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Abstract In this paper we obtain a new sufficient condition for the existence of
directed cycles of length 4 in oriented bipartite graphs. As a corollary, a conjec-
ture of Li is confirmed. As an application, a sufficient condition for the existence of
rainbow cycles of length 4 in bipartite edge-colored graphs is obtained.
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1 Introduction

For terminology and notation not defined here, we refer to [2]. Let G = (V, E) be a
simple graph. An edge-coloring of G is a mapping C : E → N

+, where N+ is the set
of positive integers. We call Gc an edge-colored graph (or briefly, a colored graph) if
G is assigned an edge-coloring C . Let v be a vertex of Gc. The color degree of v in
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Gc, denoted by dcG(v) (or briefly, dc(v)), is the number of colors of the edges incident
to v. A color neighborhood set Nc(v) of v is a subset of N (v), the neighborhood of
v, such that the colors of edges between v and Nc(v) are pairwise distinct. Let H be
a subgraph of G, then C(H) = {C(e) : e ∈ E(H)} is called the color set of H .

A subgraph of a colored graph is called rainbow (sometimes called heterochro-
matic or colorful) if all edges of it have distinct colors. The existence of rainbow
subgraphs has been studied for a long time. A problem of rainbow Hamilton cycles in
colored complete graphs was mentioned by Erdös et al. [6], and later studied by Hahn
and Thomassen [8], Frieze and Reed [7] and Albert et al. [1], respectively. Rainbow
matchings were studied by Wang and Li [16], Lesaulnier et al. [11], and Kostochka
and Yancey [10]. Chen and Li [4,5] studied the existence of long rainbow paths. A
recent article on strong rainbow connection can be found in [15]. For a survey on the
study of rainbow subgraphs in colored graphs, we refer to [9].

In particular, rainbow short cycles have received much attention. Broersma et al.
[3] studied the existence of rainbow C3’s and C4’s under color neighborhood union
condition. Later, Li and Wang [14] obtained two results on the existence of rainbow
C3’s and C4’s under colored degree condition.

Theorem 1 (Li and Wang [14]) Let Gc be a colored graph of order n ≥ 3. If dc(v) ≥
(4

√
7/7− 1)n + 3− 4

√
7/7 for each v ∈ V (G), then Gc has either a rainbow C3 or

a rainbow C4.

Theorem 2 (Li and Wang [14]) Let Gc be a colored graph of order n ≥ 3. If dc(v) ≥
(
√
7 + 1)n/6 for each v ∈ V (G), then Gc has a rainbow C3.

Li and Wang [14] conjectured that every colored graph Gc of order n ≥ 3 has a
rainbow C3 if dc(v) ≥ (n + 1)/2 for each v ∈ V (G). This conjecture was proved by
Li [13] and stronger results were proved by Li et al. [12] with different methods as
follows.

Theorem 3 (Li [13]) Let Gc be a colored graph of order n ≥ 3. If dc(v) ≥ (n+ 1)/2
for each v ∈ V (G), then Gc has a rainbow C3.

Theorem 4 (Li et al. [12])Let Gc be a colored graph of order n ≥ 3. If
∑

v∈V (G)

dc(v) ≥
n(n + 1)/2, then Gc has a rainbow C3.

Theorem 5 (Li et al. [12]) Let Gc be a colored graph of order n ≥ 3. If dc(v) ≥ n/2
for each v ∈ V (G), then Gc has a rainbow C3 or G ∈ {Kn/2,n/2, K4 − e, K4}.

The existence of rainbowC4’s in special colored graphs has also been studied.Wang
et al. [17] obtained a result on the existence of rainbow C4’s in triangle-free colored
graphs. Recently, Li [13] got a result on the existence of rainbow C4’s in balanced
bipartite colored graphs.

Theorem 6 (Wang et al. [17]) Let Gc be a triangle-free colored graph of order n ≥ 9.
If dc(v) ≥ (3 − √

5)n/2 + 1 for each v ∈ V (G), then Gc has a rainbow C4.
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Theorem 7 (Li [13]) Let Gc be a balanced bipartite colored graph of order 2n with
bipartition (A, B). If dc(v) > 3n/5 + 1 for each v ∈ A ∪ B, then Gc has a rainbow
C4.

While in [13], Li made a tiny error in the proof of Theorem 7. Notice that K3,3
is 3-edge-colorable, and a proper 3-edge-coloring of K3,3 satisfies the condition of
Theorem 7, but it has no rainbow C4 since there are only 3 colors. We point out
that, in order to correct it, the condition dc(u) > 3n/5 + 1 should be changed into
dc(u) > (3n + 8)/5.

Now we turn to finite simple oriented graphs, i.e., finite graphs without multiple
edges and loops in which each edge is replaced by exactly one arc. Let D[A, B] be an
oriented bipartite graph with bipartition (A, B). When there is no ambiguity, we use
D instead of D[A, B]. For A1 ⊆ A and B1 ⊆ B, we denote by AD(A1, B1) the set of
arcs from A1 to B1 in D[A, B].

The study of rainbow cycles in colored graphs is largely related to the study of
oriented cycles in digraphs. For a wonderful example, see the introduction of [13]. In
particular, motivated by the study of short rainbow cycles in colored graphs, Li [13]
proposed the following nice conjecture and proved for balanced oriented bipartite
graphs.

Conjecture 1 (Li [13]) Let D be an oriented bipartite graph with bipartition (A, B).
If d+(u) > |B|/3 for each u ∈ A and d+(v) > |A|/3 for each v ∈ B, then D has a
directed C4.

Theorem 8 (Li [13]) Let D be a balanced oriented bipartite graph with bipartition
(A, B), where |A| = |B| = n. If d+(v) > n/3 for each v ∈ A ∪ B, then D has a
directed C4.

We state a construction from [17] to show that if Conjecture 1 holds, then it would
be almost the best possible. Let m and n be two positive integers divisible by 3. Let
|M0| = |M1| = |M2| = m/3 and |N0| = |N1| = |N2| = n/3. We construct an
oriented bipartite graph with bipartition (M, N ), where M = M0 ∪ M1 ∪ M2 and
N = N0 ∪ N1 ∪ N2, by creating all possible arcs from Mi to Ni , and from Ni to Mi+1,
i = 0, 1, 2 (modulo 3). In the rest parts, we use D∗(m, n) to denote the construction
above.

The first purpose of this paper is to confirmConjecture 1. In fact, we prove a stronger
result as follows.

Theorem 9 Let D be an oriented bipartite graphwith bipartition (A, B), where |A| =
m ≥ 2 and |B| = n ≥ 2. If d+(u) ≥ n/3 for each u ∈ A and d+(v) ≥ m/3 for each
v ∈ B, then either D has a directed C4 or D = D∗(m, n).

By using Theorem 9, we can extend Theorem 7 as follows.

Theorem 10 Let Gc be a bipartite colored graph with bipartition (A, B). If dc(u) ≥
(3|B| + 8)/5 for each u ∈ A and dc(v) ≥ (3|A| + 8)/5 for each v ∈ B, then Gc has
a rainbow C4.
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2 Proofs

2.1 Proof of Theorem 9

Let D(m, n) be the family of digraphs consisting of those oriented bipartite graphs
with bipartition (A, B) which satisfy the condition of Theorem 9, where m = |A| and
n = |B|.

First, we claim that it is sufficient to prove for those m and n which are both
multiples of 3. Suppose Theorem 9 holds for D(m, n) with m ≡ n ≡ 0 (mod 3). For
any D ∈ D(m′, n′), where m′ and n′ are not both multiples of 3, let s1 = 3�m′

3 � −m′,
A∗ = {u1, . . . , us1}, and A′ = A ∪ A∗. Let s2 = 3� n′

3 � − n′, B∗ = {v1, . . . , vs2} and
B ′ = B ∪ B∗. Now we construct a new oriented bipartite graph D′ with bipartition
(A′, B ′), where A(D′) = A(D) ∪ {u′v, v′u : u ∈ A, u′ ∈ A∗, v ∈ B, v′ ∈ B∗}.
Notice that d+

D′(u) ≥ �|B|
3 � = |B′|

3 for each u ∈ A and d+
D′(u′) = n′ >

|B′|
3 for each

u′ ∈ A∗. Similarly, d+
D′(v) ≥ �|A|

3 � = |A′|
3 for each v ∈ B and d+

D′(v′) = m′ >
|A′|
3

for each v′ ∈ B∗. It follows that D′ ∈ D(3�m′
3 �, 3� n′

3 �). Hence D′ has a directedC4 or

D′ = D∗(3�m′
3 �, 3� n′

3 �). Since A∗ and B∗ are not both empty sets and the vertices in

A∗ and B∗ only have outdegrees, D′ = D∗(3�m′
3 �, 3� n′

3 �), and moreover, the directed
C4 in D′ is also in D. The proof of our claim is complete.

Now assume D ∈ D(m, n), wherem = 3m1, n = 3n1, andm1, n1 are two positive
integers. Let D1 be a spanning subdigraph of D satisfying d+

D1
(u) = n1 for each u ∈ A

and d+
D1

(v) = m1 for each v ∈ B. Suppose D has no directed C4, obviously, D1 also
has no directed C4. Let u0 be a vertex with maximum indegree k1 among A, and v0
be a vertex with maximum indegree k2 among B. Let B1 = N−

D1
(u0), B2 = N+

D1
(u0),

A3 = N+
D1

(B2), and B3 = N+
D1

(A3) − B2, where |B1| = k1, |B2| = n1. Since D1 has

no directed C4, we have N
+
D1

(A3) ∩ B1 = ∅. Since k2 is the maximum indegree of all
vertices in B, we get

|B3|k2 ≥ |N−
D1

(B3)| = |AD1(A3, B3)|. (1)

Since D1 has no directedC4, there is no arc from A3 to B1, which implies all arcs start-
ing from A3 have heads in B2 ∪ B3. Hence |AD1(A3, B3)| = |A3|n1 −|AD1(A3, B2)|.
Since

|AD1(A3, B2)| ≤ |A3||B2| − |AD1(B2, A3)|, (2)

we obtain

|AD1(A3, B3)| ≥ |A3|n1 − (|A3||B2| − |AD1(B2, A3)|) = |AD1(B2, A3)| = m1n1.
(3)

Together with (1) and (3), we obtain |B3| ≥ m1n1
k2

. Therefore,
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3n1 = |B| ≥ |B1| + |B2| + |B3| ≥ k1 + n1 + m1n1
k2

≥ 3
3

√
k1m1n21

k2
. (4)

It follows that k2n1 ≥ k1m1. By symmetry, we also have k1m1 ≥ k2n1. Thus, k1m1 =
k2n1 and all the inequalities (1)–(4) are actually equalities. These facts imply |B1| =
|B2| = |B3| = n1 = k1, m1 = k2, |AD1(B2, A3)| = |AD1(A3, B3)| = m1n1, and all
vertices in A have indegree n1 in D1, all vertices in B have indegree m1 in D1.

Next we show |A3| = m1. First, choose a vertex v′ ∈ B2, d+(v′) = m1, so
|A3| ≥ m1 by the definition of A3. Assume that |A3| > m1. Since the inequality (2)
becomes equality, the underlying graph of D1[A3, B2] is a complete bipartite graph.
Hence there exists a vertex, say u′ ∈ A3, such that u′v′ ∈ D1. Since u′ ∈ A3,
there exist a vertex v′′ ∈ B2, such that v′′u′ ∈ D1 by the choice of A3. Note that
d+
D[B2,A3](v

′) = d+
D[B2,A3](v

′′) = m1 and u′ /∈ N+(v′). It follows that there exists a
vertex, say u′′ ∈ A3, such that v′u′′ ∈ D1 and v′′u′′ /∈ D1. Since the underlying graph
of D1[B2, A3] is a complete bipartite graph, u′′v′′ ∈ D1. Now C = u′v′u′′v′′u′ is a
directed C4 in D1, a contradiction. Hence |A3| = m1.

Now let A1 = N+
D1

(B3) and A2 = N−
D1

(B2). Note that |{vu : v ∈ B2, u ∈ A3}| =
m1n1 = |AD1(B2, A3)|. It follows that AD1(B2, A3) = {vu : v ∈ B2, u ∈ A3}.
Similarly, AD1(A3, B3) = {uv : u ∈ A3, v ∈ B3}. So there is no arc with tail in A3
and head in B2, or arc with tail in B3 and head in A3, follows A1∩ A3 = A2∩ A3 = ∅.
Since D1 has no directed C4, A1 ∩ A2 = ∅.

Since d+
D1

(u) = d−
D1

(u) = n1 for each u ∈ A and d+
D1

(v) = d−
D1

(v) = m1 for
each v ∈ B, we obtain |A1| ≥ m1 by its definition, and n1|A2| ≥ |AD1(A2, B2)| =∑

v∈B2 d
−
D1

(v) = m1n1, follows that |A2| ≥ m1. Since |A1| + |A2| + |A3| = 3m1
and A1, A2, A3 are pairwise disjoint, |A1| = |A2| = |A3| = m1. Now apparently,
AD1(A2, B2) = {uv : u ∈ A2, v ∈ B2} and AD1(B3, A1) = {vu : v ∈ B3, u ∈ A1}.
Since A1 and A2 are disjoint, AD1(A1, B2) = ∅. Furthermore, AD1(A1, B3) = ∅,
hence N+(A1) ⊂ B1.

∑
v∈A1

d+(v) = m1n1 implies AD1(A1, B1) = {uv : u ∈
A1, v ∈ B1}. Similarly, AD1(B1, A2) = {vu : v ∈ B1, u ∈ A2}. Therefore D1 =
D∗(m, n). If there is any arc in D but not in D1, then obviously, there would be a
directed C4 in D, a contradiction. Thus, D = D1 = D∗(m, n).

The proof is complete. ��

2.2 Proof of Theorem 10

First note that the color degree condition implies that |A| ≥ 4 and |B| ≥ 4.
Suppose not. Let Gc be a colored graph which satisfies the condition of Theorem

10 but has no rainbow C4. Set |A| = n1 and |B| = n2.
Choose an edge e = xy ∈ E(Gc) such that C(xy) = c0. Let Nc(x) =

{y, y1, y2, . . . , yr−1} and Nc(y) = {x, x1, x2, . . . , xs−1}. Since dc(x) ≥ 3n2+8
5

and dc(y) ≥ 3n1+8
5 , we can set r = � 3n2+8

5 � and s = � 3n1+8
5 �. Let A1 =

{x1, x2, . . . , xs−1} and B1 = {y1, y2, . . . , yr−1}. Note that Gc[A1, B1] is also a bipar-
tite colored graph.

The following claim can be deduced immediately from the definition of color neigh-
borhood set and the assumption that Gc has no rainbow C4.
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Claim 1 For any edge xi y j and C(xy j ) = C(yxi ), where 1 ≤ i ≤ s − 1 and
1 ≤ j ≤ r − 1, we have C(xi y j ) ∈ {C(xy),C(xy j ),C(yxi )}.

Now we construct an oriented bipartite graph D = D[A1, B1] as follows. For any
edge xi y j ∈ E(G[A1, B1]), such that C(xi y j ) = C(xy) and C(xy j ) = C(yxi ), then
C(xi y j ) = C(xy j ) or C(xi y j ) = C(yxi ) by Claim 1. If C(xi y j ) = C(xy j ), we
define an arc xi y j in D, and if C(xi y j ) = C(yxi ), we define an arc y j xi in D. Let
G ′ = G[D] be the underlying graph of D.

In the following, for convenience, when we mention the color of an arc in D, we
mean the color of the corresponding edge in E(G ′).

Claim 2 There is no directed C4 in D.

Proof Suppose Q = xi y j x p yq xi is a directed C4 in D. By the definition of D, we
have C(xi y j ) = C(xy j ), C(y j x p) = C(yxp), C(xp yq) = C(xyq), and C(yq xi ) =
C(yxi ). The existence of arcs xi y j and y j x p impliesC(xy j ) = C(yxi ) andC(xy j ) =
C(yxp), hence C(xi y j ) = C(yq xi ) and C(xi y j ) = C(y j x p). We have C(xy j ) =
C(xyq) from the definition of B1, hence C(xi y j ) = C(xp yq). So C(xi y j ) is different
from the colors of all other three edges in the cycle Q in Gc. Similarly, we can prove
that all edges in Q receive distinct colors in Gc, and therefore, Q is a rainbow C4 in
Gc, a contradiction. ��
Claim 3 D = D∗(|A1|, |B1|).
Proof Assume that D = D∗(|A1|, |B1|). Without loss of generality, set A1 = X1 ∪
X2 ∪ X3 and B1 = Y1 ∪ Y2 ∪ Y3, where |X1| = |X2| = |X3| and |Y1| = |Y2| = |Y3|.
Since s − 1 ≡ 0 (mod 3) and r − 1 ≡ 0 (mod 3), we have � 3ni+3

5 � ≡ 0 (mod 3),
i = 1, 2. It follows that ni ≡ 3 or 4 (mod 5), i = 1, 2.

First, we claim that D = D∗(3, 3). Suppose not. Then � 3n1+3
5 � = � 3n2+3

5 � = 3.
Hence n1 = n2 = 4. In this case, we may suppose that Xi = {xi } and Yi = {yi } for
i = 1, 2, 3. The existence of arc x1y1 in D implies that C(x1y1) = C(xy1). Hence
dc(y1) ≤ 3 <

3|A|+8
5 , a contradiction.

Let v0 be an arbitrary vertex of D. Without loss of generality, assume v0 ∈ Y1. If
n1 = 5k + λ, λ = 3 or 4, then |X1| = |X2| = |X3| = k + 1. From the definition of
D, we know that each edge in {uv0 : u ∈ X1} has the same color C(v0x), and there
are k + 1 different colors in {v0u : u ∈ X2}. Since |A\(A1 ∪ {x})| = 5k + λ − (3k +
3) − 1 = 2k + λ − 4, there are at most 2k + λ − 4 different colors in the edge set
{v0u : u ∈ A\(A1 ∪{x})}. These facts mean that there are at most 3k+λ−2 different
colors in the edge set {v0u : u ∈ A\X3}. Since dc(v) ≥ 3k + λ, there exists an edge
v0u0 ∈ {v0u : u ∈ X3}, such that v0u0 has a new color and v0u0 is not in E(G ′).

Next we show that any directed path of length 3 in D = D∗(|A1|, |B1|) is rainbow.
Without loss of generality, we choose a directed path uv′u′v, where u′ ∈ X1, v ∈ Y1,
u ∈ X3, and v′ ∈ Y3. By the construction of D, C(u′v) = C(xv), C(v′u′) =
C(yu′), andC(uv′) = C(xv′). Since u′v exists in D,C(xv) = C(yu′). It follows that
C(u′v) = C(v′u′). Similarly, we have C(v′u′) = C(uv′). Since C(u′v) = C(xv) and
C(uv′) = C(xv′) and C(xv) = C(xv′) by the choice of Nc(x), we have C(u′v) =
C(uv′).
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Now we fix a vertex v0 ∈ Y1. By the analysis above, there exists an edge v0u0 ∈
{v0u ∈ E(G) : u ∈ X3}, which is not in E(G ′) and satisfiesC(v0u0) /∈ {C(uv0) : u ∈
X1}. Since D = D∗(|A1|, |B1|) = D∗(3, 3), there are at least two arcs in AD(Y3, X1)

with distinct colors, andwe can choose one of them, say v′
0u

′
0 ∈ AD(Y3, X1), such that

C(v′
0u

′
0) = C(v0u0). By the analysis before, there is an edge u0v′′

0 ∈ E(Gc), where
v′′
0 ∈ Y1, such that it is not in E(G ′) and satisfies C(u0v′′

0 ) = C(u0v′
0). Now we will

show that v′′
0 = v0. First, the deletion of u0v0 means C(u0v0) = C(xy) or C(xv0) =

C(yu0). If C(u0v0) = C(xy), then the existence of arcs u′
0v0, u

′
0v

′
0, and u0v′

0 in D
implies C(xy) = C(u′

0v0), C(xy) = C(u′
0v

′
0), and C(xy) = C(u0v′

0). Since colors
of arcs in {u′

0v0, v
′
0u

′
0, u0v

′
0} are pairwise distinct, u′

0v
′
0u0v0u

′
0 is a rainbowC4 inGc, a

contradiction. Hence C(xv0) = C(yu0). Similarly, we may obtain C(xv′′
0 ) = C(yu0)

from the deletion of u0v′′
0 when constructing D. It follows thatC(xv0) = C(xv′′

0 ). Now
we can get v0 = v′′

0 directly from the definition of Nc(x). From the analysis above,
colors of arcs in {u′

0v0, v
′
0u

′
0, u0v

′
0} are pairwise distinct, andC(v0u0) is different from

all of the three. Therefore, u′
0v0u0v

′
0u

′
0 is also a rainbow C4 in Gc, a contradiction.

��
By Claims 2 and 3, D has no directed C4 and D = D∗(|A1|, |B1|). By Theorem 9,

there exists a vertex, without loss of generality, say y j ∈ B1, such that d
+
D(y j ) <

|A1|
3 .

By the construction of D, we know there are less than |A1|
3 + 1 different colors in

C(EG ′(y j , A1)). For any edge e adjacent to y j which is in E(G[A1, B1])\E(G ′),
C(e) = C(xy) or there exists an edge yxi such that C(yxi ) = C(xy j ) in Gc, and
in this case, e = xi y j and C(e) may be missed in C(EG ′(y j , A1)). This implies that
there are at most three colors inC(xy j )∪C(EG(y j , A1))\C(EG ′(y j , A1)). However,
C(xy j ) is also inC(EG ′(y j , A1)). Hence there are less than

|A1|
3 +3 different colors in

C(EG(y j , {x}∪A1)). It follows that there aremore than dc(y j )−3− |A1|
3 ≥ s−3− s−1

3
different colors in the color set {y j x ′ : x ′ ∈ A\(A1 ∪ {x})}. Hence y j has more than
s − 3 − s−1

3 different neighbors in A\(A1 ∪ {x}). Now we have

n1 = |A| ≥ |A1| + |{x}| + |N (y j )\(A1 ∪ {x})|
> (s − 1) + 1 + s − 3 − s − 1

3
= 5s − 8

3
≥ n1,

a contradiction.
The proof is complete. ��
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