

Vertex Decomposability of 2-CM and Gorenstein Simplicial Complexes of Codimension 3

Seyed Mohammad Ajdani¹ · Ali Soleyman Jahan2

Received: 11 May 2013 / Revised: 17 July 2013 / Published online: 4 May 2015 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract Let Δ be a simplicial complex on vertex set [*n*]. It is shown that if Δ is complete intersection, Cohen–Macaulay of codimension 2, Gorenstein of codimension 3, or 2-Cohen–Macaulay of codimension 3, then Δ is vertex decomposable. As a consequence, we show that if Δ is a simplicial complex such that $I_{\Delta} = I_t(C_n)$, where $I_t(C_n)$ is the path ideal of length *t* of C_n , then Δ is vertex decomposable if and only if $t = n$, $t = n - 1$, or *n* is odd and $t = (n - 1)/2$.

Keywords Vertex decomposable · Simplicial complex · Monomial ideal · Weakly polymatroidal ideal

Mathematics Subject Classification 13F20 · 05E40 · 13F55

1 Introduction

Let Δ be a simplicial complex on vertex set $[n] = \{1, ..., n\}$, i.e., Δ is a collection of subsets of [*n*] with the property that if $F \in \Delta$, then all subsets of *F* are also in Δ . An element of Δ is called a *face* of Δ , and the maximal faces of Δ under inclusion are called *facets*. We denote by $\mathscr{F}(\Delta)$ the set of facets of Δ . The *dimension* of a face F is

Communicated by Siamak Yassemi.

B Ali Soleyman Jahan solymanjahan@gmail.com Seyed Mohammad Ajdani majdani2@yahoo.com

¹ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

² Department of Mathematics, University of Kurdistan, P.O.Box: 66177-15175, Sanandaj, Iran

defined as dim $F = |F| - 1$, where $|F|$ is the number of vertices of *F*. The dimension of the simplicial complex Δ is the maximum dimension of its facets. A simplicial complex Δ is called *pure* if all facets of Δ have the same dimension. Otherwise it is called non-pure. We denote the simplicial complex Δ with facets F_1, \ldots, F_t by $\Delta = \langle F_1, \ldots, F_t \rangle$. A simplex is a simplicial complex with only one facet.

For the simplicial complexes Δ_1 and Δ_2 defined on disjoint vertex sets, the join of Δ_1 and Δ_2 is $\Delta_1 * \Delta_2 = \{F \cup G : F \in \Delta_1, G \in \Delta_2\}.$

For the face F in Δ , the link, deletion, and \star of F in Δ are, respectively, denoted by $\lim_{\Delta} F, \Delta \setminus F$ and $\star_{\Delta} F$ and are defined by $\lim_{\Delta} F = \{G \in \Delta : F \cap G =$ \emptyset , $F \cup G \in \Delta$ and $\Delta \setminus F = \{G \in \Delta : F \nsubseteq G\}$ and $\star_{\Delta} F = \langle F \rangle * \text{link}_{\Delta} F$.

Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in *n* indeterminates over a field *K*. To a given simplicial complex Δ on the vertex set [*n*], the Stanley–Reisner ideal is the squarefree monomial ideal whose generators correspond to the non-faces of Δ . We say the simplicial complex Δ is complete intersection, Cohen–Macaulay or Gorenstein if $K[x_1, \ldots, x_n]/I_\Delta$ is complete intersection, Cohen–Macaulay, or Gorenstein, respectively.

The facet ideal of Δ is the squarefree monomial ideal generated by monomials $x_F = \prod_{i \in F} x_i$ where *F* is a facet of Δ and is denoted by $I(\Delta)$. The complement of a face *F* is $[n] \setminus F$ and is denoted by F^c . Also, the complement of the simplicial complex $\Delta = \langle F_1, \ldots, F_r \rangle$ is $\Delta^c = \langle F_1^c, \ldots, F_r^c \rangle$. The Alexander dual of Δ is defined by $\Delta^{\vee} = \{F^c : F \notin \Delta\}$. It is known that for the complex Δ , one has $I_{\Delta^{\vee}} = I(\Delta^c)$.

The simplicial complex Δ is (non-pure) shellable if its facets can be ordered *F*₁, *F*₂,..., *F_r* such that, for all $2 \le i \le r$, the subcomplex $\langle F_1, \ldots, F_{i-1} \rangle \cap \langle F_i \rangle$ is pure of dimension dim $(F_i) - 1$.

Let *I* ⊂ *R* be a monomial ideal. We denote by $G(I)$ the unique minimal system of monomial generators of *I*. We say that *I* has linear quotients with respect to the linear order u_1, \ldots, u_r of $G(I)$ if for all $i = 2, \ldots, r$, the colon ideal (u_1, \ldots, u_{i-1}) : (u_i) is generated by linear forms. It is well known that if *I* has linear quotients and generated in one degree, then *I* has a linear resolution, see [\[8](#page-8-0)]. In [\[10\]](#page-8-1), the authors showed that the simplicial complex Δ is shellable if and only if I_{Δ} has linear quotients.

Billera and Provan [\[2](#page-8-2)] introduced the concept of pure vertex decomposable simplicial complexes. Then Björner and Wachs [\[4](#page-8-3)] extended the concept of vertex decomposability to non-pure complexes. An analogous extension of *k*-decomposability to non-pure complexes was given by Woodroofe [\[14](#page-8-4)]. Then Jonsson [\[11\]](#page-8-5) extended Björner and Wachs's definition of shedding vertex in non-pure complexes to shedding face.

Definition 1.1 Let Δ be a simplicial complex on vertex set [*n*]. Then a face *F* is called a shedding face if every face G of $\star_{\Delta} F$ satisfies the following exchange property: for every $i \in F$, there is a $j \in [n] \setminus G$ such that $(G \cup \{j\}) \setminus \{i\}$ is a face of Δ .

Definition 1.2 [\[14](#page-8-4)] A simplicial complex Δ is recursively defined to be *k*decomposable if either Δ is a simplex or else has a shedding face *F* with $\dim(F) \leq k$ such that both $\Delta \setminus F$ and $\lim_{\Delta} F$ are *k*-decomposable.

Note that the complexes $\{\}$ and $\{\emptyset\}$ considered to be *k*-decomposable for all $k \ge -1$. 0-decomposable complexes are of special importance and called vertex decomposable.

It was shown by Billera and Provan [\[2\]](#page-8-2) that a *d*-dimensional simplicial complex is *d*-decomposable if and only if it is shellable. This result was generalized to nonpure complexes by Woodroofe [\[14\]](#page-8-4). Also, since each *k*-decomposable complex is $(k + 1)$ -decomposable, therefore, we have the following implications:

vertex-decomposable ⇒ 1-decomposable ⇒···⇒ d-decomposable ⇔ shellable

This paper is organized as follows: In Sect. [2,](#page-2-0) we recall some definitions and some known results which will be needed later. The main results of the paper are in Sect. [3.](#page-3-0) First we show that each complete intersection simplicial complex and each Cohen– Macaulay simplicial complex of codimension 2 are vertex decomposable. In Theorem [3.5,](#page-4-0) Vertex decomposability of Gorenstein simplicial complexes of codimension 3 is shown. We also prove that any 2-CM simplicial complex of codimension 3 is vertex decomposable, see Theorem [3.13.](#page-6-0) Let C_n denote the *n*-cycle and $I_t(C_n)$ denote the path ideal of C_n of length *t*. We set $\Delta_t(C_n)$ for the simplicial complex whose Stanley– Reisner ideal is $I_t(C_n)$. In Sect. [4,](#page-7-0) as an application of our results, we show that $\Delta_t(C_n)$ is vertex decomposable if and only if $t = n$, $t = n - 1$, or $t = (n - 1)/2$, which extend the main result of $[13]$.

2 Preliminaries

For a monomial $u = x_1^{a_1} \dots x_n^{a_n}$ in *R*, we denote the support of *u* by supp(*u*) and it is the set of those variables x_i that $a_i \neq 0$. Let *m* be another monomial in *R*. If for all $x_i \in \text{supp}(u), x_i^{a_i} \mid m \text{ then we set } [u, m] = 1, \text{ otherwise we set } [u, m] \neq 1.$

For a monomial ideal $I \subset R$, we set $I^u = (m_i \in G(I) : [u, m_i] \neq 1)$ and $I_u = (m_i \in G(I) : [u, m_i] = 1).$

The concept of shedding monomial and *k*-decomposable monomial ideals was first introduced by Rahmati and Yassemi in [\[12\]](#page-8-7).

Definition 2.1 Let *I* be a monomial ideal and $G(I) = \{m_1, \ldots, m_r\}$. The monomial $u = x_1^{a_1} \dots x_n^{a_n}$ is called a shedding monomial of *I* if $I_u \neq 0$ and for each $m_i \in G(I_u)$ and each $x_l \in \text{supp}(u)$ there exists $m_i \in G(I^u)$ such that $\langle m_i : m_i \rangle = \langle x_l \rangle$.

Definition 2.2 Let *I* be a monomial ideal and $G(I) = \{m_1, \ldots, m_r\}$. Then *I* is a *kdecomposable* ideal if $r = 1$ or else has a shedding monomial *u* with $|\supp(u)| \leq k+1$ such that the ideals I^u and I_u are *k*-decomposable. Note that since $|G(I)|$ is finite, the recursion procedure will stop.

A 0-decomposable ideal is called *variable decomposable*. Also, a monomial ideal is decomposable if it is *k*-decomposable for some $k \geq 0$.

A monomial ideal *I* ⊂ *R* = $K[x_1, \ldots, x_n]$ generated in a single degree is called polymatroidal if for any $u, v \in G(I)$ such that $deg_{x_i}(u) > deg_{x_i}(v)$ there exists an index *j* with $deg_{x_j}(u) < deg_{x_j}(v)$ such that $x_j(u/x_i) \in G(I)$. A squarefree polymatroidal ideal is called matroidal. Also, a monomial ideal *I* is called weakly polymatroidal if for every two monomials $u = x_1^{a_1} \dots x_n^{a_n} > v = x_1^{b_1} \dots x_n^{b_n}$ in *G*(*I*) such that $a_1 = b_1, \ldots, a_{t-1} = b_{t-1}$ and $a_t > b_t$, there exists $j > t$ such

that $x_t(v/x_i) \in I$. It is clear from the definition that a polymatroidal ideal is weakly polymatroidal.

The following results from [\[12\]](#page-8-7) are crucial in this paper.

Theorem 2.3 [\[12](#page-8-7), Theorem 2.10] *Let* Δ *be a (not necessarily pure) d-dimensional* s *implicial complex on vertex set* [*n*]. *Then* Δ *is k*-*decomposable if and only if* I_{Δ} *is* k -*decomposable, where* $k \leq d$.

Proposition 2.4 [\[12](#page-8-7), Lemma 3.8] *If I is an squarefree monomial ideal generated in degree* 2 *which has a linear resolution, then after suitable renumbering of the variables, I is weakly polymatroidal.*

Lemma 2.5 [\[12,](#page-8-7) Lemma 2.6] *Let I* ⊂ *R be a monomial ideal with the minimal system of generators* $G(I) = \{m_1, \ldots, m_r\}$ *and u a monomial in R. Then the ideal I is k*-*decomposable if and only if u I is k*-*decomposable.*

Theorem 2.6 [\[12](#page-8-7), Theorem 3.5] *Let* $I ⊂ R$ *be a weakly polymatroidal ideal. Then* I *is* 0-*decomposable.*

3 Some Vertex Decomposable Simplicial Complexes

First, we recall that a Noetherian local ring *A* is a complete intersection ring if its completion *A* is a residue class ring of a regular local ring R with respect to an ideal generated by an *R*-sequence. Note that a simplicial complex Δ is called complete intersection if R/I_{Δ} is a complete intersection ring, i.e., $I_{\Delta} = (u_1, \ldots, u_m)$ $\bigcap_{x_{i_j} \in \text{supp}(u_j)} (x_{i_1}, \ldots, x_{i_m})$. On the other hand, we know that $I_\Delta = \bigcap_{F \in \mathscr{F}(\Delta)} P_{F^c}$, where $gcd(u_i, u_j) = 1$ for all $i \neq j$. It is easy to see that in this case, $I_{\Delta} =$ where $P_{F^c} = (x_i : i \in F^c)$. Therefore, we have the following:

Remark 3.1 Let Δ be a simplicial complex on vertex set [*n*]. Then Δ is complete intersection if and only if there are disjoint subsets A_1, \ldots, A_m of [*n*] such that $[n] =$
I $\binom{m}{k}$ and *E* is a facet of Δ if and only if $F = \binom{n}{k}$ i. *i*, *i*, where $i \in \Delta$. $\bigcup_{i=1}^{m} A_i$ and *F* is a facet of Δ if and only if $F = [n] \setminus \{j_1, \ldots, j_m\}$, where $j_i \in A_i$.

A matroid complex Δ is a simplicial complex with the property that for all faces F and *G* in Δ with $|F| < |G|$, there exists $i \in G \setminus F$ such that $F \cup \{i\} \in \Delta$. Since link and deletion of any vertex of a matroid are again a matroid, induction on the number of vertices shows that any matroid complex is vertex decomposable. It is easy to see from Remark [3.1](#page-3-1) that each complete intersection simplicial complex is a matroid. Hence, every complete intersection simplicial complex is vertex decomposable. However, in the following, we give a different proof of this fact.

Theorem 3.2 *Let* Δ *be a complete intersection simplicial complex on vertex set* [*n*]*.* Then Δ is vertex decomposable.

Proof Let $G(I_{\Delta}) = \{u_1, \ldots, u_m\}$. Since u_1, \ldots, u_m is a regular sequence, we have $gcd(u_i, u_j) = 1$ for all $i \neq j$. We set $P_{u_i} = (x_i : x_i | u_i)$ for all $i = 1, \ldots, m$. Then it is easy to see that $I_{\Delta} \vee = \bigcap_{i=1}^{m} P_{u_i} = \prod_{i=1}^{m} P_{u_i}$. Hence, $I_{\Delta} \vee$ is a transversal polymatroidal ideal and by Theorem 2.6 , I_{Δ} is 0-decomposable. Thus, the assertion follows from Theorem [2.3.](#page-3-3) **Theorem 3.3** If Δ is a Cohen–Macaulay simplicial complex of codimension 2, then - *is vertex decomposable.*

Proof Since Δ is Cohen–Macaulay simplicial complex of codimension 2, by a result of Eagon and Reiner [\[6\]](#page-8-8), I_{Δ} is a squarefree monomial ideal which has 2-linear resolution. Hence, by Proposition [2.4](#page-3-4) and Theorem [2.6,](#page-3-2) I_{Δ} is 0-decomposable. It follows from Theorem [2.3](#page-3-3) that Δ is vertex decomposable.

As an immediate consequence, we have the following:

Corollary 3.4 Let Δ be a quasi-forest simplicial complex which is not a simplex. Then Δ^{\vee} *is vertex decomposable.*

Proof It is proved in [\[15\]](#page-8-9) that each quasi-forest is a flag complex. So I_{Δ} is generated by quadratic monomials and hence height(I_{Δ}) = 2. Since Δ is quasi-forest by [\[15](#page-8-9), Corollary 5.5], we have $pd(K[\Delta^{\vee}]) = 2$. Therefore, Δ^{\vee} is Cohen–Macaulay of codimension 2, and by Theorem [3.3,](#page-3-5) Δ^{\vee} is vertex decomposable.

Next we consider Gorenstein simplicial complexes and prove the following:

Theorem 3.5 *Each Gorenstein simplicial complex of codimension* 3 *is vertex decomposable.*

Our proof is based on the following structure theorem that can be found in [\[3\]](#page-8-10).

Theorem 3.6 *Let* Δ *be a Gorenstein simplicial complex of codimension* 3 *on vertex set* [n]. Then $|G(I_\Delta)|$ *is an odd number, say* $|G(I_\Delta)| = 2m + 1 \le n$, and there exists *a regular sequence of squarefree monomials* u_1, \ldots, u_{2m+1} *in* $R = K[x_1, \ldots, x_n]$ *such that*

$$
G(I_{\Delta}) = \{u_iu_{i+1},\ldots,u_{i+m-1} : i = 1,\ldots,2m+1\},\,
$$

where $u_i = u_{i-2m-1}$ *whenever* $i > 2m + 1$ *.*

We will use the following remarks for our proof.

Remark 3.7 Let Δ be a Gorenstein simplicial complex of codimension 3 on vertex set [*n*] with

$$
G(I_{\Delta}) = \{u_i u_{i+1}, \ldots, u_{i+m-1} : i = 1, \ldots, 2m+1\},\
$$

where $u_i = u_{i-2m-1}$ whenever $i > 2m+1$. Then after relabeling of the variables, we may assume that $u_1 = \prod_{i=1}^{l_1} x_i$, $u_2 = \prod_{i=l_1+1}^{l_2} x_i$, ..., $u_{2m+1} = \prod_{i=l_{2m}+1}^{n} x_i$.

Remark 3.8 If Δ is a Gorenstein simplicial complex of codimension 3, then it is easy to see from Theorem [3.6](#page-4-1) that $I_{\Delta} = \bigcap (x_{t_i}, x_{r_j}, x_{s_k})$ with $x_{t_i} \in \text{supp}(u_i)$, $x_{r_j} \in$ $\supp(u_i)$, $x_{s_k} \in \supp(u_k)$, where $1 \leq i \leq j \leq k \leq 2m+1$, and $j - i \leq m, k - j$ *j* ≤ *m*, *k* − *i* ≥ *m* + 1. Thus, *I*_△ \vee is generated by the monomials $x_{t_i}x_{r_j}x_{s_k}$ with *x*_{ti} ∈ supp(*u_i*), *x_{r_i*} ∈ supp(*u_j*), *x_{sk}* ∈ supp(*u_k*), where $1 ≤ i < j < k ≤ 2m + 1$ and *j* − *i* ≤ *m*, k − *j* ≤ *m*, k − *i* ≥ *m* + 1.

Example 3.9 Let Δ be a simplicial complex with

$$
\mathcal{F}(\Delta) = \{ \{1, 2, 4, 5\}, \{1, 2, 4, 6\}, \{1, 2, 5, 6\}, \{1, 3, 4, 6\}, \{1, 3, 4, 7\}, \{1, 3, 5, 6\}, \{1, 3, 5, 7\}, \{1, 4, 5, 7\}, \{2, 3, 5, 6\}, \{2, 3, 5, 7\}, \{2, 3, 6, 7\}, \{2, 4, 5, 7\}, \{2, 4, 6, 7\}, \{3, 4, 6, 7\} \}.
$$

Then $I_{\Delta} = I_3(C_7) = (x_1x_2x_3, x_2x_3x_4, x_3x_4x_5, x_4x_5x_6, x_5x_6x_7, x_6x_7x_1, x_7x_1x_2)$, and *I*_△ = $\bigcap_{i,j,k} (x_i, x_j, x_k)$, where *j* − *i* ≤ 3, *k* − *j* ≤ 3 and *k* − *i* ≥ 4. Therefore, by Remark [3.8,](#page-4-2) Δ is Gorenstein simplicial complex of codimension 3. Observe that 1 is a shedding vertex of Δ .

Lemma 3.10 *Let* Δ *be a Gorenstein simplicial complex of codimension* 3*, and* $x_{t_i}x_{r_j}x_{s_k} \in G(I_{\Delta} \vee)$ *.* If $k < k' \leq 2m + 1$ or $1 \leq k' < i$, then for each $x_{s_{k'}} \in \text{supp}(u_{k'})$, *either* $x_{t_i}x_{r_j}x_{s_{k'}}$ *or* $x_{r_j}x_{s_k}x_{s_{k'}}$ *belongs to* $G(I_{\Delta^\vee}).$

Proof We set $v_1 = x_{t_i} x_{r_i} x_{s_{k'}}$ and $v_2 = x_{r_i} x_{s_k} x_{s_{k'}}$.

Case 1 Let $k < k' \leq 2m + 1$ and suppose on contrary v_1 and v_2 do not belong to *G*(*I*_△∨). Since $x_{t_i}x_{r_j}x_{s_k}$ ∈ $G(I_{\Delta}$ ∨), one has $j - i \leq m$ and $k' - i > k - i \geq m + 1$, hence $v_1 \notin G(I_{\Delta} \vee)$ if and only if

$$
k'-j>m.\tag{1}
$$

Again since $x_{t_i}x_{r_j}x_{s_k} \in G(I_{\Delta^{\vee}})$, we know that $k - j \leq m$ and $k' - k \leq m$. So $v_2 \notin G(I_{\Delta} \vee)$ if and only if

$$
k'-j\leq m.\tag{2}
$$

From [1](#page-5-0) and [2,](#page-5-1) we get a contradiction.

Case 2 The same argument works also in the case $1 \leq k' < i$.

Proposition 3.11 *Let* Δ *be a Gorenstein simplicial complex of codimension* 3 *on* [*n*]*,* and $I = I_{\Delta}$ ^{\vee}. Then the following statements hold.

- *(i)* x_n *is a shedding variable for I.*
- *(ii)* Let $l' + 1 \leq l \leq n 1$, where l' is the smallest index such that there exists $x_i x_j x_{l'} \in G(I)$ with $i < j < l'$. Then x_l is a shedding variable for $I_{x_n, x_{n-1},...,x_{l+1}}$.
- *Proof* (i): Since Δ is a simplicial complex on [*n*], $I_{x_n} \neq 0$. Suppose $x_{t_i}x_{r_j}x_{s_k} \in$ $G(I_{x_n})$ be an arbitrary element with $s_k < n$. Let u_k be as in Theorem [3.6.](#page-4-1) If $k = 2m + 1$, then by Remark [3.8,](#page-4-2) $x_n \in \text{supp}(u_k)$ and hence $x_t, x_r, x_n \in G(I)$. If $k < 2m + 1$, then by Lemma [3.10](#page-5-2) either $x_{t_i}x_{r_j}x_n$ or $x_{r_j}x_{s_k}x_n$ belongs to $G(I)$. Hence, in any case one of the monomials, x_t , x_r , x_n or x_r , x_s , x_n belongs to $G(I^{x_n})$. This implies that x_n is a shedding variable for I .
- (ii): By induction, we know that $I_{x_n, x_{n-1},...,x_l} = (I_{x_n, x_{n-1},...,x_{l+1}})_{x_l}$. If $x_{t_i}x_{r_j}x_{s_k} \in$ $G(I_{x_n,x_{n-1},...,x_l})$ with $s_k < l$, then as we showed in case (*i*), by Remark [3.8](#page-4-2) and Lemma [3.10,](#page-5-2) either $x_{t_i}x_{r_j}x_l \in G(I^{x_l}_{x_n,x_{n-1},...,x_{l+1}})$ or $x_{r_j}x_{s_k}x_l \in$ $G(I_{x_n,x_{n-1},...,x_{l+1}}^{x_l})$. This completes the proof.

Proposition 3.12 *Let* Δ *be a Gorenstein simplicial complex of codimension 3. Let* 1 ≤ *l* ≤ *n and Jl be the monomial ideal which is generated by the set of those quadratic monomials* $x_i x_j$ *, where* $x_i x_j x_l \in G(I_{\Delta^\vee})$ *. Then* J_l *has linear quotients and in particular it is 0-decomposable.*

Proof We know by [\[9\]](#page-8-11) Δ is shellable. Hence, I_{Δ} has linear quotients. Suppose that $G(I_{\Delta} \vee) = \{v_1, v_2, \dots, v_t\}$ and it has linear quotients in the given order. Hence, for each v_c and v_d in $G(I_{\Delta} \vee)$ with $c < d$, there exists another monomial $v_{d'}$ with $d' < d$ such that $v_{d'}$: $v_d = x_{c'}$ for some c' and $x_{c'}$ divides v_c : v_d . We order the monomials in $G(J_l)$ by the induced order of $G(I_{\Delta} \vee)$ and claim that J_l has linear quotients in this order. Let w_p and w_q be arbitrary two elements in $G(J_l)$ with $p < q$. Thus $v_p = w_p x_l$ and $v_q = w_q x_1$ belong to $G(I_{\Delta} \vee)$. Therefore there exists another monomial $v_{k'}$ with $k' < q$ such that $v_{k'} : w_q x_l = x_s$ and x_s divides $w_p x_l : w_q x_l$. It is easy to see that $s \neq l$ and $x_l | v_{k'}$. Hence $w_{k'} = v_{k'}/x_l \in G(J_l)$, and $w_{k'} : w_q = x_s$ which divides $w_p : w_q$. This implies that J_l has linear quotients. Hence by Proposition [2.4](#page-3-4) and Theorem [2.6,](#page-3-2) J_l is weakly polymatroidal and 0-decomposable.

Proof of Theorem [3.5:](#page-4-0) By Theorem [2.3,](#page-3-3) Δ is 0-decomposable if and only if $I = I_{\Delta} \vee$ is 0-decomposable. By Proposition 3.11 , x_n is a shedding variable for *I*. Hence it is enough to show that I^{x_n} and I_{x_n} are 0-decomposable.

Since $I^{x_n} = \langle x_i x_j x_n : x_i x_j x_n \in G(I) \rangle = x_n \langle x_i x_j : x_i x_j x_n \in G(I) \rangle$, hence by Proposition [3.12](#page-5-4) and Lemma [2.5,](#page-3-6) I^{x_n} is 0-decomposable. Now we show that I_{x_n} is 0-decomposable too. Again by using Proposition [3.11,](#page-5-3) we have x_{n-1} is a shedding monomial for I_{x_n} . But $I_{x_n}^{x_{n-1}} = \langle x_i x_j x_{n-1} : x_i x_j x_{n-1} \in G(I_{x_n}) \rangle = x_{n-1} \langle x_i x_j : x_{n-1} \rangle$ $x_i x_j x_{n-1}$ ∈ $G(I_{x_n})$. Then again by Proposition [3.12](#page-5-4) and Lemma [2.5,](#page-3-6) $I_{x_n}^{x_{n-1}}$ is 0-decomposable. In order to show that $(I_{x_n})_{x_{n-1}} = I_{x_n, x_{n-1}}$ is 0-decomposable, we continue this procedure as follows: Let *l'* be the smallest integer that $x_i x_j x_{l'} \in G(I)$ with $i < j < l'$. Let $l' + 1 \le l \le n - 1$ be an integer. Then as we showed in the above, one can see that $I_{x_n, x_{n-1},...,x_{l+1}}^{x_l}$ is 0-decomposable. Since $(I_{x_n, x_{n-1},...,x_{l'+2}})_{x_{l'+1}} = \langle x_i x_j x_{l'} \rangle$: $x_i x_j x_{l'} \in G(I_{x_n,x_{n-1},...,x_{l'+1}}) = x_{l'} \langle x_i x_j : x_i x_j x_{l'} \in G(I_{x_n,x_{n-1},...,x_{l'+1}}) \rangle$. So by Proposition [3.12](#page-5-4) and Lemma [2.5,](#page-3-6) $(I_{x_n, x_{n-1},...,x_{l'+2}})_{x_{l'+1}}$ is 0-decomposable. Hence I_{Δ} is 0-decomposable and therefore Δ is vertex decomposable.

Now we study the vertex decomposability property for another class of simplicial complexes, that is 2-CM simplicial complexes. According to [\[1\]](#page-8-12), a Cohen–Macaulay simplicial complex Δ is 2-CM (doubly Cohen–Macaulay) if the deletion $\Delta \setminus \{k\}$ is Cohen–Macaulay of the same dimension as Δ , for each existing vertex $k \in \Delta$.

Theorem 3.13 *Let* Δ *be a 2-CM simplicial complex of codimension 3 on vertex set* $[n]$ *. Then* Δ *is vertex decomposable.*

Proof We prove the theorem by induction on $|[n]|$ the number of vertices of Δ . If $|[n]| = 0$, then $\Delta = \{\}$ and it is vertex decomposable. Now Let $|[n]| > 0$ and $k \in [n]$ be a vertex of Δ . Then the simplicial complex link_{Δ}{ k } is a complex on $|[n]| - 1$ vertices and its dimension is dim $\Delta - 1$. It is known that $\text{link}_{\Delta}{k}$ is again 2-CM (see e.g. [\[1](#page-8-12)]) of codimension 3. Therefore, by induction hypothesis $\text{link}_{\Delta}\{k\}$ is vertex decomposable.

On the other hand, since Δ is a 2-CM, for each existing vertex $k \in \Delta$, $\Delta \setminus \{k\}$ is Cohen–Macaulay of codimension 2, and by Theorem [3.3,](#page-3-5) $\Delta \setminus \{k\}$ is vertex decomposable. It is easy to see that no face of $\text{link}_{\Delta}\{k\}$ is a facet of $\Delta \setminus \{k\}$. Therefore any vertex *k* is a shedding vertex and Δ is vertex decomposable.

Hochster's Tor formula provides that each Gorenstein simplicial complex is 2-CM (see [\[1](#page-8-12)]). Therefore, Theorem [3.5](#page-4-0) is an immediate consequence of Theorem [3.13.](#page-6-0) But note that the proof of Theorem [3.5](#page-4-0) is algebraic while the proof of Theorem [3.13](#page-6-0) is combinatorial.

4 Path Ideals of Cycles

As an application of the above results, we show that simplicial complexes where associated to specific path ideals of an *n*-th cycle are vertex decomposable. Path ideal of a graph was first introduced by Conca and De Negri in [\[5\]](#page-8-13). Let *G* be a directed graph on vertex set $\{x_1, \ldots, x_n\}$. Fix an integer $2 \le t \le n$. A sequence x_{i_1}, \ldots, x_{i_t} of distinct vertices of *G* is called a *path* of length *t* if there are *t* −1 distinct directed edges e_1, \ldots, e_{t-1} , where e_j is an edge from x_{i_j} to $x_{i_{j+1}}$. Then the *path ideal* of *G* of length *t* is the monomial ideal $I_t(G) = (\prod_{j=1}^t x_{i_j})$, where x_{i_1}, \ldots, x_{i_t} is a path of length *t* in *G*. Let C_n denote the *n*-cycle with directed edges e_1, \ldots, e_n , where e_i is from x_i to x_{i+1} for $i = 1, ..., n-1$ and e_n is from x_n to x_1 . Hence $I_t(C_n) = (u_1, ..., u_n)$, where $u_i = \prod_{v=0}^{t-1} x_{i+v}$ for all $i = 1, ..., n$, where $x_d = x_{d-n}$ whenever $d > n$. In [\[7,](#page-8-14) proposition4.1] it is shown that $R/I_2(C_n)$ is vertex decomposable/ shellable/ Cohen–Macaulay if and only if $n = 3$ or 5. Recently, Saeedi, Kiani and Terai in [\[13\]](#page-8-6) showed that if $2 < t \leq n$, then $R/I_t(C_n)$ is sequentially Cohen–Macaulay if and only if $t = n$, $t = n - 1$ or $t = (n - 1)/2$. As a consequence of our result we can extend the main result of [\[13\]](#page-8-6).

Theorem 4.1 *Let* $3 \le t \le n$ *and* Δ *be a simplicial complex on* [*n*] *such that* I_{Δ} = $I_t(C_n)$. Then Δ is vertex decomposable if and only if $t = n$, $t = n - 1$ or $t = (n-1)/2$.

Proof If $t = n$, then Δ is complete intersection. If $t = n - 1$, then Δ is Cohen– Macaulay of codimension 2, and if $t = (n-1)/2$, then Δ is Gorenstein of codimension 3. Hence in these three cases Δ is vertex decomposable. If *t* is not one of the above cases, then by [\[13](#page-8-6)], Δ is not sequentially Cohen–Macaulay and hence not vertex decomposable. \square

For the simplicial complexes, one has the following implication:

vertex decomposable ⇒ **shellable** ⇒ **Cohen**−**Macaulay**.

Note that these implications are strict, but by the following corollary, for path ideals, the reverse implications are also valid.

Combining the main result of $[13]$ $[13]$ with our result, we get the following:

Corollary 4.2 *Let* $3 \le t \le n$ *and* Δ *be a simplicial complex on* [*n*] *such that* I_{Δ} = $I_t(C_n)$. Then the following conditions are equivalent:

- (i) *is Cohen–Macaulay;*
- (ii) Δ *is shellable*;
- (iii) Δ *is vertex decomposable.*

Moreover, these equivalent condition hold if and only if $t = n$ *,* $t = n - 1$ *or* $t =$ $(n-1)/2$.

Acknowledgments The research of the second author is in part supported by a Grant from IPM (No. 91130028).

References

- 1. Baclawski, K.: Cohen-Macaulay connectivity and geometric lattices. Eur. J. Comb. **3**(4), 293–305 (1982)
- 2. Billera, L.J., Provan, J.S.: Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res. **5**(4), 576–594 (1980)
- 3. Bruns, W., Herzog, J.: On multigraded resolutions. Math. Proc. Cambridge Phil. Soc. **118**, 234–251 (1995)
- 4. Björner, A., Wachs, M.L.: Shellable nonpure complexes and posets, II. Trans. Amer. Math. Soc. **349**, 3945–3975 (1997)
- 5. Conca, A., De Negri, E.: M-sequences, graph ideals and ladder ideals of linear type. J. Algebr. **211**(2), 599–624 (1999)
- 6. Eagon, J., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebr. **130**, 265–275 (1998)
- 7. Francisco, C.A., Van Tuyl, A.: Sequentially Cohen-Macaulay edge ideals. Proc. Amer. Math. Soc. **135**(8), 2327–2337 (2007)
- 8. Herzog, J., Hibi, T.: Monomial Ideals. Springer, London (2011)
- 9. Herzog, J., Soleyman Jahan, A., Yassemi, S.: Stanley decompositions and partitionable simplicial complexes. J. Algebr. Comb. **27**, 113–125 (2008)
- 10. Herzog, J., Hibi, T., Zheng, X.: Monomial ideals whose powers have a linear resolution. Math. Scand. **95**, 23–32 (2004)
- 11. Jonsson, J.: Optimal decision trees on simplicial complexes. Electronic. J. Combin. **12**(1), R3 (2005)
- 12. Rahmati Asghar, R., Yassemi, S.: k-decomposable monomial ideals. Algebra Colloq. (to appear)
- 13. Saeedi, S., Kiani, D., Terai, N.: Sequentially Cohen-Macaulay path ideals of cycles. Bull. Math. Soc. Sci. Math. Roumanie Tome **54**(102), 353–363 (2011). no. 4
- 14. Woodroofe, R.: Chordal and sequentially Cohen-Macaulay clutters. Electron. J. Combin. **18**(1), 208 (2011). [arXiv:0911.4697](http://arxiv.org/abs/0911.4697)
- 15. Zheng, X.: Homological properties of monomial ideals associated to quasi-trees and lattices. Ph.D Thesis, Universitat Duisburg-Essen (2004)