved that if B is a backward shift on the Banach space �p(N), then λB is hypercyclic
for any complex number λ such that |λ| > 1. This leads us to the consideration of
scaled orbits. Later, Hilden and Wallen in [9] undertook the concept of supercyclic
operators. An operator T is called supercyclic if there is a vector x ∈ H such that
COrb(T, x) = {λT nx : λ ∈ C, n ∈ N} is dense in H, where x is called supercyclic
vector. For the more detailed information on both hypercyclicity and supercyclicity,
the reader may refer to [2,6,10].

In the same spirit, since the operator λB is not hypercyclic whenever |λ| ≤ 1, we
are motivated to study the disk orbit. The diskcyclicity phenomenon was introduced
by Zeana in her PhD thesis [13]. An operator T is called diskcyclic if there is a vector
x ∈ H such that the set DOrb(T, x) = {αT nx : n ≥ 0, α ∈ C, |α| ≤ 1} is dense in
H, where the vector x is called diskcyclic for T . The diskcyclic criterion—a sufficient
set of conditions for an operator to be diskcyclic—was created by Zeana in [13], who
showed that the diskcyclicity criterion is a mid way between the hypercyclicity and
the supercyclicity criterions. For more information on diskcyclicity, the reader may
refer to Bamerni and Kılıçman [1].

The following diagram shows the relationship among the cyclicity operators on a
Hilbert space:

Hypercyclicity ⇒ Diskcyclicity ⇒ Supercyclicity.

It was known that the hypercyclic operators are strictly infinite-dimensional phe-
nomena; however, the supercyclic operators exist on both one-dimensional and
infinite-dimensional Hilbert spaces [8].

This article consists of three sections. The Sect. 2 gives a brief review of some
works on the diskcyclicity. Some characterizations of diskcyclic bilateral weighted
shifts on �2(Z) will be described. We give an example of a diskcyclic operator that is
not hypercyclic and an example of a supercyclic operator that is not diskcyclic.

In Sect. 3, we represent another equivalent version to the diskcyclicity criterion, and
weuse it to show that a unilateral backwardweighted shift is hypercyclic if and only if it
is diskcyclic. Through Proposition 3.9, we prove the existence of diskcyclic operators
on every one-dimensional complex Hilbert spaces (A Hilbert space over the field
of complex numbers) . The diskcyclicity shares many structures with hypercyclicity
and supercyclicity, nevertheless not all. Based on the previous works, an operator is
hypercyclic (or supercyclic) if andonly if its inverse is hypercyclic [10] ( or supercyclic,
respectively). However, through Example 3.10 (Example 3.11 and Example 3.12),
we show that the adjoint (inverse) of diskcyclic operators need not be diskcyclic.
In addition, the somewhere density of the orbit of an operator(the cone generated
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A Review of Some Works in the Theory of Diskcyclic Operators 725

by orbit) implies the everywhere density of the orbit (cone generated by orbit) [4].
However, we show that the somewhere density of the disk orbit of an operator does
not imply to the everywhere density of it, by giving the Counterexample 3.14. Finally,
in Corollary 3.17, we give a sufficient condition for the somewhere density disk orbit
of an operator to be everywhere dense and we also give some spectral properties of
diskcyclic operators.

2 Preliminaries

We denote the disk orbit {αT nx : n ≥ 0, α ∈ C, |α| ≤ 1} by DOrb(T, x), the set of
all diskcyclic vectors by DC(T ), and the set of all diskcyclic operators on a Hilbert
space H by DC(H).

The following results are due to Zeana [13] unless otherwise stated.
The following proposition gives a necessary but not sufficient condition for the

diskcyclicity.

Proposition 2.1 If x is a diskcyclic vector for T , then

inf{α ∥∥T nx
∥
∥ : n ≥ 0, α ∈ [0, 1]} = 0 and sup{∥∥T nx

∥
∥ : n ≥ 0} = ∞.

Proof Since α ∈ [0, 1], then it is clear that inf{α ‖T nx‖ : n ≥ 0, α ∈ [0, 1]} = 0.
Towards a contradiction, assume that

sup
{

α
∥
∥T nx

∥
∥ : n ≥ 0, α ∈ [0, 1]} = m < ∞,

and y ∈ H such that ‖y‖ > m. Since T ∈ DC(H), then there exist sequences {nk} in
N and {αk} in C; |αk | ≤ 1 such that αkT nk x → y. It follows that ‖y‖ ≤ m which is
contradiction. 	

Proposition 2.2 If {Hi }ni=1 is a family of Hilbert spaces, Ti ∈ B(Hi ) and ⊕Ti ∈
DC(⊕Hi ), then Ti ∈ DC(Hi ) for all 1 ≤ i ≤ n.

Proof Let y = (y1, y2, . . .) ∈ ⊕Hi and x = (x1, x2, . . .) ∈ DC(⊕Ti ), then there
exist sequences {αk} in C; |αk | ≤ 1 and {nk} in N such that αk(⊕Ti )nk x → y, as
nk → ∞. It easily follows that αkT

nk
i xi → yi for all i . 	


Definition 2.3 A bounded linear operator T : H → H is called disk transitive if for
any pair U, V of non-empty open subsets of X , there exist α ∈ C; 0 < |α| ≤ 1, and
n ≥ 0 such that T n(αU ) ∩ V = φ or equivalently, there exist α ∈ C; |α| ≥ 1, and
n ≥ 0 such that T−n(αU ) ∩ V = φ.

Proposition 2.4 Let H and K be Hilbert spaces, T ∈ B(H) and S ∈ B(K ). Assume
that G : H → K is a bounded linear transformation with dense range and SG = GT .
If T ∈ DC(H), then S ∈ DC(K).

H T−−−−→ H
G

⏐
⏐
�

⏐
⏐
�G

K −−−−→
S

K
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726 N. Bamerni et al.

Proof Let x ∈ DC(T ). Then we have

DOrb(S,Gx) = {αSnGx : n ≥ 0, α ∈ C, |α| ≤ 1}
= {αGTnx : n ≥ 0, α ∈ C, |α| ≤ 1}
= G {αT nx : n ≥ 0, α ∈ C, |α| ≤ 1}
⊇ G

(

{αT nx : n ≥ 0, α ∈ C, |α| ≤ 1}
)

= G(H).

Since R(G) is dense in K, it follows that DOrb(S,Gx) is dense in K. Thus, S ∈
DC(K) with diskcyclic vector Gx . 	

Proposition 2.5 Let T, S ∈ B(H) such that ST = T S and R(S) be a dense set inH.
If x ∈ DC(T ), then Sx ∈ DC(T ).

Proof Since x ∈ DC(T ), then

DOrb(T, Sx) = {αT nSx : n ≥ 0, α ∈ C, |α| ≤ 1}
= {αST nx : n ≥ 0, α ∈ C, |α| ≤ 1}
= S {αT nx : n ≥ 0, α ∈ C, |α| ≤ 1}
⊇ S

(

{αT nx : n ≥ 0, α ∈ C, |α| ≤ 1}
)

= S(H) = R(S).

Thus, DOrb(T, Sx) is dense inH and hence Sx ∈ DC(T ). 	

From the last proposition, one can easily deduce that there are many diskcyclic

vectors if the operator has one diskcyclic vector.

Corollary 2.6 If x is a diskcyclic vector for T , then T nx is also a diskcyclic vector
for T for all n ∈ N.

Proposition 2.7 Every diskcyclic operator on H is disk transitive.

Proof Let T be a diskcyclic operator. Then, by the previous corollary, it is clear that
DC(T ) is a dense set. Assume that U and V are two open sets. Then there exist an
α ∈ C; |α| ≤ 1 and a non-negative integer N such that αT N x ∈ U . Also one can find
λ ∈ C, |λ| ≤ |α|, and n ≥ N such that λT nx ∈ V . Thus, (λ/α)T n−NU ∩ V = φ. 	

Proposition 2.8 Every disk transitive operator is diskcyclic and

DC(T ) =
⋂

k

⎛

⎜
⎜
⎝

⋃

λ∈C|λ|≥1

⋃

n

T−n(λBk)

⎞

⎟
⎟
⎠

is a dense Gδ set, where {Bk} is a countable open basis forH.
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Proof We have x ∈ DC(T ) if and only if {αT nx : n ≥ 0, |α| ≤ 1} is dense inH if and
only if for each k > 0, there exist α ∈ C; |α| ≤ 1, and n ∈ N such that αT nx ∈ Bk if

and only if x ∈
⋂

k

⎛

⎜
⎜
⎝

⋃

λ∈C|λ|≥1

⋃

n

T−n(λBk)

⎞

⎟
⎟
⎠
.

if and only if

DC(T ) =
⋂

k

⎛

⎜
⎜
⎝

⋃

λ∈C|λ|≥1

⋃

n

T−n(λBk)

⎞

⎟
⎟
⎠

.

Since DC(T ) can be written as a countable intersection of open sets, then DC(T ) is a
Gδ set. Moreover, it follows from the Baire category theorem that DC(T ) is dense if
and only if each open set Ak = ⋃

λ∈C|λ|≥1

⋃

n T
−n(λBk) is dense, i.e., if and only if for

each non-empty open set U and any k ∈ N one can find n and λ ∈ C; |λ| ≥ 1 such
that

U ∩ T−n(λBk) = φ i.e
1

λ
T nU ∩ Bk = φ

Since {Bk} is a countable open basis forH, this is equivalent to the disk transitivity of
T . 	

Corollary 2.9 Every vector in H can be written as a sum of two diskcyclic vectors
for a diskcyclic operator T .

The following proposition gives some equivalent assertions to diskcyclicity.

Proposition 2.10 Let T ∈ B(H). The following statements are equivalent.

1. T ∈ DC(H).
2. T is disk transitive.
3. For each x, y ∈ H, there exist sequences {xk} in H, {nk} in N, and {αk} in C;

0 < |αk | ≤ 1 such that xk → x and T nkαk xk → y.
4. For each x, y ∈ H and each neighborhood W of the zero inH, there exist z ∈ H,

n ∈ N, and α ∈ C; 0 < |α| ≤ 1 such that x − z ∈ W and T nαz − y ∈ W.

Proof 1 ⇔ 2: Follow from Proposition 2.7 and Proposition 2.8.
2 ⇒ 3: Let x, y ∈ H, and let Bk = B(x, 1/k), B ′

k = B(y, 1/k) for all k ≥ 1. From
part (2), there exist sequences {nk} in N, {αk} in C; 0 < |αk | ≤ 1 for all k ≥ 1 and
{xk} in H such that xk ∈ Bk and T nkαk xk ∈ B ′

k for all k ≥ 1. Then ‖xk − x‖ < 1/k
and ‖T nkαk xk − y‖ < 1/k for all k ≥ 1.

3 ⇒ 4: Follows immediately from part (3) by taking z = xk for a large enough
k ∈ N.

4⇒ 2: LetU and V be two non-empty open subset ofH. LetW be a neighborhood
for zero, pick x ∈ U and y ∈ V , so there exist z ∈ H, n ∈ N, α ∈ C, |α| ≤ 1
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728 N. Bamerni et al.

such that x − z ∈ W and T nαz − y ∈ W . It follows immediately that z ∈ U and
T nαz ∈ V . 	

Proposition 2.11 (Diskcyclicity criterion). Let T ∈ B(H) with the following proper-
ties.

1. There exist two dense sets X, Y inH and right inverse of T (not necessary bounded)
S such that S(Y ) ⊆ Y and T S = IY .

2. There is a sequence {nk} in N such that
(a) limk→∞ ‖Snk y‖ = 0 for all y ∈ Y ;
(b) limk→∞ ‖T nk x‖ ‖Snk y‖ = 0 for all x ∈ X, y ∈ Y .

Then T ∈ DC(H).

Proof The proof follows the lines of the proof of [2, Theorem 1.6] and [2, Theo-
rem 1.14]; therefore, we will skip it. 	


The characterizations of the bilateral weighted shifts that are diskcyclic are shown
in the following results.

Theorem 2.12 Let T be a bilateral forward weighted shift on the Hilbert spaceH =
�2(Z)with theweight sequence {wn}n∈Z. Then the following statements are equivalent.

1. T ∈ DC(H).
2. For all q ∈ N,

(a) lim sup
n→∞

min
q

{
h−1
∏

k=h−n

wk : |h| ≤ q

}

= ∞.

(b) lim inf
n→∞ max

q

⎧

⎨

⎩

∏ j+n−1
k= j wk

∏h−1
k=h−n wk

: |h| , | j | ≤ q

⎫

⎬

⎭
= 0.

3. T satisfies the diskcyclicity criterion.

Proof 1⇒ 2: The proof is similar to [12, Theorem 3.1] and observe that the condition
(2a) holds from the fact that |α| ≤ 1.

2 ⇒ 3: Let X = Y be the manifold spanned by {en}n∈Z and let x = ∑

| j |≤q x j e j
and y = ∑

| j |≤q y j e j . Assume that B is the right inverse of T , then

Ben = 1

wn−1
en−1,

and

∥
∥T nx

∥
∥ ≤ max

q

⎧

⎨

⎩

j+n−1
∏

k= j

wk : | j | ≤ q

⎫

⎬

⎭
‖x‖ ;

∥
∥Bn y

∥
∥ ≤ ‖y‖

minq
{
∏h−1

k=h−n wk : |h| ≤ q
} .
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A Review of Some Works in the Theory of Diskcyclic Operators 729

Thus,

∥
∥T nx

∥
∥
∥
∥Bn y

∥
∥ ≤ max

q

⎧

⎨

⎩

∏ j+n−1
k= j wk

∏h−1
k=h−n wk

: | j | , |h| ≤ q

⎫

⎬

⎭
‖x‖ ‖y‖ .

Let ε > 0 and q ∈ N. Assume there exists a positive integer n > 2q satisfies
(
∏ j+n−1

k= j wk

)

/
(
∏h−1

k=h−n wk

)

< ε and
∏h−1

k=h−n wk > 1/ε for all | j |, |h| ≤ q. Then

lim
n→∞

∥
∥T nx

∥
∥
∥
∥Bn y

∥
∥ = 0 and lim

n→∞
∥
∥Bn y

∥
∥ = 0.

3 ⇒ 1: Follows from Proposition 2.11. 	


Corollary 2.13 Let T ∈ DC(�2(Z)) be a forwardweighted shift withweight sequence
{wn}n∈Z. Then there is a sequence {nr } in N such that

1. lim
r→∞

(
nr∏

k=1

1

w−k

)

= 0,

2. lim
r→∞

(
nr∏

k=1

wk

)(
nr∏

k=1

1

w−k

)

= 0.

Proof By Theorem 2.12, take q = 0, then j = h = 0. Hence

lim sup
n→∞

( −1
∏

k=−n

wk

)

= ∞

and

lim inf
n→∞

(
n−1
∏

k=0

wk

)(
n
∏

k=1

1

w−k

)

= 0.

Thus, there is a sequence {nr } in N such that

lim
r→∞

(
nr∏

k=1

1

w−k

)

= 0

and

lim
r→∞

(
nr−1
∏

k=0

wk

)(
nr∏

k=1

1

w−k

)

= 0.
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730 N. Bamerni et al.

Let ε > 0, then there exists a positive integer m > 0 such that for all r > m

∣
∣
∣
∣
∣

(
nr−1
∏

k=0

wk

)(
nr∏

k=1

1

w−k

)∣
∣
∣
∣
∣
< ε

∣
∣
∣
∣

w0

wnr

∣
∣
∣
∣
.

Hence
∣
∣
∣
∣
∣

(
nr∏

k=1

wk

)(
nr∏

k=1

1

w−k

)∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

(
nr−1
∏

k=0

wk

)(
nr∏

k=1

1

w−k

)∣
∣
∣
∣
∣

∣
∣
∣
∣

wnr

w0

∣
∣
∣
∣
< ε.

Therefore,

lim
r→∞

(
nr∏

k=1

1

w−k

)

= 0 and lim
r→∞

(
nr∏

k=1

wk

)(
nr∏

k=1

1

w−k

)

= 0.

	

Proposition 2.14 Let T : �2(Z) → �2(Z) be an invertible forward weighted shift
with weight sequence {wn}n∈Z. Then T ∈ DC(�2(Z)) if and only if there exists a
sequence {nr } in N such that

1. lim
r→∞

nr∏

k=1

1

w−k
= 0;

2. lim
r→∞

(
nr∏

k=1

wk

)(
nr∏

k=1

1

w−k

)

= 0.

Proof The first part follows from Corollary 2.13.
Conversely, we will verify the diskcyclicity criterion. Let

X = Y =
{

x ∈ �2(Z) : x has only finitely many non−zero coordinates
}

,

and let B be the inverse of T . Let x, y ∈ X , then x = ∑

n∈Z xi ei and y = ∑

n∈Z yi ei
where xi , yi ∈ C for all i ∈ Z. We have to show that

lim
r→∞ ‖Bnr y‖ = 0 and lim

r→∞ ‖T nr x‖‖Bnr y‖ = 0 (1)

To fix this, since B and T are linear, then it is sufficient by triangle inequality to
assume that x = em and y = en for some m, n ∈ Z. However, by [2, Lemma 3.1]
and [2, Lemma 3.3], it is enough to consider the cases x = e1 and y = e0. Since
limr→∞ ‖Bnr e0‖ = limr→∞

∏nr
k=1 (1/w−k) = 0 and

lim
r→∞

∥
∥T nr e1

∥
∥
∥
∥Bnr e0

∥
∥ = lim

r→∞

(
nr∏

k=1

wk

)(
nr∏

k=1

1

w−k

)

= 0,

then T is diskcyclic. 	
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We should note that a bilateral weighted shift operator is invertible if and only if
there is a positive real number m such that |wn| ≥ m for all n ∈ Z.

The following corollary shows that Proposition 2.14 still holds for some further
general cases.

Corollary 2.15 Let T : �2(Z) → �2(Z) be a bilateral forward weighted shift with
the weight sequence {wn}n∈Z and assume that there exists a positive integer m > 0
such that wn ≥ m for all n < 0 (or for all n > 0). Then T ∈ DC(�2(Z)) if and only
if there is a sequence {nr } in N such that

1. lim
r→∞

nr∏

k=1

1

w−k
= 0;

2. lim
r→∞

(
nr∏

k=1

wk

)(
nr∏

k=1

1

w−k

)

= 0.

Proof The proof of “if ” part follows from Theorem 2.12 and it is similar to the proof
of [5, Theorem 4.1]; therefore, we will skip the proof.

The “only if” part follows from Corollary 2.13. 	

Since the bilateral weighted backward shifts are unitarily equivalent to the bilateral

weighted forward shifts, then the above results are extended to backward shift operators
and their proofs can be proved by similar steps.

Theorem 2.16 Let T be a bilateral backward weighted shift on the Hilbert space
H = �2(Z) with the weight sequence {wn}n∈Z. Then the following statements are
equivalent.

1. T ∈ DC(H).
2. For all q ∈ N;

(a) lim sup
n→∞

min
q

{
h+n
∏

k=h+1

wk : |h| ≤ q

}

= ∞;

(b) lim inf
n→∞ max

q

⎧

⎨

⎩

∏ j
k= j+1−n wk
∏h+n

k=h+1 wk
: |h| , | j | ≤ q

⎫

⎬

⎭
= 0.

3. T satisfies the diskcyclicity criterion.

Corollary 2.17 Let T ∈ DC(�2(Z)) be a backward weighted shift with the weight
sequence {wn}n∈Z. Then there is a sequence {nr } in N such that

1. lim
r→∞

(
nr∏

k=1

1

wk

)

= 0;

2. lim
r→∞

(
nr∏

k=1

w−k

)(
nr∏

k=1

1

wk

)

= 0.

Proposition 2.18 Let T : �2(Z) → �2(Z) be an invertible backward weighted shift
with the weight sequence {wn}n∈Z. Then T ∈ DC(�2(Z)) if and only if there exists a
sequence {nr } in N such that
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732 N. Bamerni et al.

1. lim
r→∞

nr∏

k=1

1

wk
= 0;

2. lim
r→∞

(
nr∏

k=1

w−k

)(
nr∏

k=1

1

wk

)

= 0.

Corollary 2.19 Suppose T : �2(Z) → �2(Z) is a bilateral backward weighted shift
with the weight sequence {wn}n∈Z and there exists a positive integer m > 0 such that
wn ≥ m for all n < 0 (or for all n > 0). Then T ∈ DC(�2(Z)) if and only if there is
a sequence {nr } in N such that

1. lim
r→∞

nr∏

k=1

1

wk
= 0;

2. lim
r→∞

(
nr∏

k=1

w−k

)(
nr∏

k=1

1

wk

)

= 0.

Now, we will give an example of a diskcyclic operator which is not hypercyclic.

Example 2.20 Let T : �2(Z) → �2(Z) be the bilateral forward weighted shift with
the weight sequence

wn =
{

2 if n ≥ 0,

3 if n < 0.

Then T is diskcyclic but not hypercyclic.

Proof By applying Corollary 2.15 and taking nr = n (the set of all natural numbers).
Observe that

lim
n→∞

n
∏

k=1

1

w−k
= lim

n→∞

n
∏

k=1

1

3
= lim

n→∞
1

3n
= 0;

and

lim
n→∞

(
n
∏

k=1

wk

)(
n
∏

k=1

1

w−k

)

= lim
n→∞

(
n
∏

k=1

2

)(
n
∏

k=1

1

3

)

= lim
n→∞(2n)

(
1

3n

)

= 0.

Thus by Corollary 2.15, T is diskcyclic. On the other hand, since for all increasing
sequence nr of positive integers

lim
r→∞

(
nr∏

k=1

wk

)

= lim
r→∞

(
nr∏

k=1

2

)

= lim
n→∞(2nr ) = ∞,

from [5, Theorem 4.1.], T cannot be hypercyclic. 	

The following example gives us an operator which is supercyclic but not diskcyclic.

Example 2.21 Let T : �2(Z) → �2(Z) be a bilateral forward weighted shift with the
weight sequence
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wn =
{

1
3 if n ≥ 0,
1
2 if n < 0.

Then T is supercyclic but not diskcyclic.

Proof By taking nr = n, we have

lim
n→∞

(
n
∏

k=1

wk

)(
n
∏

k=1

1

w−k

)

= lim
n→∞

(
n
∏

k=1

1

3

)(
n
∏

k=1

2

)

= lim
n→∞

(
1

3n

)

(2n) = 0.

From [5, Theorem 4.1], T is supercyclic. However, for all increasing sequence nr of
positive integers, we have

lim
r→∞

nr∏

k=1

1

w−k
= lim

r→∞

nr∏

k=1

2 = lim
r→∞ 2nr = ∞.

Hence, by Corollary 2.15, T is not diskcyclic. 	

The following results are noteworthy spectral properties of diskcyclic operators.

Proposition 2.22 Let T ∈ DC(H), then T ∗ has at most one eigenvalue, and its
modules is greater than 1.

Proof Since T ∈ SC(H), then σp(T ∗) contains at most one non-zero eigenvalue; say
λ [7, Proposition 3.1.]. Hence, there is a unit vector z ∈ H such that T ∗z = λz. Let
x ∈ DC(T ). Then it is easy to prove that

{∣
∣
〈

μT nx, z
〉∣
∣
∣
∣ n ≥ 0, μ ∈ C; |μ| ≤ 1

}

is dense inR+ ∪ {0} . (2)

Note that for all n ≥ 1, |〈μT nx, z〉| ≤ |μ|n |λ|n |〈x, z〉|. If we suppose |λ| ≤ 1, then
∣
∣
〈

μT nx, z
〉∣
∣ ≤ |〈x, z〉| ,

which contradicts (2). Therefore, we reach the desired result. 	

Corollary 2.23 Let T ∈ B(H). If σ(T ) has a connected component σ such that
σ ⊂ B(0, 1), then T /∈ DC(H).

Proof Towards a contradiction, suppose that a diskcyclic operator T has a connected
component σ such that σ ⊂ B(0, 1). Then, by Riesz decomposition Theorem, T =
T1 ⊕ T2 such that σ(T1) = σ . It follows that DOrb(T1, x) is bounded for all x ∈ H
and hence T1 can not be dense inH, a contradiction to Proposition 2.2. 	


3 Main Results

We adjust the diskcyclicity criterion in order to obtain another version.

Theorem 3.1 (Second Diskcyclicity Criterion). Let T ∈ B(H). If there exists an
increasing sequence of integers {nk}k∈N and two dense sets D1, D2 ∈ H such that
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734 N. Bamerni et al.

(a) For each y ∈ D2, there exists a sequence {xk} in H such that xk → 0, and
T nk xk → y,

(b) ‖T nk x‖ ‖xk‖ → 0 for all x ∈ D1,

then T is diskcyclic.

Proof We will verify Proposition 2.11. Since for each y ∈ D2 there exists a sequence
{xk} inH such that T nk xk → y, then there are maps S which are right inverses of T on
D2 such that xk = Snk y for some increasing sequence of integers {nk}k∈N. Moreover,
the condition (2) of Proposition 2.11 directly follows. 	

Proposition 3.2 Both the diskcyclicity criteria are equivalent to each other.

Proof If T satisfies the diskcyclicity criterion then, by setting Snk y = xk , we get the
desired result.

The other implication follows from Theorem 3.1. 	

Now we illustrate the Second Diskcyclicity Criterion with the following example.

Example 3.3 Let T = 2B, where B is the unilateral backward shift on �2(N). Then
T is diskcyclic.

Proof Let X = Y be the dense set in �2(N) such that all except finitely many coordi-
nates of each element of X are zero and let nk = k (the set of all natural numbers).
Then we will achieve conditions (a) and (b) of Theorem 3.1. For each y ∈ Y assume
that xk = ((1/2)F)k y, where F is the unilateral forward shift on �2(N). Therefore,
‖xk‖ = ∥

∥
(

1/2k
)

Fk y
∥
∥ → 0 as k → ∞. Moreover, T kxk = (2B)k(F/2)k y = y.

Now, since
∥
∥Bkx

∥
∥ = 0 eventually for a large enough k, then we have

∥
∥
∥T kx

∥
∥
∥ ‖xk‖ =

∥
∥
∥2k Bkx

∥
∥
∥

∥
∥
∥
∥

1

2k
Fk y

∥
∥
∥
∥

=
∥
∥
∥Bkx

∥
∥
∥

∥
∥
∥Fk y

∥
∥
∥ = 0.

It follows that T satisfies the Second Diskcyclicity Criterion and so T is a diskcyclic
operator. 	


In general case, we have the following example.

Example 3.4 Let T = aB, where B is the unilateral backward shift on �2(N) and
|a| > 1. Then T satisfies the Second Diskcyclicity Criterion.

The next example shows that not every multiple of the unilateral backward shift is
diskcyclic.

Example 3.5 If T = aB, where |a| ≤ 1, and B is the unilateral backward shift on
�2(N), then T is not diskcyclic.

Proof Since T k(en) = aken−k , where {en}n∈N is the canonical basis of �2(N), then
∥
∥T k(en)

∥
∥ = |a|k ≤ 1. It follows that α

∥
∥T k(x)

∥
∥ → 0 for all x ∈ �2(N) and α ∈

C, |α| ≤ 1. Thus, DOrb(T, x) is bounded and cannot be dense in �2(N). 	
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From Example 3.4, Example 3.5, and [10, Corollary 1.6], we can easily deduce the
following corollary.

Corollary 3.6 Amultiple of a unilateral backward shift on �2(N) is hypercylcic if and
only if it is diskcyclic.

The following corollary follows directly from [2, Theorem 1.40] and Corollary 3.6.

Corollary 3.7 If B is a unilateral backwardweighted shift withweight sequence {wn},
then B is diskcyclic if and only if

lim sup
n→∞

(w1, w2 . . . wn) = ∞.

The following example shows that the diskcyclic operators exist on the complex
line C

Example 3.8 Let T ∈ B(C) defined as T (x) = 2x , then T is diskcyclic on C

Proof We have DOrb(T, x) = {α2nx : n ≥ 0 and |α| ≤ 1}. Assume that x = 1,
then DOrb(T, 1) = {α2n : n ≥ 0 and |α| ≤ 1}. Let z = a + bi ∈ C where a, b ∈ R,

then choose k ∈ N in which 2k ≥ √|a|2 + |b|2. It follows that z = 2k
(

a
2k

+ b
2k
i
)

∈
DOrb(T, 1). Thus, T is diskcyclic operator. 	

Remark 1 Every two n-dimensional Hilbert spaces over the field of complex numbers
are isomorphic.

The following proposition shows the existence of diskcyclic operators on every
one-dimensional complex Hilbert space.

Proposition 3.9 There exist a diskcyclic operator T on a non-trivial complex Hilbert
space H if and only if dim(H) = 1 or dim(H) = ∞
Proof Assume that T is diskcyclic operator, then T is supercyclic operator and hence
by [9], dim(H) = 1 or dim(H) = ∞.

Conversely, follow from Example 3.8, Remark 1 and [3]. 	

It can be easily checked that the adjoint of the operator in Example 3.8 is diskcyclic.

However, this property is not true in general as the following example.

Example 3.10 Let T be defined on �2(Z) as in Example 2.20. Then T is diskcyclic
but its adjoint is not.

Proof From Example 2.20, we have that T is diskcyclic. Now, we will show that T ∗ is
not diskcyclic. It is clear that T ∗en = Ben , where B is the bilateral backward weighted
shift with weight sequence

zn =
{

2 if n > 0,

3 if n ≤ 0.
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Then for all increasing sequence nr of positive integers, we have

lim
r→∞

nr∏

k=1

1

zk
= lim

r→∞

nr∏

k=1

1

2
= lim

nr→∞
1

2nr
= 0,

however,

lim
r→∞

(
nr∏

k=1

z−k

)(
nr∏

k=1

1

zk

)

= lim
r→∞

(
nr∏

k=1

3

)(
nr∏

k=1

1

2

)

= lim
r→∞

(
3

2

)nr
= ∞.

From Corollary 2.19, it follows that T ∗ is not diskcyclic. 	

It has been shown that an invertible T ∈ B(H) is hypercyclic (or supercyclic) if and

only if T−1 is hypercyclic (or supercyclic, respectively). However, this equivalence is
not necessarily true for the diskcyclicity case.

Example 3.11 Let T be defined on C as in Example 3.8, then T−1 is not diskcyclic.

Proof Since T−1x = (1/2) x , then DOrb(T−1, y) is bounded for all y ∈ C and
hence cannot be dense in C. It follows that T−1 is not a diskcyclic operator. 	


Here, we recall that in the infinite-dimensional spaces, there are also diskcyclic
operators whose inverses are not diskcyclic.

Example 3.12 Let T be defined on �2(Z) as in Example 2.20, then T is diskcyclic,
but its inverse is not.

Proof Since |wn| ≥ 2 for all n ∈ Z, then T is invertible. The inverse of T is the
bilateral backward weighted shift with the weight sequence

zn = 1

wn−1
=
{

1
2 if n > 0,
1
3 if n ≤ 0.

For all increasing sequence nr of positive integers, we have

lim
r→∞

nr∏

k=1

1

zk
= lim

r→∞

nr∏

k=1

2 = lim
r→∞ 2nr = ∞.

By Corollary 2.19, we have that T−1 is not a diskcyclic operator. 	

There are diskcyclic operators, in which their inverses are also diskcyclic as in the

next example.

Example 3.13 Let F be a bilateral forward weighted shift on �2(Z) with weight
sequence

wn =
{

1
2 if n ≥ 0,

3 if n < 0.

Then both F and F−1 are diskcyclic.
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Proof Since |wn| ≥ 1/2 for all n ∈ Z, then F is invertible. Also we have

lim
n→∞

n
∏

k=1

1

w−k
= lim

n→∞

n
∏

k=1

1

3
= lim

n→∞
1

3n
= 0,

and

lim
n→∞

(
n
∏

k=1

wk

)(
n
∏

k=1

1

w−k

)

= lim
n→∞

(
n
∏

k=1

1

2

)(
n
∏

k=1

1

3

)

= lim
n→∞

1

2n3n
= 0.

It follows from Corollary 2.15 that F is diskcyclic. Moreover, the inverse of F is the
bilateral backward weighted shift Ben = (1/wn−1) en−1 with weight sequence

zn = 1

wn−1
=
{

2 if n > 0,
1
3 if n ≤ 0.

Since

lim
n→∞

n
∏

k=1

1

zk
= lim

n→∞

n
∏

k=1

1

2
= lim

n→∞
1

2n
= 0,

and

lim
n→∞

(
n
∏

k=1

z−k

)(
n
∏

k=1

1

zk

)

= lim
n→∞

(
n
∏

k=1

1

3

)(
n
∏

k=1

1

2

)

= lim
n→∞

1

2n3n
= 0,

by Corollary 2.19, we have that F−1 is diskcyclic. 	

Bourdon and Feldman in [4] proved that if Orb(T, x) (orCOrb (T, x)) is some-

where dense, then Orb(T, x) (orCOrb (T, x) respectively) is everywhere dense set.
However, If DOrb(T, x) is somewhere dense, then the situation is different.

Example 3.14 Let T ∈ B(C) defined as T (y) = (1/2)y. Then there is a vector x ∈ C

such that DOrb(T, x) is somewhere dense in C but not everywhere dense in C.

Proof Let x = 1, it is clear that DOrb(T, 1) = {z : z ∈ C, |z| ≤ 1}. Then we have

(

DOrb(T, 1)
)◦ = {z : z ∈ C, |z| < 1} = φ

By Example 3.11, DOrb(T, 1) is not everywhere dense in C. 	

The idea of the above example is obviously due to the fact that the disk orbit of any

operator on C contains at least a non-trivial closed disk which can never be nowhere
dense set. In other words, the disk orbit of any operator onC is somewhere dense inC.
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Therefore, if the somewhere density of a disk orbit implied to the everywhere density
of the disk orbit, any operator on C would be diskcyclic, which is a contradiction to
Example 3.14.

The following lemma will be our main tool to prove the next theorem.

Lemma 3.15 If T ∈ B(H) is invertible and

A={x ∈H : ∥∥x−αi T
ni y
∥
∥→0 for some increasing sequence {ni } ⊂ N andαi ∈D}

is a non-trivial subset of H, then A is an invariant closed subset of H under both T
and T−1.

Proof Let us choose x ∈ A, then

∥
∥
∥T (x) − αi T

ni+1y
∥
∥
∥ = ∥

∥T
(

αi T
ni y − x

)∥
∥

≤ ‖T ‖ ∥∥αi T
ni y − x

∥
∥ → 0.

It follows that T x ∈ A. By the same way

∥
∥
∥T−1(x) − αi T

ni−1y
∥
∥
∥ =

∥
∥
∥T−1 (x − αi T

ni y
)
∥
∥
∥

≤
∥
∥
∥T−1

∥
∥
∥

∥
∥x − αi T

ni y
∥
∥ → 0.

Thus, T−1x ∈ A.
Now we shall show that H\A is open. Let us choose v ∈ H\A, then there is an

ε > 0 such that for any large positive number N , we have ‖v − αi T n y‖ > ε for all
n ≥ N and all αi ∈ D. Suppose that B(v, ε) = {x ∈ H : ‖v − x‖ < ε}. Then it is
clear that ‖x − αi T n y‖ > ε for all x ∈ B(v, ε) and so B(v, ε) ⊆ H\A. It follows
that A is a closed set and invariant under both T and T−1. 	

Theorem 3.16 Let T ∈ B(H) be an invertible operator, and let us suppose that we
have the following properties.

1. Both T and T−1 are diskcyclic operators.
2. There is a vector y inH such that DOrb(T, y) = DOrb(T−1, y) = H.

3. There is a vector y inH such that
{

DOrb(T, y) ∪ DOrb(T−1, y)
} = H.

4. Either T or T−1 is diskcyclic operator.

Then 1 ⇔ 2 ⇒ 3 ⇔ 4.

Proof 1 ⇒ 2: Let T and T−1 be diskcyclic operators. Since the set of all diskcyclic
vectors is dense Gδ , then by the Baire Category Theorem, we deduce that 1 ⇒ 2.

The implications 2 ⇒ 1,2 ⇒ 3, and 4 ⇒ 3 are trivial.

3 ⇒ 4: By hypothesis, we have
{

DOrb(T, y) ∪ DOrb(T−1, y)
} = H, the Baire

Category Theorem indicates that eitherDOrb(T, y) orDOrb(T−1, y) has non-empty
interior. If one of them, sayDOrb(T, y) is nowhere dense, thenDOrb(T−1, y) = H,
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and therefore T−1 is diskcyclic. Otherwise, if DOrb(T, y) is somewhere dense, let
us find a set A exactly as in Lemma 3.15, p be a positive integer , 0 = |αp| ≤ 1 and
ε > 0 such that B(αpT p y, ε) ⊆ DOrb(T, y). It follows that there exist an increasing
sequence ni ; ni ≥ p ≥ 0 for all i ≥ 0 and a sequence αi ∈ D such that

∥
∥αpT

p y − αi T
ni y
∥
∥ → 0 as i → ∞.

It follows that αpT p y ∈ A. Since A is invariant under both operators T and T−1,
then αp y ∈ T−p(A) ⊆ A and T n(αp y) ∈ T n(A) ⊆ A for all n ∈ N. Therefore,

H = {

DOrb(T, y) ∪ DOrb(T−1, y)
} = A ⊆ DOrb(T, y)

Thus, T is diskcyclic. 	

Corollary 3.17 Let T be an invertible operator and, let y ∈ H such thatDOrb(T, y)
is somewhere dense and DOrb(T, y) ∪ DOrb(T−1, y) = H. Then DOrb(T, y) is
everywhere dense in H.

The following proposition gives us some characterizations of the spectrum of
diskcyclic operators.

Proposition 3.18 Let T ∈ DC(H). Then we have the following properties.

1. σ(T ) ∪ ∂(rD) is connected for some r ≥ 1.
2. If α ∈ σp(T ∗) then dimKer(T ∗ − α)k = 1 for all k ≥ 1.

Proof First we prove (1). Since T ∈ SC(H) then, from [7, Proposition 3.1], we have
σ(T ) ∪ ∂(rD) is connected for some r > 0. Moreover, from Corollary 2.23, we have
σ(T ) ⊂ (D)◦. By [2, Lemma 1.25], it is clear that σ(T ) ∪ ∂(rD) is connected for
some r ≥ 1. For part (2), the proof follows immediately from [7, Proposition 3.1.] 	
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