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Abstract Let A be a simplicial complex on vertex set [r]. It is shown that if A is
complete intersection, Cohen—Macaulay of codimension 2, Gorenstein of codimension
3, or 2-Cohen—Macaulay of codimension 3, then A is vertex decomposable. As a
consequence, we show that if A is a simplicial complex such that /Ix = I,(C,), where
I;(Cp) is the path ideal of length ¢ of C,, then A is vertex decomposable if and only
ift=n,t=n—1,ornisoddandt = (n — 1)/2.

Keywords Vertex decomposable - Simplicial complex - Monomial ideal - Weakly
polymatroidal ideal
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1 Introduction

Let A be a simplicial complex on vertex set [n] = {1, ..., n},i.e., A is a collection of
subsets of [n] with the property that if F € A, then all subsets of F are also in A. An
element of A is called a face of A, and the maximal faces of A under inclusion are
called facets. We denote by .% (A) the set of facets of A. The dimension of a face F is
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defined as dim F = |F| — 1, where | F| is the number of vertices of F. The dimension
of the simplicial complex A is the maximum dimension of its facets. A simplicial
complex A is called pure if all facets of A have the same dimension. Otherwise it
is called non-pure. We denote the simplicial complex A with facets Fi, ..., F; by
A = (Fy,..., Fy). A simplex is a simplicial complex with only one facet.

For the simplicial complexes A1 and A; defined on disjoint vertex sets, the join of
Arand Ay is A1 x Ay ={FUG : Fe A, Ge Ay}

For the face F in A, the link, deletion, and * of F in A are, respectively, denoted
by linka F, A\ F and xp F and are defined by linkp F = {G € A : FNG =
g, FUGeAland A\ F ={G e A : FQG}and*AFz (F) *linkp F.

Let R = K[x1, ..., x,] be the polynomial ring in n indeterminates over a field K .
To a given simplicial complex A on the vertex set [n], the Stanley—Reisner ideal is the
squarefree monomial ideal whose generators correspond to the non-faces of A. We
say the simplicial complex A is complete intersection, Cohen—Macaulay or Goren-
stein if K[x1, ..., x,]/Ia is complete intersection, Cohen—Macaulay, or Gorenstein,
respectively.

The facet ideal of A is the squarefree monomial ideal generated by monomials
Xp = ]_[[e rXi where F' is a facet of A and is denoted by 7(A). The complement
of a face F is [n] \ F and is denoted by F°. Also, the complement of the simplicial
complex A = (Fy, ..., Fy)is A¢ = (Ff, ..., FF).The Alexander dual of A is defined
by AV = {F¢ : F ¢ A}. It is known that for the complex A, one has Inv = I (A°).

The simplicial complex A is (non-pure) shellable if its facets can be ordered
Fi, F, ..., F, such that, for all 2 < i < r, the subcomplex (Fy, ..., F;_1) N (F;) is
pure of dimension dim(F;) — 1.

Let I C R be a monomial ideal. We denote by G (/) the unique minimal system of
monomial generators of /. We say that / has linear quotients with respect to the linear
orderuy,...,u, of G(I)ifforalli =2, ..., r, thecolonideal (uy,...,u;—1) : (u;)is
generated by linear forms. It is well known that if 7 has linear quotients and generated
in one degree, then 7 has a linear resolution, see [8]. In [10], the authors showed that
the simplicial complex A is shellable if and only if /ov has linear quotients.

Billera and Provan [2] introduced the concept of pure vertex decomposable simpli-
cial complexes. Then Bjorner and Wachs [4] extended the concept of vertex decom-
posability to non-pure complexes. An analogous extension of k-decomposability to
non-pure complexes was given by Woodroofe [14]. Then Jonsson [11] extended
Bjorner and Wachs’s definition of shedding vertex in non-pure complexes to shed-
ding face.

Definition 1.1 Let A be a simplicial complex on vertex set [#]. Then a face F is called
a shedding face if every face G of xa F satisfies the following exchange property: for
everyi € F,thereisa j € [n]\ G such that (G U {j}) \ {i}is a face of A.

Definition 1.2 [14] A simplicial complex A is recursively defined to be k-
decomposable if either A is a simplex or else has a shedding face F’ with dim(F) < k
such that both A \ F and linka F are k-decomposable.

Note that the complexes {} and { &} considered to be k-decomposable forall k > —1.
0-decomposable complexes are of special importance and called vertex decomposable.
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It was shown by Billera and Provan [2] that a d-dimensional simplicial complex
is d-decomposable if and only if it is shellable. This result was generalized to non-
pure complexes by Woodroofe [14]. Also, since each k-decomposable complex is
(k + 1)-decomposable, therefore, we have the following implications:

vertex-decomposable = 1-decomposable = - - - = d-decomposable <> shellable

This paper is organized as follows: In Sect. 2, we recall some definitions and some
known results which will be needed later. The main results of the paper are in Sect. 3.
First we show that each complete intersection simplicial complex and each Cohen—
Macaulay simplicial complex of codimension 2 are vertex decomposable. In Theorem
3.5, Vertex decomposability of Gorenstein simplicial complexes of codimension 3 is
shown. We also prove that any 2-CM simplicial complex of codimension 3 is vertex
decomposable, see Theorem 3.13. Let C,, denote the n-cycle and I;(C,) denote the
path ideal of C,, of length . We set A;(C,,) for the simplicial complex whose Stanley—
Reisnerideal is 1, (C,,). In Sect. 4, as an application of our results, we show that A, (Cj,)
is vertex decomposable if and only if t = n,t =n—1,0rt = (n—1)/2, which extend
the main result of [13].

2 Preliminaries

For a monomial u = xla1 ...xy" in R, we denote the support of u by supp(u) and it is
the set of those variables x; that a; %= 0. Let m be another monomial in R. If for all
x; € supp(u), xfi 1 m then we set [u, m] = 1, otherwise we set [u, m] # 1.

For a monomial ideal I C R, we set [* = (m; € G(I) : [u,m;] # 1) and
I, =m; e GU) : [u,m;]=1).

The concept of shedding monomial and k-decomposable monomial ideals was first
introduced by Rahmati and Yassemi in [12].

Definition 2.1 Let / be a monomial ideal and G(I) = {m, ..., m,}. The monomial
u = x{'...x;" is called a shedding monomial of / if 1, # 0 and for eachm; € G(I,)
and each x; € supp(u) there exists m; € G(I") such that (m; : m;) = (x;).

Definition 2.2 Let / be a monomial ideal and G(I) = {m,...,m,}. Then I is a k-
decomposableideal if r = 1 or else has a shedding monomial u with | supp(u) |< k+1
such that the ideals /" and I, are k-decomposable. Note that since | G(1) | is finite,
the recursion procedure will stop.

A 0-decomposable ideal is called variable decomposable. Also, a monomial ideal is
decomposable if it is k-decomposable for some k > 0.

A monomial ideal I C R = K|[xy, ..., x,] generated in a single degree is called
polymatroidal if for any u, v € G(I) such that deg, (u) > deg, (v) there exists
an index j with deng (n) < deng (v) such that x;(u/x;) € G(I). A squarefree
polymatroidal ideal is called matroidal. Also, a monomial ideal I is called weakly
polymatroidal if for every two monomials u = x{'...xy bn

n by :
> vV = X1 o.-Xn m

G(I) such that a; = by,...,a;—1 = b;—1 and a; > by, there exists j > t such
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that x,(v/x;) € I. It is clear from the definition that a polymatroidal ideal is weakly
polymatroidal.
The following results from [12] are crucial in this paper.

Theorem 2.3 [12, Theorem 2.10] Let A be a (not necessarily pure) d-dimensional
simplicial complex on vertex set [n]. Then A is k-decomposable if and only if Iav is
k-decomposable, where k < d.

Proposition 2.4 [12, Lemma 3.8] If I is an squarefree monomial ideal generated
in degree 2 which has a linear resolution, then after suitable renumbering of the
variables, 1 is weakly polymatroidal.

Lemma 2.5 [12, Lemma 2.6] Let I C R be a monomial ideal with the minimal
system of generators G(I) = {my, ..., m;} and u a monomial in R. Then the ideal 1
is k-decomposable if and only if ul is k-decomposable.

Theorem 2.6 [12, Theorem 3.5] Let I C R be a weakly polymatroidal ideal. Then 1
is 0-decomposable.

3 Some Vertex Decomposable Simplicial Complexes

First, we recall that a Noetherian local ring A is a complete intersection ring if its
completion A is a residue class ring of a regular local ring R with respect to an
ideal generated by an R-sequence. Note that a simplicial complex A is called com-

plete intersection if R/IA is a complete intersection ring, i.e., In = (U, ..., Uy)

where ged(u;,u;) = 1 for all i # j. It is easy to see that in this case, In =

My, esuppiu)) it - -+ Xiy, ). On the other hand, we know that Ia = (Vpcz(a) Pre,
ij

where Pre = (x; : i € F€). Therefore, we have the following:

Remark 3.1 Let A be a simplicial complex on vertex set [n]. Then A is complete
intersection if and only if there are disjoint subsets Ay, ..., A, of [n] such that [n] =
Ui, A; and F is a facet of A if and only if F = [n]\ {ji, ..., jm}, Where j; € A;.

A matroid complex A is a simplicial complex with the property that for all faces F
and G in A with |F| < |G|, there exists i € G \ F such that F U {i} € A. Since link
and deletion of any vertex of a matroid are again a matroid, induction on the number of
vertices shows that any matroid complex is vertex decomposable. It is easy to see from
Remark 3.1 that each complete intersection simplicial complex is a matroid. Hence,
every complete intersection simplicial complex is vertex decomposable. However, in
the following, we give a different proof of this fact.

Theorem 3.2 Let A be a complete intersection simplicial complex on vertex set [n].
Then A is vertex decomposable.

Proof Let G(Ip) = {uy, ..., up}. Since uy, ..., u, is a regular sequence, we have
ged(uj,uj) = 1foralli # j. Weset Py, = (x; : x; | u;) foralli =1,...,m.
Then it is easy to see that Iav = N/, P,, = []/Z, Pu,. Hence, I5v is a transversal
polymatroidal ideal and by Theorem 2.6, I5v is 0-decomposable. Thus, the assertion
follows from Theorem 2.3. O
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Theorem 3.3 If A is a Cohen—Macaulay simplicial complex of codimension 2, then
A is vertex decomposable.

Proof Since A is Cohen—Macaulay simplicial complex of codimension 2, by a result
of Eagon and Reiner [6], Iov is a squarefree monomial ideal which has 2-linear
resolution. Hence, by Proposition 2.4 and Theorem 2.6, I5v is 0-decomposable. It
follows from Theorem 2.3 that A is vertex decomposable. O

As an immediate consequence, we have the following:

Corollary 3.4 Let A be a quasi-forest simplicial complex which is not a simplex. Then
AV is vertex decomposable.

Proof 1t is proved in [15] that each quasi-forest is a flag complex. So I is generated
by quadratic monomials and hence height(/ov) = 2. Since A is quasi-forest by
[15, Corollary 5.5], we have pd(K[AY]) = 2. Therefore, AY is Cohen—Macaulay of
codimension 2, and by Theorem 3.3, AV is vertex decomposable. O

Next we consider Gorenstein simplicial complexes and prove the following:

Theorem 3.5 Each Gorenstein simplicial complex of codimension 3 is vertex decom-
posable.

Our proof is based on the following structure theorem that can be found in [3].

Theorem 3.6 Let A be a Gorenstein simplicial complex of codimension 3 on vertex
set [n]. Then | G(1p) | is an odd number, say | G(Ip) |= 2m+ 1 < n, and there exists
a regular sequence of squarefree monomials uy, ..., uyn+1 in R = K[xq, ..., x,]
such that

G(p) = {uinis1, o Uigm—1 i =1,...,2m+ 1},

where u; = u;j_7,_1 wheneveri > 2m + 1.

We will use the following remarks for our proof.

Remark 3.7 Let A be a Gorenstein simplicial complex of codimension 3 on vertex set
[n] with

G(p) = {uinis1, o Uigm—1 i =1,...,2m+ 1},

where u; = u;_7,,—1 wheneveri > 2m + 1. Then after relabeling of the variables, we

[ 3 n
may assume that uy = Hl:l Xi, Uy = Hl:ll"r] Kiyeooy M2m+1 = Hl=[2m+1 Xi-

Remark 3.8 If A is a Gorenstein simplicial complex of codimension 3, then it is
easy to see from Theorem 3.6 that Ip = ﬂ(xl,.,x,j, Xg,) With x;; € supp(u;), Xr; €
supp(u;), x5, € supp(uy), where 1 <i < j <k <2m+1l,and j—i <m,k —
J =m,k—i = m+ 1. Thus, Ipv is generated by the monomials x;x,, x5 with
Xz € supp(u;), Xp; € supp(u ), x5, € supp(uy), where 1 <i < j <k <2m+ 1 and
j—i<mk—j<mk—i>m+1.
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Example 3.9 Let A be a simplicial complex with

F(A) ={{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,3,4,6},
{1,3.4,7},{1.3,5,6},{1,3,5,7},{1,4,5,7},{2,3,5,6},{2,3,5, 7},
{2,3,6,7},{2,4,5,7},{2,4,6,7},{3,4,6,7}}.

Then Ixn = I3(C7) = (X1X2X3, X2X3X4, X3X4X5, X4X5X6, X5X6X7, X6X7X1, X7X1X2), and
Ix = ﬂi’j’k(x,-,xj,xk), where j —i < 3,k — j <3 and k —i > 4. Therefore, by
Remark 3.8, A is Gorenstein simplicial complex of codimension 3. Observe that 1 is
a shedding vertex of A.

Lemma 3.10 Let A be a Gorenstein simplicial complex of codimension 3, and
Xy Xy Xy € GUaV). Ifk <k <2m+1orl <k’ < i, thenforeach Xs,, € supp(ug’),
either Xt; Xp; Xy OF Xpj Xy Xs, belongs to G(Iav).

Proof We set v = Xt Xr; Xs,, and vy, = Xpj Xsy Xsy -

Case 1 Let k < k' < 2m + 1 and suppose on contrary v; and v, do not belong to
G(Iav). Since x;,x,; x5, € G(Ipv), one has j —i < m and K—i>k—i>m+1,
hence v ¢ G(Iav) if and only if

K—j>m. (1)

Again since Xy Xp; Xg, € G(Iav), we know that k — j < m and k' — k < m. So
vy ¢ G(Iav) if and only if

K —j<m. @)

From 1 and 2, we get a contradiction.
Case 2 The same argument works also in the case 1 <k’ < i. O

Proposition 3.11 Let A be a Gorenstein simplicial complex of codimension 3 on [n],
and I = Iav. Then the following statements hold.

(i) x, is a shedding variable for I.
(ii) Let ' +1 <1 < n — 1, where l' is the smallest index such that there exists
xixjxp € G withi < j < U'. Then x; is a shedding variable for Ly s

Proof (i): Since A is a simplicial complex on [n], I, # 0. Suppose Xy XpjXg, €
G(Iy,) be an arbitrary element with sy < n. Let u; be as in Theorem 3.6. If
k = 2m + 1, then by Remark 3.8, x,, € supp(u;) and hence X Xr Xp € G(). If
k < 2m + 1, then by Lemma 3.10 either Xt; Xy Xn OF Xp; Xg Xn belongs to G(I).
Hence, in any case one of the monomials, x;, Xy, x,, Or Xy, X, x,, belongs to G (1 tny,
This implies that x;, is a shedding variable for 7.

(ii): By induction, we know that Iy, v, | .x, = (x, x,_1,.oxe)n- I Xy XrjXg, €
G(Ix, x, 1,...;) With s < [, then as we showed in case (i), by Remark
3.8 and Lemma 3.10, either x;x,,x1 € G(li) x, i) OF XpXgX| €
G(I;C,i,xnfl’__,,xlﬂ). This completes the proof. O
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Proposition 3.12 Let A be a Gorenstein simplicial complex of codimension 3. Let
1 <1 < nand J; be the monomial ideal which is generated by the set of those
quadratic monomials x;x j, where x;x jx; € G(Iav). Then J; has linear quotients and
in particular it is 0-decomposable.

Proof We know by [9] A is shellable. Hence, Iov has linear quotients. Suppose that
G(Ipav) = {v1,v2, ..., v} and it has linear quotients in the given order. Hence, for
each v, and vy in G(Iov) with ¢ < d, there exists another monomial vy with d’ < d
such that vy : vy = x for some ¢’ and x, divides v, : vy. We order the monomials
in G (J;) by the induced order of G(/Av) and claim that J; has linear quotients in this
order. Let w), and w, be arbitrary two elements in G(J;) with p < ¢g. Thus v, = w,x;
and v; = wyx; belong to G(Iav). Therefore there exists another monomial vy with
k' < g such that vy : wyXx; = x; and xg divides wx; : wyx;. Itis easy to see thats # [
and x; | vp. Hence wy = vy /x; € G(Jp), and wy : wy = xg which divides w : wy.
This implies that J; has linear quotients. Hence by Proposition 2.4 and Theorem 2.6,
Ji is weakly polymatroidal and 0-decomposable. O

Proof of Theorem 3.5: By Theorem 2.3, A is 0-decomposable if and only if I = Iv
is 0-decomposable. By Proposition 3.11, x,, is a shedding variable for /. Hence it is
enough to show that /** and I, are 0-decomposable.

Since I = (xjxjx, : xjxjx, € G(I)) = x,{x;xj : x;xjx, € G(I)), hence by
Proposition 3.12 and Lemma 2.5, /™ is 0-decomposable. Now we show that I, is
0-decomposable too. Again by using Proposition 3.11, we have x,,_; is a shedding

monomial for Iy,. But Iy~ = (x;xjxp—1 : XiXjXy—1 € G(Iy,)) = Xp—1(xiX; :
Xixjxu—1 € G(ly,)). Then again by Proposition 3.12 and Lemma 2.5, I;Z"l is
0-decomposable. In order to show that (I, )x, ; = Iy, x, ; is 0-decomposable, we con-

tinue this procedure as follows: Let I’ be the smallest integer that x;x jxy € G(I) with
i < j<Ul.Letl’+1 <1 < n—1Dbean integer. Then as we showed in the above, one

can see that Iffrf,xnfl ,,,,, x141 18 0-decomposable. Since (Ixn,xn_1,...,x,/+2)x,/+1 = (x;jxjxp :
XiXjxXy € G(Ix,l,xn,l ,,,,, xl’+l)> = Xy (xixj XXXy € G(Ix,l,x,l,l ,,,,, x1’+1)>' So by
Proposition 3.12 and Lemma 2.5, (I, x, ..., Xz'+2)xz’+1 is 0-decomposable. Hence /v

is 0O-decomposable and therefore A is vertex decomposable. O

Now we study the vertex decomposability property for another class of simplicial
complexes, that is 2-CM simplicial complexes. According to [1], a Cohen—Macaulay
simplicial complex A is 2-CM (doubly Cohen—Macaulay) if the deletion A \ {k} is
Cohen—-Macaulay of the same dimension as A, for each existing vertex k € A.

Theorem 3.13 Let A be a 2-CM simplicial complex of codimension 3 on vertex set
[1]. Then A is vertex decomposable.

Proof We prove the theorem by induction on |[r]| the number of vertices of A. If
[[n]] = 0, then A = {} and it is vertex decomposable. Now Let [[n]| > 0 and k € [n]
be a vertex of A. Then the simplicial complex linka {k} is a complex on |[n]| — 1
vertices and its dimension is dim A — 1. It is known that link {k} is again 2-CM
(see e.g. [1]) of codimension 3. Therefore, by induction hypothesis link A {k} is vertex
decomposable.
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On the other hand, since A is a 2-CM, for each existing vertex k € A, A\ {k} is
Cohen—Macaulay of codimension 2, and by Theorem 3.3, A \ {k} is vertex decom-
posable. It is easy to see that no face of linka {k} is a facet of A \ {k}. Therefore any
vertex k is a shedding vertex and A is vertex decomposable. O

Hochster’s Tor formula provides that each Gorenstein simplicial complex is 2-CM
(see [1]). Therefore, Theorem 3.5 is an immediate consequence of Theorem 3.13. But
note that the proof of Theorem 3.5 is algebraic while the proof of Theorem 3.13 is
combinatorial.

4 Path Ideals of Cycles

As an application of the above results, we show that simplicial complexes where
associated to specific path ideals of an n-th cycle are vertex decomposable. Path ideal
of a graph was first introduced by Conca and De Negri in [5]. Let G be a directed

graph on vertex set {x1, ..., x,}. Fix an integer 2 < t < n. A sequence x;,, ..., X;, of
distinct vertices of G is called a path of length ¢ if there are r — 1 distinct directed edges
et,...,e—_1, where e; is an edge from Xi; O X, . Then the path ideal of G of length
t is the monomial ideal /;(G) = (sz=1 xl-j), where x;,, ..., x;, is a path of length ¢
in G. Let C, denote the n-cycle with directed edges e, ..., e,, where ¢; is from x;
toxj4 fori =1,...,n — 1 and e, is from x, to x1. Hence I;(C,) = (u1, ..., u,),
where u; = Hi)_:lo Xi4p foralli = 1,...,n, where x4 = xg_, whenever d > n.

In [7, proposition4.1] it is shown that R/I>(C,) is vertex decomposable/ shellable/
Cohen—Macaulay if and only if n = 3 or 5. Recently, Saeedi, Kiani and Terai in [13]
showed thatif 2 < ¢ < n, then R/I;(C,) is sequentially Cohen—Macaulay if and only
ift =n,t =n—1ort = (n— 1)/2. As a consequence of our result we can extend
the main result of [13].

Theorem 4.1 Let 3 < t < n and A be a simplicial complex on [n] such that In =
1;(Cp). Then A is vertex decomposable ifand only ift = n,t =n—1ort = (n—1)/2.

Proof If t = n, then A is complete intersection. If # = n — 1, then A is Cohen—
Macaulay of codimension 2, andif = (n—1)/2, then A is Gorenstein of codimension
3. Hence in these three cases A is vertex decomposable. If 7 is not one of the above
cases, then by [13], A is not sequentially Cohen—Macaulay and hence not vertex
decomposable. O

For the simplicial complexes, one has the following implication:
vertex decomposable = shellable = Cohen—Macaulay.

Note that these implications are strict, but by the following corollary, for path ideals,
the reverse implications are also valid.
Combining the main result of [13] with our result, we get the following:

Corollary 4.2 Let 3 <t < n and A be a simplicial complex on [n] such that In =
I;(Cp). Then the following conditions are equivalent:
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(i) A is Cohen—Macaulay;
(i1) A is shellable;
(iii) A is vertex decomposable.

Moreover, these equivalent condition hold if and only if t = n,t = n—1ort =

(n—1))2.
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