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Abstract A nonlinear heat conduction equation is studied, and the maximal thermo-
geometric parameter in the equation is analytically determined, above which thermal
instability occurs. The first-order result yields an acceptable error, and the variational
iteration method is recommended for a higher accurate prediction.
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1 Introduction

We consider a rectangular longitudinal one-dimensional fin, which is attached to a
fixed base surface of temperature Tb and extends into a fluid of temperature Tb. The
dimensionless governing equation is [1]

d2θ

dx2
+ βθ

d2θ

dx2
+ β

(
dθ

dx

)2

− M2(1 + βθ)n = 0, θ > 0 (1.1)
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with boundary conditions

θ ′(0) = 0 and θ(1) = 1 (1.2)

where θ is the dimensionless temperature, β = λ(Tb − Ta) is the gradient of thermal
conductivity, M is the thermo-geometric parameter. The exponent,n, represents lam-
inar film boiling or condensation when n = −1/4, laminar natural convection when
n = 1/4, turbulent natural convection when n = 1/3, nucleate boiling when n = 2,
radiation when n = 3, and n vanishes for a constant heat transfer coefficient.

It is very important to study the effect ofM on the heat transfer. It is obvious that the
increase of M might result in negative θ at x = 0, contradicting the assumption. It is,
therefore, important to identify themaximal value for the thermo-geometric parameter.

The detailed derivation of Eq. (1) was given in [1], and the thermal characteristics
were elucidated in [2]. Harley and Moitsheki [1] gave a numerical investigation, and
obtained the maximal values for various n. Some effective analytical methods were
successfully applied to the problem [3–5]; there are alternative numerical/analytical
methods, such as the three-point implicit block multistep method [6], the variational
iterationmethod [7–12], reproducing kernelmethod [13,14], and a complete review on
various analytical methods is available in [15]. In this paper, we will suggest a simple
analytical approach to identification of the maximal value of the thermo-geometric
parameter.

2 Maximal Thermo-geometric Parameter

In this study, neither an exact solution nor an approximate solution is searched for,
only the maximal M in Eq. (1.1) is considered. For this end, we choose a very simple
trial function in the form

θ(x) = a0 + a1x + a2x
2 (2.1)

By the boundary conditions, Eq. (1.2), we have

a1 = 0 (2.2)

a0 + a1 + a2 = 1 (2.3)

By Eqs. (1.1) and (1.2), we obtain

θ ′′(0) = M2(1 + βθ(0))n−1 = M2(1 + βa0)
n (2.4)

Eq. (2.4) means

2a2 = M2(1 + βa0)
n (2.5)
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Submitting Eqs. (2.2) and (2.5) into Eq. (2.3) results in

a0 + M2

2
(1 + βa0)

n = 1 (2.6)

Setting a0 = θmin(0) = 0, we obtain maximal value for M , which is

Mmax = √
2 = 1.414 (2.7)

Comparison of Eq. (2.7) with the numerical results given in [1] reveals that the
maximal error is 16.5 % for −4 < n < 3. The accuracy is 3 and 5.4 % for n = 2 and
n = 3, respectively.

When the thermo-geometric parameter reaches its maximal value, thermal insta-
bility occurs [2], so in practical applications, we should follow M � Mmax, and the
16.5 % error is acceptable.

If a higher accurate prediction is needed, the variational iteration algorithm [7,15]
is recommended.

According to the variational iteration method [7,15], the following iteration formu-
lation (variational iteration algorithm-II [15]) can be constructed

θp+1(x)=θ0(x)+
∫ x

0
(x−s)

{
βθp(s)

d2θp(s)

ds2
+β

(
dθp(s)

ds

)2

−M2 [
1+βθp(s)

]n}ds
(2.8)

We begin with θ0(x) = θ(0) = a0, by Eq. (2.8), we have

θ1(x) = a0 +
∫ x

0
(x − s)

{
−M2(1 + βa0)

n
}
ds = a0 + 1

2
M2(1 + βa0)

nx2

(2.9)

If the first-order approximate solution is enough, then by the boundary condition,
θ(1) = 1, the following result is obtained.

θ1(1) = a0 + 1

2
M2(1 + βa0)

n = 1 (2.10)

which is exactly same with Eq. (2.6).
The solution process can continue without any difficulty by using some mathemat-

ical software, and a higher accurate result can be obtained.

3 Conclusion

In practical applications, we need neither an exact solution nor an approximate solu-
tion, but a criterion for some parameters in the studied equation, for example, the
condition of resonance for a nonlinear oscillator. In this paper, we suggest a simple

123



608 J.-H. He

but effective approach to identification of the maximal thermo-geometric parameter in
Eq. (1), the 16.5 % accuracy of the first-order prediction is acceptable considering it
should follow M � Mmax though a higher accuracy can be obtained by the variational
iteration method.
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