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Abstract This paper deals with certain algebraic systems called polygroups. A
polygroup is a completely regular, reversible in itself hypergroup. The concept of
topological polygroups is a generalization of the concept of topological groups. In
this paper, we present the concept of topological hypergroups and prove some proper-
ties. Then, we define the notion of topological polygroups. By considering the relative
topology on subpolygroups we prove some properties of them. Finally, the topological
isomorphism theorems of topological polygroups are proved.
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1 Basic Definitions

Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H) is called a
hyperoperation, where P∗(H) is the family of non-empty subsets of H . The couple
(H, ◦) is called a hypergroupoid. In the above definition, if A and B are two non-empty
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subsets of H and x ∈ H , then we define A ◦ B = ⋃
a∈A,b∈B a ◦ b, x ◦ A = {x} ◦ A,

and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is called a semihypergroup if for every
x, y, z ∈ H , we have x ◦ (y ◦ z) = (x ◦ y) ◦ z and is called a quasihypergroup if for
every x ∈ H , we have x ◦ H = H = H ◦ x . This condition is called the reproduction
axiom. The couple (H, ◦) is called a hypergroup if it is a semihypergroup and a
quasihypergroup [5,21].

For all n > 1, we define the relation βn on a semihypergroup H , as follows:

a βn b ⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏

i=1
xi ,

and β = ⋃∞
i=1 βn , where β1 = {(x, x) | x ∈ H} is the diagonal relation on H . This

relation was introduced by Koskas [20] and studied mainly by Corsini, Davvaz, Freni,
Leoreanu, Vougiouklis, and many others. Suppose that β∗ is the smallest equivalence
relation on a hypergroup (semihypergroup) H such that the quotient H/β∗ is a group
(semigroup). If H is a hypergroup, then β = β∗ [13]. The relation β∗ is called as
the fundamental relation on H , and H/β∗ is called as the fundamental group. Let
(H, ◦) be a semihypergroup and A be a non-empty subset of H . We say that A is a
complete part of H if for any non-zero natural number n and for all a1, · · · , an of H ,
the following implication holds:

A ∩
n∏

i=1
ai �= ∅ 
⇒

n∏

i=1
ai ⊆ A.

The complete partswere introduced for thefirst timebyKoskas [20]. Then, this concept
was studied by many authors, for example, see [5,6,10,11,17,22,23]. Till now, only
a few papers treated the notion of topological hyperstructures, in the classical and
fuzzy case, see [2,7,8,14,16]. Let (H1, ◦) and (H2, ∗) be two hypergroups. A map
f : H1 −→ H2, is called

• a homomorphism if for all x, y of H , we have f (x ◦ y) ⊆ f (x) ∗ f (y);
• a good homomorphism if for all x, y of H , we have f (x ◦ y) = f (x) ∗ f (y);
• an isomorphism if it is a homomorphism, and its inverse f −1 is a homomorphism,
too.

A special subclass of hypergroups is the class of polygroups.We recall the following
definition from [3]. A polygroup is a system P =< P, ◦, e,−1 >, where ◦ : P×P −→
P∗(P), e ∈ P , −1 is a unitary operation on P and the following axioms hold for all
x, y, z ∈ P:

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z);
(2) e ◦ x = x ◦ e = x ;
(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x .

The following elementary facts about polygroups follow easily from the axioms: e ∈
x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x , and (x ◦ y)−1 = y−1 ◦ x−1. A non-empty
subset K of a polygroup P is a subpolygroup of P if and only if a, b ∈ K implies
a ◦ b ⊆ K and a ∈ K implies a−1 ∈ K . The subpolygroup N of P is normal in P if
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Topological Polygroups 709

and only if a−1 ◦ N ◦ a ⊆ N for all a ∈ P . For a subpolygroup K of P and x ∈ P ,
denote the right coset of K by K ◦ x and let P/K be the set of all right cosets of K in
P . If N is a normal subpolygroup of P , then (P/N ,�, N ,−I ) is a polygroup where
N ◦ x � N ◦ y = {N ◦ z | z ∈ N ◦ x ◦ y} and (N ◦ x)−I = N ◦ x−1. For more details
about polygroups we refer to [1,9,10,18].

Now, we recall the definition of a topological group from [15]. A topological group
is a group G together with a topology on G that satisfies the following two properties:

(1) the mapping p : G × G −→ G defined by p(g, h) = gh is continuous when
G × G is endowed with the product topology;

(2) the mapping inv : G −→ G defined by inv(g) = g−1 is continuous.

We remark that item (1) is equivalent to the statement that, whenever U ⊆ G is open,
and g1g2 ∈ U , then there exist open sets V1 and V2 such that g1 ∈ V1, g2 ∈ V2, and
V1V2 = {v1v2 | v1 ∈ V1, v2 ∈ V2} ⊆ U . Also, item (2) is equivalent to showing that
whenever U ⊆ G is open, then U−1 = {g−1 | g ∈ U } is open.

Let X be a topological space and ∼ an equivalence relation on X . For every x ∈ X ,
denote by [x] its equivalence class. The quotient space of X modulo ∼ is given by the
set X/ ∼= {[x] | x ∈ X}. We have the projection map p : X −→ X/ ∼, x �→ [x]
and we equip X/ ∼ with the topology: U ⊆ X/ ∼ is open if and only if p−1(U ) is
an open subset of X .

In this paper, we introduce the concept of topological hypergroups and topological
polygroups as a generalization of topological groups. Let (P, ◦, e,−1) be a polygroup
and (P, τ ) be a topological space such that the mappings (x, y) �→ x ◦ y from P × P
to P∗(P) and x �→ x−1 from P to P are continuous with respect to product topology
on P × P and the topology τ ∗ on P∗(P) induced by τ . By considering the relative
topology on subpolygroups we prove some properties about them. In the last section,
we prove the isomorphism theorems on topological polygroups.

2 Topological Algebraic Hyperstructures

Let (H, τ ) be a topological space. The following lemma give us a topology on P∗(H)

induced by τ .

Lemma 2.1 [16] Let (H, τ ) be a topological space. Then, the family B consisting of
all sets SV = {U ∈ P∗(H) | U ⊆ V,U ∈ τ } is a base for a topology on P∗(H). This
topology is denoted by τ ∗.

Let (H, τ ) be a topological space. Then, we can consider the product topology on
H × H and the topology τ ∗ on P∗(H).

Definition 2.2 Let (H, ◦) be a hypergroup and (H, τ ) be a topological space. Then,
the system (H, ◦, τ ) is called a topological hypergroup if

(1) the mapping (x, y) �→ x ◦ y, from H × H −→ P∗(H) is continuous;
(2) the mapping (x, y) �→ x/y, from H × H −→ P∗(H) is continuous, where

x/y = {z ∈ H | x ∈ z ◦ y}.
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710 D. Heidari et al.

Let H be a hypergroup and A and B be non-empty subsets of H . Then, A/B =⋃{a/b | a ∈ A, b ∈ B}. Let (H, ◦, τ ) be a topological hypergroup and β∗ be the
fundamental relation on H . Then, (H/β∗, τ ) is a topological space, where τ is the
quotient topology induced by the natural mapping π : H −→ H/β∗. That is A ⊆
H/β∗ is open in H/β∗ if andonly ifπ−1(A) is open in H . Let (H, ◦, τ )be a topological
hypergroup such that every open subset of H is a complete part. Then, the natural
mapping π : H −→ H/β∗ is an open mapping [14].

Theorem 2.3 [14] Let (H, ◦, τ ) be a topological hypergroup such that every open
subset of H is a complete part. Then, (H/β∗,⊗, τ ) is a topological group.

Theorem 2.4 Let (H, ◦, τ ) be a topological hypergroup and U ∈ τ such that U is a
complete part. Then, U = ⋃

u∈U β∗(u).

Proof Obviously,U ⊆ ⋃
u∈U β∗(u). Suppose that u ∈ U and x ∈ β∗(u). Then, there

exist a1, · · · , an ∈ H such that {x, u} ⊆ ∏n
i=1 ai . Since U is a complete part, it

follows that x ∈ ∏n
i=1 ai ⊆ U and so β∗(u) ⊆ U . Therefore, U = ⋃

u∈U β∗(u). ��
Lemma 2.5 Let (H, ◦) be a hypergroup and β∗ be the fundamental relation on H.
Then, B = {β∗(x) | x ∈ H} is a base for a topology on H and every open subset of
H is a complete part.

Proof Since H = ⋃
x∈H β∗(x), it follows that B is a base for a topology on H . It is

easy to see that every open subset of H is a complete part. ��
We denote the topology in the previous lemma by τβ .
Let τ1 and τ2 be two topologies on the same set X . Then, we say that τ1 is stronger

or finer than τ2 if τ1 ⊃ τ2, and that then τ2 is weaker or coarser than τ1.

Theorem 2.6 Let (H, ◦) be a hypergroup and β∗ be the fundamental relation on H.
Then, τβ is the finest topology on H such that H becomes a topological hypergroup
and every open subset of H is a complete part.

Proof Firstly, we prove that (H, ◦, τβ) is a topological hypergroup. Suppose that
x, y ∈ H such that x ◦ y ⊆ U for some open subset U of H . So by Theorem 2.4, we
have U = ⋃

u∈U β∗(u). Thus, there exists u ∈ U such that x ◦ y ⊆ β∗(u). Hence,
β∗(x) ◦ β∗(y) ⊆ β∗(u) ⊆ U and β∗(x) and β∗(y) are open subsets of H containing
x and y, respectively. Therefore, the hyperoperation ◦ is continuous.

Similarly, we can prove that if x/y ⊆ U for some open subset U and x, y ∈ H ,
then β∗(x)/β∗(y) ⊆ U .

Now, suppose that τ is a topology on H such that every open subset of (H, τ ) is a
complete part and (H, ◦, τ ) is a topological hypergroup. Let x ∈ U andU ∈ τ . Then,
by Theorem 2.4, we have U = ⋃

u∈U β∗(u). Thus, β∗(x) ⊆ U and β∗(x) is an open
subset of (H, τβ). Therefore, τβ is the finest topology on H such that H becomes a
topological hypergroup and every open subset of H is a complete part. ��
Theorem 2.7 Let (H, ◦, τ ) be a T0 topological hypergroup such that every open
subset of H is a complete part. Then, H is a group.
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Topological Polygroups 711

Proof We prove that |x ◦ y| = 1 for every x, y ∈ H . Assume for the contradiction that
a, b ∈ x ◦ y and a �= b. Since H is T0, it follows that there exists an open subsetU of
H containing exactly one of a or b. Let a ∈ U and b /∈ U . Then, a ∈ β∗(u) for some
u ∈ U . Thus, b ∈ β∗(b) = β∗(a) = β∗(u) hence, b ∈ U , and it is a contradiction. So
|x ◦ y| = 1. Therefore, H is a group. ��
Now, we introduce the concept of topological polygroups and prove some properties.
Let P be a polygroup and τ a topology on P . Then, as in topological hypergroup we
consider a topology τ ∗ on P∗(P) which is generated by B = {SV | V ∈ τ }, where
SV = {U ∈ P∗(P) | U ⊆ V,U ∈ τ }.

In the following we use the topology τ ∗ on P∗(P) and the product topology on
P × P .

Definition 2.8 Let P = (P, ◦, e,−1 ) be a polygroup and (P, τ ) be a topological
space. Then, the system P = (P, ◦, e,−1 , τ ) is called a topological polygroup if the
mappings ◦ : P × P −→ P∗(P) and −1 : P −→ P are continuous.

Obviously, every topological group is a topological polygroup. Now, we give some
other examples of topological polygroups.

Example 1 Every polygroup equipped with discrete or indiscrete topology is a topo-
logical polygroup.

Example 2 Let P be a polygroup and β∗ be the fundamental relation of P . Then,

τ =
{

⋃

u∈U
β∗(u) | U ⊆ P

}

∪ {∅}

is a topology on P , and (P, ◦, e,−1, τ ) is a topological polygroup.

In [4], an extension of polygroups by polygroups has been introduced in the fol-
lowing way: Suppose A and B are polygroups whose elements have been renamed
so that A ∩ B = {e}, where e is the identity of both A and B. A new system
A[B] = (M, ∗, e,I ) called as the extension of A by B, is formed in the following
way: Set M = {x | x ∈ A, x �= e} ∪ {x | x ∈ B, x �= e} ∪ {e} and let eI = e,
x I = x−1 (in the appropriate system), e ∗ x = x ∗ e = x for all x ∈ M , and for all
x, y ∈ {x | x ∈ M, x �= e}:

x ∗ y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x .y if x, y ∈ A
x if x ∈ B, y ∈ A
y if x ∈ A, y ∈ B
x .y if x, y ∈ B, y �= x−1

x .y ∪ A if x, y ∈ B, y = x−1.

The extension A[B] is a polygroup.
Theorem 2.9 Let (A, ◦1, e1,−1 ) be a polygroup and (B, ◦2, e2,−1 , τB) be a topo-
logical polygroup. Then, there is a topology on A[B] such that A[B] is a topological
polygroup.
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Proof We define a topology on A[B] as follows

τA[B] = {U ∪ A | U ∈ τB} ∪ {∅}.

Then, (A[B], τA[B]) is a topological space. Suppose that x ∈ A[B] and U ∪ A be an
open subset of A[B] such that x−1 ∈ U ∪ A for some open subsetU of B. If x−1 ∈ A,
then x ∈ A ⊆ U ∪ A. If x−1 ∈ U , then there exists an open subset V of B such that
x ∈ V and V−1 ⊆ U hence, V−1 ⊆ U ∪ A. Therefore, the mapping x �−→ x−1 is
continuous. Suppose that x, y ∈ A[B] and U ∈ τB such that x ∗ y ⊆ U ∪ A, then we
have the following cases:

Case 1 If x, y ∈ A, then x ∗ y = x ◦1 y ⊆ A.A ⊆ A ⊆ U ∪ A.
Case 2 If x ∈ A and y ∈ B, then x ∗ y = y ∈ U ⊆ U ∪ A.
Case 3 If x ∈ B and y ∈ A, then x ∗ y = x ∈ U ⊆ U ∪ A.
Case 4 If x, y ∈ B and x �= x−1, then x ∗ y = x ◦2 y ⊆ U . So there exist open
subsets V and W of B containing x and y, respectively, such that V · W ⊆ U .
Thus, (V ∪ A) ∗ (W ∪ A) ⊆ V · W ∪ A ⊆ U ∪ A.
Case 5 If x, y ∈ B, then x ∗ y = x ◦2 y ∪ A ⊆ U ∪ A. Also, we can do the similar
way to Case 4.

Thus, the hyperoperation ∗ is continuous. Therefore, (A[B], ∗, I, τA[B]) is a topo-
logical polygroup. ��

By using the previous theorem we can construct topological polygroups by consid-
ering B as a topological group.

Example 3 Consider the topological group (R,+) with standard topology. Then,
Z3[R] is a topological polygroup.
Example 4 Consider symmetric group S3. Let τ = {∅, A3, Ac

3, S3}, where A3 is the
set of all even permutations of S3 and Ac

3 = S3\A3. Then, (S3, τ ) is a topological
group so Z2[S3] is a topological polygroup.

In [14] we prove the next two lemmas for topological hypergroups. In the following
we rewrite them for topological polygroups.

Lemma 2.10 Let P be a topological polygroup. Then, the hyperoperation ◦ : P ×
P −→ P∗(P) is continuous if and only if for every x, y ∈ P and U ∈ τ such that
x ◦ y ⊆ U then there exist V,W ∈ τ such that x ∈ V and y ∈ W and V ◦ W ⊆ U.

Lemma 2.11 Let P be a topological polygroup. Then, the mappings

aϕ : P −→ P∗(P) by x �→ a ◦ x,
ϕa : P −→ P∗(P) by x �→ x ◦ a

are continuous, for every a ∈ P.

Lemma 2.12 Let P be a topological polygroup, A ⊆ P and U be an open subset of
P. Then, A ⊆ x−1 ◦U if and only if x ◦ A ⊆ U for all x ∈ P.
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Topological Polygroups 713

Proof Suppose that A ⊆ x−1 ◦ U and t ∈ x ◦ a for some a ∈ A. Then, a ∈
x−1 ◦ t ∩ x−1 ◦ U . So a ∈ x−1 ◦ u for some u ∈ U . Thus, u ∈ x ◦ a ∩ U hence
x ◦ a ⊆ U . Therefore, x ◦ A ⊆ U .

Conversely, suppose that x ∈ P and x ◦A ⊆ U . Then, we have A ⊆ (x−1◦x)◦A =
x−1 ◦ (x ◦ A) ⊆ x−1 ◦U. ��
Lemma 2.13 Let U be an open subset of a topological polygroup P such that U is a
complete part. Then, a ◦U and U ◦ a are open subsets of P for every a ∈ P.

Proof Suppose thatU is an open subset of P such thatU is a complete part and a ∈ P .
Then, by Lemma 2.12 we have

ϕ−1
a−1(SU ) = {x ∈ P | a−1 ◦ x ⊆ U } = a ◦U.

So by Lemma 2.11, the mapping ϕa−1 is continuous; thus, a ◦ U is open. Similarly,
we can prove that U ◦ a is open. ��
Theorem 2.14 Let P be a topological polygroup and A, B be open subsets of P. If
A or B is a complete part, then A ◦ B is open.

Proof Suppose that A is a complete part. By Lemma 2.11, A ◦ b is open. Since every
arbitrary union of open subsets is open, it follows that A ◦ B = ⋃

b∈B A ◦ b is open. ��
Lemma 2.15 Let P be a topological polygroup such that every open subset of P is a
complete part. Let U be an open basis at e. Then, the families {x ◦ U } and {U ◦ x},
where x runs through all elements of P and U runs through all elements of U , are
open basis for P.

Proof Suppose that W is an open subset of P and a ∈ W . Since e ∈ a−1 ◦ W , it
follows that there exists U ∈ U such that e ∈ U ⊆ a−1 ◦ W . Since W is a complete
part we conclude that a ∈ a ◦ U ⊆ W . Thus, W is a union of open subsets a ◦ U .
Therefore, {x ◦U } is an open basis for P . Similarly, the family {U ◦ x} is a basis for
P . ��
Theorem 2.16 Let P be a topological polygroup and U be a basis at e. Then, the
following assertions hold:

(1) for every U ∈ U and x ∈ U there exists V ∈ U such that x ◦ V ⊆ U;
(2) for every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U;
(3) for every U ∈ U there exists V ∈ U such that V−1 ⊆ U.

Proof The proofs are straightforward. ��
As in topological spaces, we use the term “neighborhood” for open subsets. An

open subset U of a topological polygroup P is called a symmetric neighborhood if
U−1 = U .

Theorem 2.17 Every topological polygroup has an open basis at e containing a sym-
metric open basis at e.

Proof Suppose that U is an open basis at e. Then, for everyU ∈ U , put V = U ∩U−1.
Then, V = V−1 and V ⊆ U . ��
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Theorem 2.18 Let P be a topological polygroup such that every open subset of P is
a complete part. Then, for every neighborhood U of e there exists a neighborhood V
of e such that V ⊆ U, where V is the closure of V .

Proof Suppose that V is a symmetric neighborhood of e such that V ◦ V ⊆ U . Now,
if x ∈ V , then x ◦ V ∩ V �= ∅. So there exist v1, v2 ∈ V such that v2 ∈ x ◦ v1. Thus,
x ∈ v2 ◦ v−1

1 ⊆ V ◦ V−1 = V ◦ V ⊆ U . ��
Theorem 2.19 Let P be a topological polygroup such that every open subset of P is
a complete part, U be any neighborhood of e, and F be a any compact subset of P.
Then, there exists a neighborhood V of e such that x ◦ V ◦ x−1 ⊆ U for all x ∈ F.

Proof Suppose that U be a neighborhood of e so by Theorem 2.16, there exists a
symmetric neighborhood T of e such that T ◦ T ⊆ U . Applying Theorem 2.16 for T ,
we conclude that there exists a symmetric neighborhoodW of e such thatW ◦W ⊆ T .
So we have W ◦ W ◦ W ⊆ T ◦ T ⊆ U . Since F is compact and F ⊆ ∪x∈FW ◦ x , it
follows that there exist x1, · · · , xn ∈ F such that F ⊆ ∪n

i=1W ◦ xi .
Let V = ∩n

i=1x
−1
i W ◦ xi . We claim that x−1

i ◦V ◦ xi ⊆ W , for i = 1, · · · , n. Since
W is a complete part and w ∈ (xi ◦ x−1

i ) ◦ w ◦ (x−1
i ◦ xi ) ∩ W for i = 1, · · · , n and

w ∈ W , it follows that (xi ◦ x−1
i ) ◦ w ◦ (x−1

i ◦ xi ) ⊆ W . So for every 1 ≤ k ≤ n we
have

xk ◦ V ◦ x−1
k = xk ◦

(
n⋂

i=1

(x−1
i ◦ W ◦ xi )

)

◦ xk

⊆ xk ◦ x−1
k ◦ W ◦ xk ◦ x−1

k ⊆ W.

Therefore, for every x ∈ F there exist w ∈ W and 1 ≤ k ≤ n such that x ∈ w ◦ xk ,
hence we have

x ◦ V ◦ x−1 ⊆ (w ◦ xk) ◦ V ◦ (x−1
k ◦ w−1) ⊆ w ◦ (xk ◦ V ◦ x−1

k ) ◦ w−1

⊆ w ◦ W ◦ w ⊆ W ◦ W ◦ W ⊆ U.

��
Theorem 2.20 Let P be a topological polygroup such that every open subset of P is a
complete part, U be any neighborhood of e, and F be a any compact subset of P such
that F ⊆ U. Then, there exists a neighborhood V of e such that (F ◦V )∪(V ◦F) ⊆ U.

Proof Suppose that F is a compact subset of P and U be a neighborhood of e such
that F ⊆ U . Then, for every x ∈ F there exist a neighborhood Wx of e such that
x ◦Wx ⊆ U and a neighborhood Vx of e such that Vx ◦ Vx ⊆ Wx . Since F is compact
and F ⊆ ∪x∈F x ◦ Vx , so there exist x1, · · · , xn ∈ F such that F ⊆ ∪n

i=1xi ◦ Vxi . Let
V1 = ∩n

i=1xi ◦ Vxi . Hence, we have

F ◦ V1 ⊆
(

n⋃

i=1

xi ◦ Vxi

)

◦ V1 ⊆
n⋃

i=1

xi ◦ Vxi ◦ Vxi ⊆
n⋃

i=1

xi ◦ Wxi ⊆ U.

��
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3 Subpolygroups of a Topological Polygroup

In this section we introduce the concept of subpolygroups of a topological polygroup.
We consider the relative topology on a subpolygroup.

Theorem 3.1 Let P be a topological polygroup. Then, every subpolygroup K of P
with relative topology is a topological polygroup.

Proof Since the restriction of mappings hyperoperation and inverse to K continues,
the result holds. ��
Lemma 3.2 Let A and B be subsets of a topological polygroup P such that every
open subset of P is a complete part. Then, the following assertions hold:

(1) A ◦ B ⊆ A ◦ B;
(2) (A)−1 = (A−1).

Proof (1) Suppose that t ∈ A◦B. Then, t ∈ x◦y for some x ∈ A and y ∈ B.Weprove
that each neighborhoodU of t has a non-empty intersection with A ◦ B. SinceU
is a complete part, it follows that x ◦ y ⊆ U . Thus, there exist neighborhoods V
and W containing x and y, respectively, such that V ◦ W ⊆ U . From x ∈ V ∩ A
and y ∈ W ∩ B we conclude that there exist a ∈ V ∩ A and b ∈ W ∩ B. Now,
we have a ◦ b ⊆ U ∩ A ◦ B. Therefore, t ∈ A ◦ B.

(2) Suppose that x ∈ A
−1

. Then, x−1 ∈ A. If x ∈ U ∈ τ , then x−1 ∈ U−1 so there

exists y ∈ A ∩ U−1 thus y−1 ∈ A−1 ∩ U . Hence, x ∈ A−1. Thus, A
−1 ⊆ A−1.

Similarly, we can prove that A−1 ⊆ A
−1

. Therefore, (A)−1 = (A−1). ��
Theorem 3.3 Let P be a topological polygroup such that every open subset of P is a
complete part. Then, the following assertions hold:

(1) If K is a subsemihypergroup of P, then K is a subsemihypergroup of P.
(2) If K is a subpolygroup of P, then K is a subpolygroup of P.

Proof (1) Suppose that K is a subsemihypergroup of P; then K ◦K ⊆ K . By Lemma
3.2, we have K ◦ K ⊆ K ◦ K ⊆ K ; thus, K is a subsemihypergroup of P .

(2) Suppose that K is a subpolygroup of P; then K−1 ⊆ K . By Lemma 3.2, we have

K
−1 = K−1 ⊆ K ; thus, K is a subpolygroup of P . ��

Theorem 3.4 Let P be a topological polygroup such that every open subset of P is
a complete part. Then, every subpolygroup K of P is open if and only if its interior is
non-empty.

Proof Suppose that x is an interior point of K . Then, there exists a neighborhood U
of e such that x ◦U ⊆ K . Now, for every y ∈ K we have

y ◦U ⊆ y ◦ (x−1 ◦ x) ◦ K = (y ◦ x−1) ◦ (x ◦ K ) = (y ◦ x−1) ◦ K = K .

So y is an interior point of K . Hence, K is open. ��
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Theorem 3.5 Let P be a topological polygroup such that every open subset of P is a
complete part. Then, every open subpolygroup is closed.

Proof Suppose that K is an open subpolygroup of P , then we have

P =
⋃

x∈P

x ◦ K = K ∪
(

⋃

x /∈K
x ◦ K

)

.

So Kc = ⋃
x /∈K x ◦ K . Now, since K is a complete part, it follows that x ◦ K is open.

Thus, Kc is open and it conclude that K is closed. ��
Theorem 3.6 Let A be a family of neighborhoods of e in a topological polygroup P
such that

(1) for each U ∈ A, there is V ∈ A such that V ◦ V ⊆ U;
(2) for each U ∈ A, there is V ∈ A such that V−1 ⊆ U;
(3) for each U, V ∈ A, there is W ∈ A such that W ⊆ U ◦ V .

Let H = ∩{U | U ∈ A}. Then, H is a closed subpolygroup of P.

Proof Suppose that x, y ∈ H and U ∈ A. Then, by (1) there exists V ∈ A such that
V ◦ V ⊆ U . Thus, x, y ∈ V so x ◦ y ⊆ V ◦ V ⊆ U . Hence, x ◦ y ⊆ H . Similarly, we
can prove that if x ∈ H , then x−1 ∈ H . Therefore, H is a subpolygroup of P . Now,
we prove that H is closed. Let x ∈ P\H . Then, x /∈ U for someU ∈ A. So by (1), (2),
and (3) there exist V1, V2, V ∈ A such that V1 ◦V1 ⊆ U, V−1

2 ⊆ V1 and V ⊆ V1∩V2.
Thus, V ◦ V−1 ⊆ U . Hence, if x ◦ V ∩ V �= ∅, then we have x ∈ V ◦ V−1 ⊆ U so
x ∈ H , and it is a contradiction. Thus, x ∈ x ◦ V ⊆ P\H . Thus, P\H is open, that
is, H is closed. ��
Theorem 3.7 Let U be a symmetric neighborhood of e in a topological polygroup P
such that every open subset of P is a complete part. Then, the set L = ⋃∞

n=1U
n is

an open and closed subpolygroup of P, where U 2 = U ◦U and Un = Un−1 ◦U for
every n ∈ N.

Proof If x ∈ Uk and y ∈ Ut , then x ◦ y ⊆ Uk+t and x−1 ∈ (U−1)k = Uk , for every
k, t ∈ N. Hence, L is a subpolygroup of P . By Theorem 3.4, L is open and closed. ��
Theorem 3.8 Let P be a topological polygroup such that every open subset of P is a
complete part. Then, a subpolygroup H of P is closed if and only if there is an open
subset U of P such that U ∩ H = U ∩ H �= ∅.

Proof If H is closed subpolygroup of P , then it is sufficient to consider U as a
neighborhood of e.

Conversely, suppose that there is an open subsetU of P such thatU ∩ H = U ∩ H
and U ∩ H �= ∅. Let x ∈ H and y ∈ U ∩ H . Then, x ∈ x ◦ y−1 ◦ U and by Lemma
2.13 x ◦ y−1 ◦U is an open subset of P . So there exists h ∈ H ∩ x ◦ y−1 ◦U . Thus,
h ∈ x ◦ y−1 ◦ u for some u ∈ U , hence u ∈ y ◦ x−1 ◦ h. So u ∈ U ∩ H , since by
Theorem 3.3, H is a subpolygroup of P . Thus, u ∈ U ∩H hence x ∈ h ◦u−1 ◦ y ⊆ H .
Therefore, H = H , that is, H is closed subpolygroup of P . ��
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Theorem 3.9 Let P be a topological polygroup such that every open subset of P is
a complete part and H is a non-closed subpolygroup of P. Then, H ∩ Hc is dense in
H.

Proof Suppose that H is a non-closed subpolygroup of P . Then, by the previous
theorem, for every open subset U of P , U ∩ H = ∅ or ∅ �= U ∩ H � U ∩ H .
Let x ∈ H and U be a neighborhood of x . Then, U ∩ H �= ∅. So there exists
u ∈ U ∩ H\U ∩ H . Thus, u ∈ U ∩ (H ∩ Hc). Therefore, H ∩ Hc is dense in H .

��

4 Isomorphism Theorems

In this section we state and prove the isomorphism theorems for topological poly-
groups.

Let (P, ◦, e,−1 , τ ) be a topological polygroup and N be a normal subpolygroup
of P . Let π be the natural mapping x �→ N ◦ x of P onto P/N . Then, (P/N , τ ) is
a topological space, where τ is the quotient topology induced by π . That is for every
subset X of P we have {N ◦ x | x ∈ X} is an open subset of P/N if and only if
π−1({N ◦ x | x ∈ X}) is an open subset of P . In the following, the notation X/N is
used for {N ◦ x | x ∈ X} for every subset X of P .

Theorem 4.1 Let (P, ◦, e,−1 , τ ) be a topological polygroup such that every open
subset of H is complete part. Then, (P/β∗,⊗, τ ) is a topological group, where β∗
is the fundamental relation of P and β∗(x) ⊗ β∗(y) = β∗(z), z ∈ x ◦ y for every
x, y ∈ P.

Proof It follows from Theorem 2.3. ��
Definition 4.2 Let < P1, ◦1, e1,−1, τ1 > and < P2, ◦2, e2,−1, τ2 > be topological
polygroups. A mapping ϕ from P1 into P2 is said to be a good topological homomor-
phism if for all a, b ∈ P1,

(1) ϕ(e1) = e2;
(2) ϕ(a ◦1 b) = ϕ(a) ◦2 ϕ(b);
(3) ϕ is continuous;
(4) ϕ is open.

Clearly, a good topological homomorphism ϕ is a topological isomorphism if ϕ is one
to one and onto. We write P1 ∼= P2 if P1 is topologically isomorphic to P2.

Because P1 is a polygroup, e2 ∈ a ◦1 a−1 for all a ∈ P1; then we have ϕ(e1) ∈
ϕ(a)◦2ϕ(a−1) or e2 ∈ ϕ(a)◦2ϕ(a−1)which impliesϕ(a−1) ∈ ϕ(a)−1◦2e2; therefore,
ϕ(a−1) = ϕ(a)−1 for alla ∈ P1.Moreover, ifϕ is a strong topological homomorphism
from P1 into P2, then the kernel of ϕ is the set kerϕ = {x ∈ P1 | ϕ(x) = e2}. It is
trivial that kerϕ is a subpolygroup of P1 but in general is not normal in P1.

As in polygroups, if ϕ is a good topological homomorphism from P1 into P2, then,
ϕ it is injective if and only if kerϕ = {e1}.
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Theorem 4.3 Let (P1, ◦1,−1 , e1, τ1) and (P2, ◦2,−1 , e2, τ2) be two topological poly-
groups and f : P1 −→ P2 be a homomorphism. Then, f is continuous if and only if
is continuous at e1.

Proof Obviously, if f is continuous, then f is continuous at e1. Conversely, suppose
that f is continuous at e1 and f (x) ∈ U2 for some x ∈ P1 and open subset U2 of
P2. Now, we have f (e1) ∈ f (x−1 ◦1 x) = f (x)−1 ◦2 f (x) ⊆ f (x)−1 ◦2 U2, so
there exists an open subset U1 of P1 containing e1 such that f (U1) ⊆ f (x)−1 ◦2 U2.
Hence, by Lemma 2.12, we have f (x ◦1U1) = f (x) ◦2 f (U1) ⊆ U2. Therefore, f is
continuous at x . ��
Lemma 4.4 Let P be a topological polygroup and N be a normal subpolygroup of
P. Let π be the natural mapping x �−→ N ◦ x of P onto P/N. Then,

(1) π−1({N ◦ x | x ∈ X}) = N ◦ X for every subset X of P;
(2) {N ◦ x | x ∈ X} = {N ◦ y | y ∈ N ◦ X} for every subset X of P;
(3) If every open subset of P is a complete part, then the natural mapping π is open.

Proof (1) Obviously, we have that N ◦ X ⊆ π−1({N ◦ x | x ∈ X}) for every subset X
of P . We prove the converse of inclusion. Suppose that y ∈ π−1({N ◦x | x ∈ X}).
Then, π(y) = N ◦ y ∈ {N ◦ x | x ∈ X}. So N ◦ y = N ◦ x for some x ∈ X .
Thus, y ◦ x−1 ∩ N �= ∅. Hence, there exists n ∈ N such that n ∈ x ◦ y−1 and this
implies y ∈ n ◦ x ⊆ N ◦ X . Therefore, the proof is complete.

(2) For every subset X of P we have X ⊆ N ◦ X so {N ◦ x | x ∈ X} ⊆ {N ◦ y | y ∈
N ◦ X}. On the other hand, if y ∈ N ◦ X , there exist n ∈ N and x ∈ X such that
y ∈ n ◦ x . Thus, N ◦ y = N ◦ x and the proof is complete.

(3) If U is an open subset of P , then by (1) we have π−1(π(U )) = N ◦ U . Since U
is a complete part, it follows that N ◦U is open in P by Lemma 2.13. Therefore,
π is open. ��

Let N be a normal subpolygroup of topological polygroup P and every open subset
of P be a complete part. Let A be an open subset of P/N . Then, by the previous lemma,
A = U/N for some open subset U of P .

Theorem 4.5 Let N be a normal subpolygroup of topological polygroup P and every
open subset of P be a complete part. Then, < P/N ,�, N ,−I > is a topological
polygroup, where N ◦ x � N ◦ y = {N ◦ z | z ∈ x ◦ y} and (N ◦ x)−I = N ◦ x−1.

Proof Weprove that the hyperoperation� and the unitary operation−I are continuous.
Suppose N ◦x, N ◦y ∈ P/N , andA is an open subset of P/N such that N ◦x�N ◦y ⊆
A. Then, x ◦ y ⊆ π−1(A). Since π−1(A) is open in P , there exist open subsets V
and W of P containing x and y, respectively, such that V ◦ W ⊆ π−1(A). It follows
that π(V ) and π(W ) are open in P/N containing N ◦ x and N ◦ y, respectively, such
that π(V ) � π(W ) ⊆ A. Therefore, the hyperoperation � is continuous.

Suppose that (N ◦ x)−I = N ◦ x−1 ∈ A. Then, x−1 ∈ π−1(A). Thus, there exists
an open subset U in P such that x−1 ∈ U−1 ⊆ π−1(A) so π(x−1) = N ◦ x−1 ∈
π(U−1) ⊆ A and π(U−1) is open in P/N . ��

The isomorphism theorems of polygroups are presented in [10]. In the following
we prove them for topological polygroups.
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Theorem 4.6 Let (P1, ◦1, e1,−1, τ1) and (P2, ◦2, e2,−1, τ2) be topological poly-
groups such that every open subset of P1 is a complete part. Let ϕ be an open and
continuous good topological homomorphism from P1 onto P2 such that N = kerϕ is
a normal subpolygroup of P1. Then, P1/N and P2 are topologically isomorphic.

Proof We define the mapping ψ : P2 −→ P1/N by setting ψ(x2) = N ◦1 x1 where,
ϕ(x1) = x2, for all x2 ∈ P2. Since ϕ is onto, so ϕ−1(x2) �= ∅. If x1, y1 ∈ ϕ−1(x2),
then ϕ(x1) = x2 = ϕ(y1). Thus, e2 ∈ ϕ(x1 ◦1 y−1

1 ), hence there exists n ∈ x1 ◦1 y−1
1

such that ϕ(n) = e2. Now, we have N ◦1 x1 ⊆ N ◦1 (n ◦1 y1) = N ◦1 y1 ⊆
N ◦1 n−1 ◦1 x1 = N ◦1 x1. Therefore, ψ is well defined. Obviously, ψ is onto and an
algebraic homomorphism. If ψ(x2) = N ◦1 x1 = ψ(y2) = N ◦1 y1, then x1 ∈ n ◦1 y1
for some n ∈ N . Thus, x2 = ϕ(x1) ∈ ϕ(n) ◦2 ϕ(y1) = y2 hence, ψ is one-to-one.
Therefore, ψ is an algebraic isomorphism.

Now, we show that ψ is open and continuous. Suppose thatU2 is an open subset of
P2. Then, ψ(U2) = {N ◦1 u1 | u1 ∈ ϕ−1(U2)} = ϕ−1(U2)/N . Since ϕ is continuous,
it follows that ϕ−1(U2)/N is open in P1/N . Therefore, ψ is open.

IfU1/N is an open subset of P1/N , then ψ−1(U1/N ) is open in P2 since ϕ is open
and we have

ψ−1(U1/N )={u2 | ψ(u2) ∈ U1/N }={u2 | N ◦1 u1 ∈ U1/N , ϕ(u1)=u2}=ϕ(U1).

Therefore, ψ is continuous, and the proof is complete. ��
Theorem 4.7 Let K and N be subpolygroups of a polygroup P with N normal and
K open in P such that every open subset of P is a complete part. Then, K/(N ∩ K )

and (N ◦ K )/N are topologically isomorphic.

Proof Define ϕ : K −→ P/N by ϕ(k) = N ◦ k. Then, ϕ is a strong homomorphism
and kerϕ = N ∩K . Since K ⊆ N ◦K and ϕ is the restriction of π on K , it follows that
ϕ is open and continuous. It remains to show that Im(ϕ) = N ◦ K/N . If x ∈ N ◦ K ,
then x ∈ n ◦k, for some n ∈ N and k ∈ K . Hence, ϕ(k) = N ◦k = N ◦n ◦k = N ◦ x .
So N ◦ K/N ⊆ Im(K ) ⊆ N ◦ K/N . Therefore, by previous theorem, K/(N ∩ K ) ∼=
(N ◦ K )/N . ��
Theorem 4.8 Let K and N be normal subpolygroups of a polygroup P such that
every open subset of P is a complete part and N ⊆ K. Then, (P/N )/(K/N ) and
P/K are topological isomorphic.

Proof The mapping ϕ : P/N −→ P/K , where ϕ(N ◦ x) = K ◦ x is a good
homomorphism and we have Kerϕ = K/N . If U is an open subset of P , then we
have ϕ(U/N ) = U/K . Therefore, ϕ is open and continuous. So by Theorem 4.6 we
conclude that (P/N )/(K/N ) and P/K are topologically isomorphic. ��
Theorem 4.9 If N1, N2 are normal subpolygroups of P1 and P2, respectively, then
N1×N2 is a normal subpolygroup of P1× P2 and (P1× P2)/(N1×N2) and P1/N1×
P2/N2 are topological isomorphic.

Proof It is straightforward. ��
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5 Conclusion

This paper deals with one of the newest argument from hyperstructure theory namely
topological hypergroups.Applications of hypergroups havemainly appeared in special
subclasses. One of the important subclasses is the class of polygroups. Indeed the
structure of a polygroup is more near to the structure of a group. So, in the paper we
studied the concept of topological polygroups. The concept of topological polygroups
is a generalization of the concept of topological groups. It is important to mention that
in this paper, the topological polygroups and topological hypergroups are different
from topological hypergroups which were initiated by Dunkl [12] and Jewett [19].
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