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Abstract Let � be a simplicial complex on vertex set [n]. It is shown that if � is
complete intersection,Cohen–Macaulay of codimension 2,Gorenstein of codimension
3, or 2-Cohen–Macaulay of codimension 3, then � is vertex decomposable. As a
consequence, we show that if � is a simplicial complex such that I� = It (Cn), where
It (Cn) is the path ideal of length t of Cn , then � is vertex decomposable if and only
if t = n, t = n − 1, or n is odd and t = (n − 1)/2.

Keywords Vertex decomposable · Simplicial complex · Monomial ideal · Weakly
polymatroidal ideal

Mathematics Subject Classification 13F20 · 05E40 · 13F55

1 Introduction

Let � be a simplicial complex on vertex set [n] = {1, . . . , n}, i.e., � is a collection of
subsets of [n] with the property that if F ∈ �, then all subsets of F are also in �. An
element of � is called a face of �, and the maximal faces of � under inclusion are
called facets. We denote byF (�) the set of facets of �. The dimension of a face F is
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defined as dim F = |F |− 1, where |F | is the number of vertices of F . The dimension
of the simplicial complex � is the maximum dimension of its facets. A simplicial
complex � is called pure if all facets of � have the same dimension. Otherwise it
is called non-pure. We denote the simplicial complex � with facets F1, . . . , Ft by
� = 〈F1, . . . , Ft 〉. A simplex is a simplicial complex with only one facet.

For the simplicial complexes �1 and �2 defined on disjoint vertex sets, the join of
�1 and �2 is �1 ∗ �2 = {F ∪ G : F ∈ �1, G ∈ �2}.

For the face F in �, the link, deletion, and � of F in � are, respectively, denoted
by link� F,� \ F and ��F and are defined by link� F = {G ∈ � : F ∩ G =
∅, F ∪ G ∈ �} and � \ F = {G ∈ � : F � G} and ��F = 〈F〉 ∗ link� F .

Let R = K [x1, . . . , xn] be the polynomial ring in n indeterminates over a field K .
To a given simplicial complex � on the vertex set [n], the Stanley–Reisner ideal is the
squarefree monomial ideal whose generators correspond to the non-faces of �. We
say the simplicial complex � is complete intersection, Cohen–Macaulay or Goren-
stein if K [x1, . . . , xn]/I� is complete intersection, Cohen–Macaulay, or Gorenstein,
respectively.

The facet ideal of � is the squarefree monomial ideal generated by monomials
xF = ∏

i∈F xi where F is a facet of � and is denoted by I (�). The complement
of a face F is [n] \ F and is denoted by Fc. Also, the complement of the simplicial
complex� = 〈F1, . . . , Fr 〉 is�c = 〈Fc

1 , . . . , Fc
r 〉. TheAlexander dual of� is defined

by �∨ = {Fc : F /∈ �}. It is known that for the complex �, one has I�∨ = I (�c).
The simplicial complex � is (non-pure) shellable if its facets can be ordered

F1, F2, . . . , Fr such that, for all 2 ≤ i ≤ r , the subcomplex 〈F1, . . . , Fi−1〉 ∩ 〈Fi 〉 is
pure of dimension dim(Fi ) − 1.

Let I ⊂ R be a monomial ideal. We denote by G(I ) the unique minimal system of
monomial generators of I . We say that I has linear quotients with respect to the linear
order u1, . . . , ur ofG(I ) if for all i = 2, . . . , r , the colon ideal (u1, . . . , ui−1) : (ui ) is
generated by linear forms. It is well known that if I has linear quotients and generated
in one degree, then I has a linear resolution, see [8]. In [10], the authors showed that
the simplicial complex � is shellable if and only if I�∨ has linear quotients.

Billera and Provan [2] introduced the concept of pure vertex decomposable simpli-
cial complexes. Then Björner and Wachs [4] extended the concept of vertex decom-
posability to non-pure complexes. An analogous extension of k-decomposability to
non-pure complexes was given by Woodroofe [14]. Then Jonsson [11] extended
Björner and Wachs’s definition of shedding vertex in non-pure complexes to shed-
ding face.

Definition 1.1 Let� be a simplicial complex on vertex set [n]. Then a face F is called
a shedding face if every face G of ��F satisfies the following exchange property: for
every i ∈ F , there is a j ∈ [n] \ G such that (G ∪ { j}) \ {i} is a face of �.

Definition 1.2 [14] A simplicial complex � is recursively defined to be k-
decomposable if either � is a simplex or else has a shedding face F with dim(F) ≤ k
such that both � \ F and link� F are k-decomposable.

Note that the complexes {} and {∅} considered to be k-decomposable for all k ≥ −1.
0-decomposable complexes are of special importance and called vertex decomposable.
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It was shown by Billera and Provan [2] that a d-dimensional simplicial complex
is d-decomposable if and only if it is shellable. This result was generalized to non-
pure complexes by Woodroofe [14]. Also, since each k-decomposable complex is
(k + 1)-decomposable, therefore, we have the following implications:

vertex-decomposable ⇒ 1-decomposable ⇒ · · · ⇒ d-decomposable ⇔ shellable

This paper is organized as follows: In Sect. 2, we recall some definitions and some
known results which will be needed later. The main results of the paper are in Sect. 3.
First we show that each complete intersection simplicial complex and each Cohen–
Macaulay simplicial complex of codimension 2 are vertex decomposable. In Theorem
3.5, Vertex decomposability of Gorenstein simplicial complexes of codimension 3 is
shown. We also prove that any 2-CM simplicial complex of codimension 3 is vertex
decomposable, see Theorem 3.13. Let Cn denote the n-cycle and It (Cn) denote the
path ideal ofCn of length t . We set�t (Cn) for the simplicial complex whose Stanley–
Reisner ideal is It (Cn). In Sect. 4, as an application of our results, we show that�t (Cn)

is vertex decomposable if and only if t = n, t = n−1, or t = (n−1)/2, which extend
the main result of [13].

2 Preliminaries

For a monomial u = xa11 . . . xann in R, we denote the support of u by supp(u) and it is
the set of those variables xi that ai �= 0. Let m be another monomial in R. If for all
xi ∈ supp(u), xaii � m then we set [u,m] = 1, otherwise we set [u,m] �= 1.

For a monomial ideal I ⊂ R, we set I u = (mi ∈ G(I ) : [u,mi ] �= 1) and
Iu = (mi ∈ G(I ) : [u,mi ] = 1).

The concept of shedding monomial and k-decomposable monomial ideals was first
introduced by Rahmati and Yassemi in [12].

Definition 2.1 Let I be a monomial ideal and G(I ) = {m1, . . . ,mr }. The monomial
u = xa11 . . . xann is called a shedding monomial of I if Iu �= 0 and for eachmi ∈ G(Iu)
and each xl ∈ supp(u) there exists m j ∈ G(I u) such that 〈m j : mi 〉 = 〈xl〉.
Definition 2.2 Let I be a monomial ideal and G(I ) = {m1, . . . ,mr }. Then I is a k-
decomposable ideal if r = 1 or else has a sheddingmonomial uwith | supp(u) |≤ k+1
such that the ideals I u and Iu are k-decomposable. Note that since | G(I ) | is finite,
the recursion procedure will stop.

A 0-decomposable ideal is called variable decomposable. Also, a monomial ideal is
decomposable if it is k-decomposable for some k ≥ 0.

A monomial ideal I ⊂ R = K [x1, . . . , xn] generated in a single degree is called
polymatroidal if for any u, v ∈ G(I ) such that degxi (u) > degxi (v) there exists
an index j with degx j (u) < degx j (v) such that x j (u/xi ) ∈ G(I ). A squarefree
polymatroidal ideal is called matroidal. Also, a monomial ideal I is called weakly
polymatroidal if for every two monomials u = xa11 . . . xann > v = xb11 . . . xbnn in
G(I ) such that a1 = b1, . . . , at−1 = bt−1 and at > bt , there exists j > t such
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612 S. M. Ajdani, A. S. Jahan

that xt (v/x j ) ∈ I . It is clear from the definition that a polymatroidal ideal is weakly
polymatroidal.

The following results from [12] are crucial in this paper.

Theorem 2.3 [12, Theorem 2.10] Let � be a (not necessarily pure) d-dimensional
simplicial complex on vertex set [n]. Then � is k-decomposable if and only if I�∨ is
k-decomposable, where k ≤ d.

Proposition 2.4 [12, Lemma 3.8] If I is an squarefree monomial ideal generated
in degree 2 which has a linear resolution, then after suitable renumbering of the
variables, I is weakly polymatroidal.

Lemma 2.5 [12, Lemma 2.6] Let I ⊂ R be a monomial ideal with the minimal
system of generators G(I ) = {m1, . . . ,mr } and u a monomial in R. Then the ideal I
is k-decomposable if and only if u I is k-decomposable.

Theorem 2.6 [12, Theorem 3.5] Let I ⊂ R be a weakly polymatroidal ideal. Then I
is 0-decomposable.

3 Some Vertex Decomposable Simplicial Complexes

First, we recall that a Noetherian local ring A is a complete intersection ring if its
completion Â is a residue class ring of a regular local ring R with respect to an
ideal generated by an R-sequence. Note that a simplicial complex � is called com-
plete intersection if R/I� is a complete intersection ring, i.e., I� = (u1, . . . , um)

where gcd(ui , u j ) = 1 for all i �= j . It is easy to see that in this case, I� =⋂
xi j ∈supp(u j )

(xi1 , . . . , xim ). On the other hand, we know that I� = ⋂
F∈F (�) PFc ,

where PFc = (xi : i ∈ Fc). Therefore, we have the following:

Remark 3.1 Let � be a simplicial complex on vertex set [n]. Then � is complete
intersection if and only if there are disjoint subsets A1, . . . , Am of [n] such that [n] =⋃m

i=1 Ai and F is a facet of � if and only if F = [n] \ { j1, . . . , jm}, where ji ∈ Ai .

A matroid complex � is a simplicial complex with the property that for all faces F
and G in � with |F | < |G|, there exists i ∈ G \ F such that F ∪ {i} ∈ �. Since link
and deletion of any vertex of a matroid are again a matroid, induction on the number of
vertices shows that any matroid complex is vertex decomposable. It is easy to see from
Remark 3.1 that each complete intersection simplicial complex is a matroid. Hence,
every complete intersection simplicial complex is vertex decomposable. However, in
the following, we give a different proof of this fact.

Theorem 3.2 Let � be a complete intersection simplicial complex on vertex set [n].
Then � is vertex decomposable.

Proof Let G(I�) = {u1, . . . , um}. Since u1, . . . , um is a regular sequence, we have
gcd(ui , u j ) = 1 for all i �= j . We set Pui = (xi : xi | ui ) for all i = 1, . . . ,m.
Then it is easy to see that I�∨ = ∩m

i=1Pui = ∏m
i=1 Pui . Hence, I�∨ is a transversal

polymatroidal ideal and by Theorem 2.6, I�∨ is 0-decomposable. Thus, the assertion
follows from Theorem 2.3. ��
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Theorem 3.3 If � is a Cohen–Macaulay simplicial complex of codimension 2, then
� is vertex decomposable.

Proof Since � is Cohen–Macaulay simplicial complex of codimension 2, by a result
of Eagon and Reiner [6], I�∨ is a squarefree monomial ideal which has 2-linear
resolution. Hence, by Proposition 2.4 and Theorem 2.6, I�∨ is 0-decomposable. It
follows from Theorem 2.3 that � is vertex decomposable. ��

As an immediate consequence, we have the following:

Corollary 3.4 Let� be a quasi-forest simplicial complex which is not a simplex. Then
�∨ is vertex decomposable.

Proof It is proved in [15] that each quasi-forest is a flag complex. So I� is generated
by quadratic monomials and hence height(I�∨) = 2. Since � is quasi-forest by
[15, Corollary 5.5], we have pd(K [�∨]) = 2. Therefore, �∨ is Cohen–Macaulay of
codimension 2, and by Theorem 3.3, �∨ is vertex decomposable. ��

Next we consider Gorenstein simplicial complexes and prove the following:

Theorem 3.5 Each Gorenstein simplicial complex of codimension 3 is vertex decom-
posable.

Our proof is based on the following structure theorem that can be found in [3].

Theorem 3.6 Let � be a Gorenstein simplicial complex of codimension 3 on vertex
set [n]. Then | G(I�) | is an odd number, say | G(I�) |= 2m+1 ≤ n, and there exists
a regular sequence of squarefree monomials u1, . . . , u2m+1 in R = K [x1, . . . , xn]
such that

G(I�) = {uiui+1, . . . , ui+m−1 : i = 1, . . . , 2m + 1},

where ui = ui−2m−1 whenever i > 2m + 1.

We will use the following remarks for our proof.

Remark 3.7 Let� be a Gorenstein simplicial complex of codimension 3 on vertex set
[n] with

G(I�) = {uiui+1, . . . , ui+m−1 : i = 1, . . . , 2m + 1},

where ui = ui−2m−1 whenever i > 2m + 1. Then after relabeling of the variables, we
may assume that u1 = ∏l1

i=1 xi , u2 = ∏l2
i=l1+1 xi , . . . , u2m+1 = ∏n

i=l2m+1 xi .

Remark 3.8 If � is a Gorenstein simplicial complex of codimension 3, then it is
easy to see from Theorem 3.6 that I� = ⋂

(xti , xr j , xsk ) with xti ∈ supp(ui ), xr j ∈
supp(u j ), xsk ∈ supp(uk), where 1 ≤ i < j < k ≤ 2m + 1, and j − i ≤ m, k −
j ≤ m, k − i ≥ m + 1. Thus, I�∨ is generated by the monomials xti xr j xsk with
xti ∈ supp(ui ), xr j ∈ supp(u j ), xsk ∈ supp(uk), where 1 ≤ i < j < k ≤ 2m + 1 and
j − i ≤ m, k − j ≤ m, k − i ≥ m + 1.
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Example 3.9 Let � be a simplicial complex with

F (�) = {{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 6},
{1, 3, 4, 7}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 4, 5, 7}, {2, 3, 5, 6}, {2, 3, 5, 7},
{2, 3, 6, 7}, {2, 4, 5, 7}, {2, 4, 6, 7}, {3, 4, 6, 7}}.

Then I� = I3(C7) = (x1x2x3, x2x3x4, x3x4x5, x4x5x6, x5x6x7, x6x7x1, x7x1x2), and
I� = ⋂

i, j,k(xi , x j , xk), where j − i ≤ 3, k − j ≤ 3 and k − i ≥ 4. Therefore, by
Remark 3.8, � is Gorenstein simplicial complex of codimension 3. Observe that 1 is
a shedding vertex of �.

Lemma 3.10 Let � be a Gorenstein simplicial complex of codimension 3, and
xti xr j xsk ∈ G(I�∨). If k < k′ ≤ 2m+1 or 1 ≤ k′ < i , then for each xsk′ ∈ supp(uk′),
either xti xr j xsk′ or xr j xsk xsk′ belongs to G(I�∨).

Proof We set v1 = xti xr j xsk′ and v2 = xr j xsk xsk′ .
Case 1 Let k < k′ ≤ 2m + 1 and suppose on contrary v1 and v2 do not belong to

G(I�∨). Since xti xr j xsk ∈ G(I�∨), one has j − i ≤ m and k′ − i > k − i ≥ m + 1,
hence v1 /∈ G(I�∨) if and only if

k′ − j > m. (1)

Again since xti xr j xsk ∈ G(I�∨), we know that k − j ≤ m and k′ − k ≤ m. So
v2 /∈ G(I�∨) if and only if

k′ − j ≤ m. (2)

From 1 and 2, we get a contradiction.
Case 2 The same argument works also in the case 1 ≤ k′ < i . ��

Proposition 3.11 Let � be a Gorenstein simplicial complex of codimension 3 on [n],
and I = I�∨ . Then the following statements hold.

(i) xn is a shedding variable for I .
(ii) Let l ′ + 1 ≤ l ≤ n − 1, where l ′ is the smallest index such that there exists

xi x j xl ′ ∈ G(I )with i < j < l ′. Then xl is a shedding variable for Ixn ,xn−1,...,xl+1 .

Proof (i): Since � is a simplicial complex on [n], Ixn �= 0. Suppose xti xr j xsk ∈
G(Ixn ) be an arbitrary element with sk < n. Let uk be as in Theorem 3.6. If
k = 2m + 1, then by Remark 3.8, xn ∈ supp(uk) and hence xti xr j xn ∈ G(I ). If
k < 2m + 1, then by Lemma 3.10 either xti xr j xn or xr j xsk xn belongs to G(I ).
Hence, in any case one of the monomials, xti xr j xn or xr j xsk xn belongs toG(I xn ).
This implies that xn is a shedding variable for I .

(ii): By induction, we know that Ixn ,xn−1,...,xl = (Ixn ,xn−1,...,xl+1)xl . If xti xr j xsk ∈
G(Ixn ,xn−1,...,xl ) with sk < l, then as we showed in case (i), by Remark
3.8 and Lemma 3.10, either xti xr j xl ∈ G(I xlxn ,xn−1,...,xl+1) or xr j xsk xl ∈
G(I xlxn ,xn−1,...,xl+1). This completes the proof. ��
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Proposition 3.12 Let � be a Gorenstein simplicial complex of codimension 3. Let
1 ≤ l ≤ n and Jl be the monomial ideal which is generated by the set of those
quadratic monomials xi x j , where xi x j xl ∈ G(I�∨). Then Jl has linear quotients and
in particular it is 0-decomposable.

Proof We know by [9] � is shellable. Hence, I�∨ has linear quotients. Suppose that
G(I�∨) = {v1, v2, . . . , vt } and it has linear quotients in the given order. Hence, for
each vc and vd in G(I�∨) with c < d, there exists another monomial vd ′ with d ′ < d
such that vd ′ : vd = xc′ for some c′ and xc′ divides vc : vd . We order the monomials
in G(Jl) by the induced order of G(I�∨) and claim that Jl has linear quotients in this
order. Letwp andwq be arbitrary two elements inG(Jl)with p < q. Thus vp = wpxl
and vq = wq x1 belong to G(I�∨). Therefore there exists another monomial vk′ with
k′ < q such that vk′ : wq xl = xs and xs divideswpxl : wq xl . It is easy to see that s �= l
and xl | vk′ . Hence wk′ = vk′/xl ∈ G(Jl), and wk′ : wq = xs which divides wp : wq .
This implies that Jl has linear quotients. Hence by Proposition 2.4 and Theorem 2.6,
Jl is weakly polymatroidal and 0-decomposable. ��
Proof of Theorem 3.5: By Theorem 2.3, � is 0-decomposable if and only if I = I�∨
is 0-decomposable. By Proposition 3.11, xn is a shedding variable for I . Hence it is
enough to show that I xn and Ixn are 0-decomposable.

Since I xn = 〈xi x j xn : xi x j xn ∈ G(I )〉 = xn〈xi x j : xi x j xn ∈ G(I )〉, hence by
Proposition 3.12 and Lemma 2.5, I xn is 0-decomposable. Now we show that Ixn is
0-decomposable too. Again by using Proposition 3.11, we have xn−1 is a shedding
monomial for Ixn . But I

xn−1
xn = 〈xi x j xn−1 : xi x j xn−1 ∈ G(Ixn )〉 = xn−1〈xi x j :

xi x j xn−1 ∈ G(Ixn )〉. Then again by Proposition 3.12 and Lemma 2.5, I xn−1
xn is

0-decomposable. In order to show that (Ixn )xn−1 = Ixn ,xn−1 is 0-decomposable,we con-
tinue this procedure as follows: Let l ′ be the smallest integer that xi x j xl ′ ∈ G(I ) with
i < j < l ′. Let l ′ + 1 ≤ l ≤ n− 1 be an integer. Then as we showed in the above, one
can see that I xlxn ,xn−1,...,xl+1 is 0-decomposable. Since (Ixn ,xn−1,...,xl′+2

)xl′+1
= 〈xi x j xl ′ :

xi x j xl ′ ∈ G(Ixn ,xn−1,...,xl′+1
)〉 = xl ′ 〈xi x j : xi x j xl ′ ∈ G(Ixn ,xn−1,...,xl′+1

)〉. So by
Proposition 3.12 and Lemma 2.5, (Ixn ,xn−1,...,xl′+2

)xl′+1
is 0-decomposable. Hence I�∨

is 0-decomposable and therefore � is vertex decomposable. ��
Now we study the vertex decomposability property for another class of simplicial

complexes, that is 2-CM simplicial complexes. According to [1], a Cohen–Macaulay
simplicial complex � is 2-CM (doubly Cohen–Macaulay) if the deletion � \ {k} is
Cohen–Macaulay of the same dimension as �, for each existing vertex k ∈ �.

Theorem 3.13 Let � be a 2-CM simplicial complex of codimension 3 on vertex set
[n]. Then � is vertex decomposable.

Proof We prove the theorem by induction on |[n]| the number of vertices of �. If
|[n]| = 0, then � = {} and it is vertex decomposable. Now Let |[n]| > 0 and k ∈ [n]
be a vertex of �. Then the simplicial complex link�{k} is a complex on |[n]| − 1
vertices and its dimension is dim� − 1. It is known that link�{k} is again 2-CM
(see e.g. [1]) of codimension 3. Therefore, by induction hypothesis link�{k} is vertex
decomposable.
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616 S. M. Ajdani, A. S. Jahan

On the other hand, since � is a 2-CM, for each existing vertex k ∈ �,� \ {k} is
Cohen–Macaulay of codimension 2, and by Theorem 3.3, � \ {k} is vertex decom-
posable. It is easy to see that no face of link�{k} is a facet of � \ {k}. Therefore any
vertex k is a shedding vertex and � is vertex decomposable. ��

Hochster’s Tor formula provides that each Gorenstein simplicial complex is 2-CM
(see [1]). Therefore, Theorem 3.5 is an immediate consequence of Theorem 3.13. But
note that the proof of Theorem 3.5 is algebraic while the proof of Theorem 3.13 is
combinatorial.

4 Path Ideals of Cycles

As an application of the above results, we show that simplicial complexes where
associated to specific path ideals of an n-th cycle are vertex decomposable. Path ideal
of a graph was first introduced by Conca and De Negri in [5]. Let G be a directed
graph on vertex set {x1, . . . , xn}. Fix an integer 2 ≤ t ≤ n. A sequence xi1 , . . . , xit of
distinct vertices ofG is called a path of length t if there are t−1 distinct directed edges
e1, . . . , et−1, where e j is an edge from xi j to xi j+1 . Then the path ideal of G of length
t is the monomial ideal It (G) = (

∏t
j=1 xi j ), where xi1 , . . . , xit is a path of length t

in G. Let Cn denote the n-cycle with directed edges e1, . . . , en , where ei is from xi
to xi+1 for i = 1, . . . , n − 1 and en is from xn to x1. Hence It (Cn) = (u1, . . . , un),
where ui = ∏t−1

v=0 xi+v for all i = 1, . . . , n, where xd = xd−n whenever d > n.
In [7, proposition4.1] it is shown that R/I2(Cn) is vertex decomposable/ shellable/
Cohen–Macaulay if and only if n = 3 or 5. Recently, Saeedi, Kiani and Terai in [13]
showed that if 2 < t ≤ n, then R/It (Cn) is sequentially Cohen–Macaulay if and only
if t = n, t = n − 1 or t = (n − 1)/2. As a consequence of our result we can extend
the main result of [13].

Theorem 4.1 Let 3 ≤ t ≤ n and � be a simplicial complex on [n] such that I� =
It (Cn). Then� is vertex decomposable if and only if t = n, t = n−1 or t = (n−1)/2.

Proof If t = n, then � is complete intersection. If t = n − 1, then � is Cohen–
Macaulay of codimension 2, and if t = (n−1)/2, then� is Gorenstein of codimension
3. Hence in these three cases � is vertex decomposable. If t is not one of the above
cases, then by [13], � is not sequentially Cohen–Macaulay and hence not vertex
decomposable. ��

For the simplicial complexes, one has the following implication:

vertex decomposable ⇒ shellable ⇒ Cohen−Macaulay.

Note that these implications are strict, but by the following corollary, for path ideals,
the reverse implications are also valid.

Combining the main result of [13] with our result, we get the following:

Corollary 4.2 Let 3 ≤ t ≤ n and � be a simplicial complex on [n] such that I� =
It (Cn). Then the following conditions are equivalent:
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Vertex Decomposability of 2-CM and Gorenstein... 617

(i) � is Cohen–Macaulay;
(ii) � is shellable;
(iii) � is vertex decomposable.

Moreover, these equivalent condition hold if and only if t = n, t = n − 1 or t =
(n − 1)/2.

Acknowledgments The research of the second author is in part supported by a Grant from IPM (No.
91130028).
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