

Gauss and Ricci Equations in Contact Manifolds with a Quarter-Symmetric Metric Connection

Avik De · Siraj Uddin

Received: 27 June 2013 / Revised: 11 September 2014 / Published online: 17 December 2014 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2014

Abstract In the present paper, we study the extrinsic and intrinsic geometry of submanifolds of an almost contact metric manifold admitting a quarter-symmetric metric connection. We deduce Gauss, Codazzi and Ricci equations corresponding to the quarter-symmetric metric connection and show some applications of these equations. Finally, we give an example verifying the results.

Keywords Gauss Codazzi equation \cdot Ricci equation \cdot Contact manifold \cdot Einstein manifold \cdot Invariant submanifold \cdot Totally umbilical \cdot Quarter-symmetric metric connection

Mathematics Subject Classification 53C25 · 53C35 · 53D10

1 Introduction

The importance of the Gauss, Codazzi and Ricci equations in differential geometry is that if the ambient space has a constant sectional curvature, they play an analogous role to that of the compatibility equation in the local theory of surfaces. For a submanifold M of a Riemannian manifold \overline{M} , if the Riemannian curvature tensors are denoted by R and \overline{R} , respectively, then the usual Gauss, Codazzi and Ricci equations are given by the following:

A. De (🖂)

S. Uddin

Communicated by Young Jin Suh.

Faculty of Engineering and Science, University Tunku Abdul Rahman, 50744 Kuala Lumpur, Malaysia e-mail: de.math@gmail.com

Institute of mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia e-mail: siraj.ch@gmail.com

$$g(\bar{R}(X,Y)Z,W) = g(R(X,Y)Z,W) - g(h(X,W),h(Y,Z)) +g(h(Y,W),h(X,Z)),$$
(1.1)

$$\left(\bar{R}(X,Y,Z)\right)^{\perp} = (\nabla_X h)(Y,Z) - (\nabla_Y h)(X,Z), \tag{1.2}$$

$$g\left(\bar{R}(X,Y)U,V\right) = g\left(R^{\perp}(X,Y)U,V\right) + g\left([A_V,A_U]X,Y\right),\tag{1.3}$$

for X, Y, Z, W tangent to M and U, V normal to M, where h is the second fundamental form, A is the associated shape operator of the immersion, and R^{\perp} is the curvature tensor of the normal bundle. For an isometric immersion $i: M \to \overline{M}$ of Riemannian manifolds, the Gauss equation shows that the curvature tensor of \overline{M} , when evaluated on vector fields tangent to M, differs from the curvature tensor of M by a tensor involving only the second fundamental form of the immersion. Gauss–Codazzi–Ricci equations are very important instruments for describing a submanifold in a Riemannian space. By nature, these equations appear in the Cauchy problem of general relativity [20].

On the other hand, in 1975, Golab [13] introduced the notion of quarter-symmetric connection on a differentiable manifold. A linear connection ∇ is said to be quarter-symmetric if its torsion tensor *T* defined by $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$, is of the form:

$$T(X, Y) = u(Y)\psi X - u(X)\psi Y, \qquad (1.4)$$

where *u* is a 1-form and ψ is a (1, 1)-tensor field. When *T* vanishes, the connection ∇ is called symmetric; otherwise, it is called non-symmetric. ∇ is called a metric connection if there is a Riemannian metric *g* such that $\nabla g = 0$; otherwise, it is called non-metric. It is well known that a linear connection is both symmetric and metric if and only if it is the Riemannian (or, the Levi-Civita) connection. If in (1.4), ψ is an identity function, then it reduces to semi-symmetric metric connection. In the present paper, we deduce the Gauss, Codazzi and Ricci equations for submanifolds of an almost contact metric manifold admitting a quarter-symmetric metric connection.

In [8], De and Mondal proved the existence and uniqueness of quarter-symmetric metric connection in Riemannian manifolds. Many authors studied other geometric properties of almost Hermitian and almost contact manifolds with quarter-symmetric and semi-symmetric connections ([1,7,14,16,17,19]). Ozgur [16] proved several results including the equations of Gauss Codazzi and Ricci for submanifolds of a Riemannian manifold admitting a particular type of semi-symmetric non-metric connection. Later on, hypersurfaces and submanifolds of different ambient manifolds admitting quarter-symmetric metric connection have been studied by several authors ([9,11,15]). In this paper, we generalize all the results obtained in these previous studies, by considering submanifolds of any codimension of an almost contact metric manifold admitting a quarter-symmetric metric connection.

Furthermore, we prove that the mean curvature with respect to both the connections coincides, and applying this result, we obtain a necessary condition of a submanifold to

The present paper has been organized as follows: After preliminaries, in sect. 3, we consider submanifolds of an almost contact metric manifold endowed with a quarter-symmetric metric connection, and we show that the connection induced on the submanifold is also a quarter-symmetric metric connection. be invariant. In sect. 4, we deduce the Gauss, Codazzi and Ricci equations corresponding to the quarter-symmetric metric connection and obtain some results applying these equations. Finally, in sect. 5, we provide an example verifying the obtained results.

2 Preliminaries

Let \overline{M} be an (n + p)-dimensional (where n + p is odd) differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ, ξ, η are tensor fields on \overline{M} of types (1, 1), (1, 0), (0, 1), respectively, and g is a compatible metric with the almost contact structure, such that [2,3,5,21],

$$\phi^2 = -I + \eta \otimes \xi, \ \phi \xi = 0, \ \eta(\xi) = 1, \ \eta \circ \phi = 0,$$
 (2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \qquad (2.2)$$

$$g(\phi X, Y) + g(X, \phi Y) = 0,$$
 (2.3)

for all vector fields $X, Y \in T\overline{M}$, where $T\overline{M}$ is the Lie algebra of vector fields of the manifold \overline{M} . The fundamental 2-form Φ is defined by $\Phi(X, Y) = g(X, \phi Y)$. If $[\phi, \phi] + d\eta \otimes \xi = 0$, where $[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$, then the almost contact structure is said to be *normal* [10]. If $\Phi = d\eta$, the almost contact structure becomes a contact structure. A normal contact metric manifold is called *Sasakian*. On a Sasakian manifold, we have the following [2, 12]:

$$\left(\bar{\nabla}_X\phi\right)Y = g(X,Y)\xi - \eta(Y)X,\tag{2.4}$$

$$R(X, Y)\xi = \eta(Y)X - \eta(X)Y.$$
(2.5)

An almost contact metric structure (ϕ, ξ, η, g) is cosymplectic if and only if ϕ is parallel. In a *cosymplectic* manifold, we have $(\overline{\nabla}_X \eta)Y = 0$.

A Riemannian manifold of dimension >2 is said to be *Einstein* if its Ricci tensor S satisfies $S(X, Y) = \mu g(X, Y)$, where μ is a constant [6].

Let *M* be a submanifold of an almost contact metric manifold \overline{M} with a positive definite metric *g*. Let the induced metric on *M* also be denoted by *g*. The usual Gauss and Weingarten formulae are given, respectively, by [4,18]

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad X, Y \in TM$$
(2.6)

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \quad N \in T^{\perp} M \tag{2.7}$$

where ∇ is the induced Riemannian connection on M, h is the second fundamental form of the immersion, A is the shape operator, and ∇^{\perp} is the normal connection on $T^{\perp}M$, the normal bundle of M. From (2.6) and (2.7), one gets

$$g(h(X, Y), N) = g(A_N X, Y).$$
 (2.8)

The submanifold M of an almost contact manifold \overline{M} is called *invariant* (resp. *anti-invariant*) if for each point $x \in M$, $\phi T_x M \subset T_x M$ (resp. $\phi T_x M \subset T_x^{\perp} M$. The

submanifold is called *totally umbilical* if h(X, Y) = g(X, Y)H, for all $X, Y \in TM$, where *H* is the mean curvature vector of the submanifold, defined by $H = \frac{1}{n} \sum \{h(e_i, e_i)\}, \{e_i\}, i = 1, 2, ..., n$ being an orthonomal basis of *TM* and *n* the dimension of *M*. The submanifold is called *totally geodesic* if h(X, Y) = 0 for all $X, Y \in TM$. Let the codimension of *M* be *p*, and let $\{N_{\alpha}\}, \alpha = 1, 2, ..., p$ be an orthonormal basis of $T^{\perp}M$.

3 Basic Results

On a submanifold M of an almost contact metric manifold \overline{M} with the quartersymmetric metric connection ∇^* , we obtain the following results:

Theorem 3.1 The connection induced on a submanifold of an almost contact metric manifold with a quarter-symmetric metric connection is also a quarter-symmetric metric connection.

Proof We define the quarter-symmetric metric connection ∇^* on \overline{M} by

$$\nabla_X^* Y = \bar{\nabla}_X Y - \eta(X)\phi Y. \tag{3.1}$$

If ∇' is the induced connection on *M* from the connection ∇^* , then we have

$$\nabla_X^* Y = \nabla_X' Y + m(X, Y), \qquad (3.2)$$

where *m* is a tensor field of type (1, 2) in $T^{\perp}M$, the normal part of *M*. We term m(X, Y) the second fundamental form with respect to the quarter-symmetric connection.

For $X \in TM$ and $N \in T^{\perp}M$, we put

$$\phi X = PX + QX, \quad PX \in TM, \quad QX \in T^{\perp}M, \tag{3.3}$$

$$\phi N = tN + qN, \quad tN \in TM, \quad qN \in T^{\perp}M.$$
(3.4)

Using (3.3), from (3.1) and (3.2), we have

$$\nabla_X Y + m(X, Y) = \nabla_X Y + h(X, Y) - \eta(X)PY - \eta(X)QY.$$
(3.5)

Now equating tangential and normal parts, we have

$$\nabla_X' Y = \nabla_X Y - \eta(X) P Y, \qquad (3.6)$$

and

$$m(X, Y) = h(X, Y) - \eta(X)QY.$$
 (3.7)

From (3.6), the torsion tensor with respect to ∇' is given by

$$T'(X, Y) = \eta(Y)PX - \eta(X)PY.$$

Also using (3.2), we have

$$\left(\nabla_X'g\right)(Y,Z) = \left(\nabla_X^*g\right)(Y,Z). \tag{3.8}$$

Hence, the result.

From (3.6), it follows that if the submanifold is anti-invariant, that is, PX = 0, then we have the following:

Theorem 3.2 On an anti-invariant submanifold of an almost contact metric manifold with a quarter-symmetric metric connection, the induced quarter-symmetric connection and the induced Riemannian connection are equivalent.

So we concentrate mostly on invariant submanifolds. Equation (3.2) is the Gauss formula for the quarter-symmetric metric connection. Also, from (3.1), we have

$$\nabla_X^* N = \bar{\nabla}_X N - \eta(X)\phi N$$

= $-A_N X - \eta(X)tN + \nabla_X^{\perp} N - \eta(X)qN$
= $D_X N - A_N^{\prime} X$, (3.9)

where $D_X N = \nabla_X^{\perp} N - \eta(X)qN$ is the normal connection, and $A'_N X = A_N X + \eta(X)tN$ is the shape operator corresponding to the quarter-symmetric metric connection. By simple calculations, we obtain

$$g(m(X, Y), N) = g(A'_N X, Y).$$
 (3.10)

Equation (3.9) is the Weingarten formula with respect to the quarter-symmetric metric connection.

Remark 3.1 Unlike the second fundamental form corresponding to the Levi-Civita connection, *m* is neither symmetric nor skew-symmetric, in general, which is evident from (3.7). Thus, the shape operator *A*'corresponding to the quarter-symmetric connection is also not symmetric. However, for invariant submanifolds both of them are symmetric.

We define the covariant derivative of *m* and η with respect to the quarter-symmetric metric connection as follows:

$$\left(\nabla_X^* m\right)(Y, Z) = D_X\left(m(Y, Z)\right) - m\left(\nabla_X^{'} Y, Z\right) - m\left(Y, \nabla_X^{'} Z\right), \qquad (3.11)$$

$$\left(\nabla_X^*\eta\right)Y = X\left(\eta(Y)\right) - \eta\left(\nabla_X'Y\right). \tag{3.12}$$

Equation (3.11) may be called the van der Waerden–Bortolotti connection corresponding to the quarter-symmetric metric connection.

Now, we prove the following:

Theorem 3.3 The mean curvature of the submanifold M with respect to the Riemannian connection coincides with that of M with respect to the quarter-symmetric metric connection.

Proof Let $\{e_1, e_2, ..., e_n\}$ be an orthonormal basis of TM. We consider two cases: Case I: $\xi \in TM$ and let $e_n = \xi$. Then from (3.7), we obtain

$$m(e_i, e_i) = h(e_i, e_i) - \eta(e_i)Q(e_i).$$
(3.13)

Since $\eta(e_i) = 0$, for i = 1, 2, ..., n-1, and $\phi(e_n) = 0$, summing up for i = 1, 2, ..., n and dividing by *n*, we obtain the required result. Case II: $\xi \notin TM$, then again from (3.7), we obtain

$$m(e_i, e_i) = h(e_i, e_i) - \eta(e_i)Q(e_i)$$
(3.14)

for each i = 1, 2, ..., n. From (3.14), we obtain $m(e_i, e_i) = h(e_i, e_i)$, since $\eta(e_i) = 0$, for all the i = 1, 2, ..., n. Summing up for i = 1, 2, ..., n and dividing by n, we obtain the required result.

The following corrolaries are the direct consequence of the above theorem.

Corollary 3.1 Any submanifold of an almost contact manifold endowed with a quarter-symmetric metric connection is minimal with respect to the quarter-symmetric metric connection if and only if it is minimal with respect to the Riemannian connection.

Corollary 3.2 If a submanifold M of an almost contact manifold endowed with a quarter-symmetric metric connection is tangent to ξ and is totally umbilical with respect to both the connections, then M is invariant. Conversely, if M is invariant, then M is totally umbilical with respect to quarter-symmetric connection if and only if M is totally umbilical with respect to the Riemannian connection.

Proof From (3.7), for all $X, Y \in TM$, we have,

$$\eta(X)QY = m(X,Y) - h(X,Y).$$
(3.15)

If M is totally umbilical with respect to both quarter-symmetric connection and Riemannian connection, then from Theorem 3.3, we have,

$$m(X, Y) = g(X, Y)H = h(X, Y).$$

Thus, from (3.15), we get for all $X, Y \in TM$,

$$\eta(X)QY = 0, (3.16)$$

for any $X, Y \in TM$. Putting $X = \xi$ in (3.16), we obtain, QY = 0, for all $Y \in TM$, which implies that M is an invariant submanifold.

The converse part follows directly from (3.7).

Remark 3.2 In this connection, we should note that, if any submanifold of a contact metric manifold is normal to ξ , then by the well-known result of Yano and Kon [22], the submanifold is always anti-invariant.

Theorem 3.4 *The covariant derivative of the fundamental* 2*-form* Φ *with respect to the quarter-symmetric connection is equal to the covariant derivative of* Φ *with respect to the Riemannian connection.*

Proof We have $\Phi(X, Y) = g(X, \phi Y)$.

Therefore,

$$\begin{split} \left(\nabla_X^*\Phi\right)(Y,Z) &= X\Phi(Y,Z) - \Phi\left(\nabla_X^*Y,Z\right) - \Phi\left(Y,\nabla_X^*Z\right) \\ &= X\Phi(Y,Z) - \Phi\left(\bar{\nabla}_XY,Z\right) + \eta(X)\Phi(Y,\phi Z) \\ &- \Phi\left(Y,\bar{\nabla}_XZ\right) + \eta(X)\Phi(Y,\phi Z) \\ &= \left(\bar{\nabla}_X\Phi\right)(Y,Z), \text{ since, } \Phi(Y,\phi Z) = -\Phi(Y,\phi Z). \end{split}$$
(3.17)

Hence, the result.

4 The Gauss, Codazzi-Mainardi and Ricci Equations

In this section, we find the relations between the curvature tensors corresponding to the Levi-civita connection and the quarter symmetric metric connection. We denote the Riemannian curvature tensors corresponding to the Levi-Civita connection and the quarter-symmetric connection by \overline{R} and R^* , respectively, and that corresponding to the induced connections ∇ and ∇' by R and R', respectively.

We have,

$$\nabla_X^* \nabla_Y^* Z = \bar{\nabla}_X \bar{\nabla}_Y Z - \eta(X) \phi \left(\bar{\nabla}_Y Z \right) - \eta(Y) \bar{\nabla}_X \phi Z + \eta(X) \eta(Y) \phi^2 Z - X(\eta(Y)) \phi Z,$$
(4.1)

$$\nabla_Y^* \nabla_X^* Z = \bar{\nabla}_Y \bar{\nabla}_X Z - \eta(Y) \phi (\bar{\nabla}_X Z) - \eta(X) \bar{\nabla}_Y \phi Z + \eta(X) \eta(Y) \phi^2 Z - Y(\eta(X)) \phi Z,$$
(4.2)

and

$$\nabla_{[X,Y]}^* Z = \bar{\nabla}_{[X,Y]} Z - \eta \big([X,Y] \big) \phi Z.$$

$$\tag{4.3}$$

Therefore, we have

$$R^{*}(X,Y)Z = \bar{R}(X,Y)Z + \eta(X)(\bar{\nabla}_{Y}\phi)Z - \eta(Y)(\bar{\nabla}_{X}\phi)Z - [(\bar{\nabla}_{X}\eta)Y - (\bar{\nabla}_{Y}\eta)X]\phi Z.$$

$$(4.4)$$

Hence, we derive

$$R^*(X, Y, Z, W) = g(R^*(X, Y)Z, W)$$

= $g(\bar{R}(X, Y)Z, W) + \eta(X)g((\bar{\nabla}_Y \phi)Z, W) - \eta(Y)g((\bar{\nabla}_X \phi)Z, W)$

🖄 Springer

$$-\left[\left(\bar{\nabla}_{X}\eta\right)Y - \left(\bar{\nabla}_{Y}\eta\right)X\right]g(\phi Z, W)$$

= $\bar{R}(X, Y, Z, W) + \eta(X)g\left((\bar{\nabla}_{Y}\phi)Z, W\right) - \eta(Y)g\left((\bar{\nabla}_{X}\phi)Z, W\right)$
 $-\left[\left(\bar{\nabla}_{X}\eta\right)Y - \left(\bar{\nabla}_{Y}\eta\right)X\right]g(\phi Z, W).$ (4.5)

From (4.4) and (4.5), we can conclude the following:

Remark 4.1 (i) $R^*(X, Y, Z, W) \neq R^*(Z, W, X, Y)$ (ii) $R^*(X, Y, Z, W) \neq -R^*(X, Y, W, Z)$

(iii) The first Bianchi identity with respect to the quarter-symmetric connection is given by

$$R^{*}(X, Y)Z + R^{*}(Y, Z)X + R^{*}(Z, X)Y = k(X, Y)Z + k(Y, Z)X + k(Z, X)Y,$$

where k(X, Y)Z is a (1,3)-tensor defined by $k(X, Y)Z = \eta(Z) [(\bar{\nabla}_X \phi)Y - (\bar{\nabla}_Y \phi)X] - [(\bar{\nabla}_X \eta)Y - (\bar{\nabla}_Y \eta)X]\phi Z.$

Now, putting $Z = \xi$ in (4.4), we get

$$R^*(X,Y)\xi = \bar{R}(X,Y)\xi + \eta(X)(\bar{\nabla}_Y\phi)\xi - \eta(Y)(\bar{\nabla}_X\phi)\xi$$
(4.6)

From (4.6), we obtain the following:

Remark 4.2 If the ambient manifold \overline{M} is a Sasakian manifold, then we have

$$R^{*}(X, Y)\xi = \bar{R}(X, Y)\xi + \eta(X)[\eta(Y)\xi - Y] - \eta(Y)[\eta(X)\xi - X]$$

= $2\bar{R}(X, Y)\xi$.

Remark 4.3 If the ambient manifold \overline{M} is cosymplectic, then

$$R^*(X, Y)\xi = R(X, Y)\xi.$$

Again, we have

$$\nabla_X^* \nabla_Y^* Z = \nabla_X' \nabla_Y' Z + m(X, \nabla_Y' Z) + D_X(m(Y, Z)) - A'_{m(Y, Z)} X.$$
(4.7)

$$\nabla_{Y}^{*} \nabla_{X}^{*} Z = \nabla_{Y}^{'} \nabla_{X}^{'} Z + m(Y, \nabla_{X}^{'} Z) + D_{Y} (m(X, Z)) - A_{m(X, Z)} Y.$$
(4.8)

$$\nabla^*_{[X,Y]}Z = \nabla^{'}_{[X,Y]}Z + m([X,Y],Z).$$
(4.9)

By direct computations, we obtain

$$R^{*}(X, Y)Z = R'(X, Y)Z + (\nabla'_{X}m)(Y, Z) - (\nabla'_{Y}m)(X, Z) + A'_{m(X,Z)}Y - A'_{m(Y,Z)}X.$$
(4.10)

Hence, the Gauss equation for the quarter symmetric metric connection ∇^* is given by

$$R^{*}(X, Y, Z, W) = g(R^{*}(X, Y)Z, W)$$

= $g(R'(X, Y)Z, W) + g(m(Y, W), m(X, Z))$
- $g(m(Y, Z), m(X, W))$
= $R'(X, Y, Z, W) + g(m(Y, W), m(X, Z))$
- $g(m(Y, Z), m(X, W)).$ (4.11)

Putting $X = W = e_i$, $Y = Z = e_j$, in (4.11), we obtain

$$R^{*}(e_{i}, e_{j}, e_{j}, e_{i}) = R'(e_{i}, e_{j}, e_{j}, e_{i}) + g(m(e_{i}, e_{j}), m(e_{j}, e_{i})) - g(m(e_{j}, e_{j}), m(e_{i}, e_{i})).$$
(4.12)

Summing over i and j and using Theorem 3.3, we get

$$\tau^* = \tau' + ||m||^2 - n^2 ||H||^2, \qquad (4.13)$$

where τ^* and τ' are the scalar curvatures corresponding to the quarter symmetric metric connection defined on \overline{M} and the induced quarter-symmetric metric connection on M, respectively, and $||m||^2$ denotes the squared norm of the second fundamental form with respect to the quarter-symmetric connection. From (4.13), we can also write

$$\|H\|^{2} \ge \frac{1}{n^{2}} \left(\tau' - \tau^{*}\right). \tag{4.14}$$

Hence, the following:

Theorem 4.1 On a minimal submanifold of an almost contact metric manifold admitting a quarter-symmetric metric connection, the scalar curvature corresponding to the quarter-symmetric connection is never less than that of the induced quarter-symmetric connecton.

Since $\{N_{\alpha}\}$, $\alpha = 1, 2, ..., p$ is a basis of $T^{\perp}M$, we can express $m(X, Y) = \sum_{\alpha=1}^{p} m_{\alpha}(X, Y) N_{\alpha}$, where each m_{α} is a (0, 2) tensor.

Hence, the Gauss equation (4.11) can be rewritten in the following form:

$$R^{*}(X, Y, Z, W) = R'(X, Y, Z, W) + \sum_{\alpha=1}^{p} \left[m_{\alpha}(Y, W) m_{\alpha}(X, Z) - m_{\alpha}(Y, Z) m_{\alpha}(X, W) \right].$$
(4.15)

From (3.2) and (3.9), we can easily deduce that

$$m_{\alpha}(X,Y) = g\left(A_{N_{\alpha}}^{'}X,Y\right). \tag{4.16}$$

1697

🖄 Springer

Hence, by (4.15), the Gauss equation can also be represented in terms of the shape operator as

$$R^{*}(X, Y, Z, W) = R'(X, Y, Z, W) + \sum_{\alpha=1}^{p} \{g(A'_{N_{\alpha}}Y, W)g(A'_{N_{\alpha}}X, Z) - g(A'_{N_{\alpha}}Y, Z)g(A'_{N_{\alpha}}X, W)\}.$$
(4.17)

From (4.17), we get

$$R^{*}(X, Y, X, Y) = R'(X, Y, X, Y) + \sum_{\alpha=1}^{p} \{g(A'_{N_{\alpha}}Y, Y)g(A'_{N_{\alpha}}X, X) - g(A'_{N_{\alpha}}Y, X)g(A'_{N_{\alpha}}X, Y)\}.$$
(4.18)

Combining with Remark 3.1, we can state the following:

Theorem 4.2 Let \mathcal{P} be a 2-dimensional invariant subspace of $T_X M$ and let $K^*(\mathcal{P})$ and $K'(\mathcal{P})$ be the sectional curvature of \mathcal{P} in \overline{M} and M, respectively, with respect to the quarter-symmetric metric connection. If X and Y form an orthonormal basis of \mathcal{P} , then

$$K^{*}(\mathcal{P}) = K^{'}(\mathcal{P}) + \sum_{\alpha=1}^{p} \{g(A_{N_{\alpha}}^{'}Y, Y)g(A_{N_{\alpha}}^{'}X, X) - g(A_{N_{\alpha}}^{'}X, Y)^{2}\}.$$

Now, contracting equation (4.15) we have the expression of Ricci tensor corresponding to the quarter-symmetric connection as

$$S^{*}(Y, Z) = S'(Y, Z) + \sum_{\alpha=1}^{p} R^{*}(N_{\alpha}, Y, Z, N_{\alpha}) + \sum_{\alpha=1}^{p} \left[\sum_{i=1}^{n} g(A'_{N_{\alpha}}Y, e_{i})g(A'_{N_{\alpha}}Z, e_{i}) - f_{\alpha}m_{\alpha}(Y, Z) \right] (\text{if } A \text{ is symmetric}) = S'(Y, Z) + \sum_{\alpha=1}^{p} R^{*}(N_{\alpha}, Y, Z, N_{\alpha}) + \sum_{\alpha=1}^{p} \left[g(A'_{N_{\alpha}}A'_{N_{\alpha}}Y, Z) - f_{\alpha}m_{\alpha}(Y, Z) \right] (\text{if } A \text{ is symmetric}) = S'(Y, Z) + \sum_{\alpha=1}^{p} R^{*}(N_{\alpha}, Y, Z, N_{\alpha}) + \sum_{\alpha=1}^{p} \left[m_{\alpha}(A'_{N_{\alpha}}Y, Z) - f_{\alpha}m_{\alpha}(Y, Z) \right].$$
(4.19)

where f_{α} denote the trace of $A'_{N_{\alpha}}$.

Suppose that the quarter-symmetric metric connection ∇^* is of constant sectional curvature. Then

$$R^*(X, Y, Z, W) = \lambda(g(Y, Z)g(X, W) - g(X, Z)g(Y, W)).$$
(4.20)

Therefore, from equation (4.19), we have

$$S'(Y, Z) = \sum_{\alpha=1}^{p} \left\{ f_{\alpha} m_{\alpha}(Y, Z) - m_{\alpha}(A'_{N_{\alpha}}Y, Z) \right\}$$
$$+ \sum_{\alpha=1}^{p} R^*(N_{\alpha}, Y, Z, N_{\alpha}).$$

Therefore,

$$S'(Y,Z) = \lambda(n-1)g(Y,Z) + \sum_{\alpha=1}^{p} \left\{ f_{\alpha}m_{\alpha}(Y,Z) - m_{\alpha}(A'_{N_{\alpha}}Y,Z) \right\}.$$
 (4.21)

Thus, we can state the following:

Theorem 4.3 Let M be an invariant submanifold of an almost contact metric manifold \overline{M} of constant sectional curvature with a quarter-symmetric metric connection. Then

- *(i) the Ricci tensor of M induced from the quarter-symmetric connection is symmetric.*
- (ii) The Ricci tensor of M induced from the quarter-symmetric connection is not parallel.

From Eq. (4.21), we can also conclude the following:

Theorem 4.4 Let M be a totally umbilical submanifold of an almost contact metric manifold \overline{M} of constant sectional curvature with a quarter-symmetric metric connection. Then the submanifold M is an Einstein manifold with respect to the quarter-symmetric metric connection.

From (4.10), we obtain the normal part of $R^*(X, Y)Z$ as

$$R^{\perp}(X, Y)Z = (\nabla'_X m)(Y, Z) - (\nabla'_Y m)(X, Z),$$
(4.22)

which is the Codazzi equation corresponding to the quarter-symmetric metric connection ∇^* .

Let $\zeta_1, \zeta_2 \in T^{\perp}M$, then we have

$$R^{*}(X,Y)\zeta_{1} = R'(X,Y)\zeta_{1} - A'_{D_{Y}\zeta_{1}}X + A'_{D_{X}\zeta_{1}}Y + \nabla'_{Y}(A'_{\zeta_{1}}X) + \nabla'_{X}(A'_{\zeta_{1}}Y) + m(Y,A'_{\zeta_{1}}X) - m(X,A'_{\zeta_{1}}Y) - A'_{\zeta_{1}}([X,Y]).$$

$$(4.23)$$

🖉 Springer

So, we have

$$R^{*}(X, Y, \zeta_{1}, \zeta_{2}) = g(R^{*}(X, Y)\zeta_{1}, \zeta_{2})$$

= $g(R'(X, Y)\zeta_{1}, \zeta_{2}) + g(A'_{\zeta_{1}}X, A'_{\zeta_{2}}Y) - g(A'_{\zeta_{1}}Y, A'_{\zeta_{2}}X)$
= $R'(X, Y, \zeta_{1}, \zeta_{2}) + g(A'_{\zeta_{1}}X, A'_{\zeta_{2}}Y) - g(A'_{\zeta_{1}}Y, A'_{\zeta_{2}}X), (4.24)$

which is the Ricci equation corresponding to the quarter-symmetric metric connection.

Remark 4.4 If we consider the submanifold M to be invariant, then from Lemma 3.1, we have the shape operator to be symmetric. Thus, we can express the Ricci equation in the following form:

$$R^*(X, Y, \zeta_1, \zeta_2) = R'(X, Y, \zeta_1, \zeta_2) + g([A'_{\zeta_1}, A'_{\zeta_2}]X, Y).$$
(4.25)

5 Example

Example 5.1 Let us consider the 5-dimensional manifold $\overline{M} = \{(x, y, z, u, v) \in \mathbb{R}^5, (x, y, z, u, v) \neq (0, 0, 0, 0, 0)\}$, where (x, y, z, u, v) are the standard coordinates in \mathbb{R}^5 . The vector fields

$$e_1 = 2\left(-\frac{\partial}{\partial x} + y\frac{\partial}{\partial z}\right), \ e_2 = 2\frac{\partial}{\partial y}, \ e_3 = 2\frac{\partial}{\partial z}, \ e_4 = 2\left(-\frac{\partial}{\partial u} + v\frac{\partial}{\partial z}\right), \ e_5 = 2\frac{\partial}{\partial v}$$
(5.1)

are linearly independent at each point of \overline{M} . Let g be the metirc defined by

$$g(e_i, e_j) = \begin{cases} 1, & \text{when } i = j \\ 0, & \text{when } i \neq j. \end{cases}$$

Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$, for all $Z \in T\overline{M}$, and let ϕ be the (1, 1) tensor field defined by

$$\phi e_1 = e_2, \ \phi e_2 = -e_1, \ \phi e_3 = 0, \ \phi e_4 = e_5, \ \phi e_5 = -e_4.$$
 (5.2)

Then, using the linearity of ϕ and g, we have

$$\eta(e_3) = 1, \ \phi^2 Z = -Z + \eta(Z)e_3$$

and

$$g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W), \ \forall \ Z, W \in T\overline{M}.$$

Thus, for $e_3 = \xi$, $(\overline{M}, \phi, \xi, \eta, g)$ be an almost contact metric manifold. Let $\overline{\nabla}$ be the Levi-Civita connection with respect to the metric g. Then, we have

$$[e_1, e_2] = -2e_3 = [e_4, e_5]$$
 and $[e_i, e_j] = 0$, for all other *i*, *j*.

Deringer

Taking $e_3 = \xi$ and using Koszul's formula for the metric g, it can be easily calculated that

$$\bar{\nabla}_{e_1} e_2 = -e_3, \ \bar{\nabla}_{e_1} e_3 = e_2, \ \bar{\nabla}_{e_2} e_1 = -e_3, \ \bar{\nabla}_{e_2} e_3 = -e_1, \ \bar{\nabla}_{e_3} e_1 = e_2, \bar{\nabla}_{e_3} e_2 = -e_1, \ \bar{\nabla}_{e_3} e_4 = e_5, \ \bar{\nabla}_{e_3} e_5 = -e_4, \ \bar{\nabla}_{e_4} e_3 = e_5, \ \bar{\nabla}_{e_5} e_3 = -e_4,$$
(5.3)

and the rest of the terms are 0.

Since $\{e_1, e_2, e_3, e_4, e_5\}$ is a frame filed, then any vector field $X, Y \in T\overline{M}$ can be wrriten as

$$X = a_1e_1 + b_1e_2 + c_1e_3 + d_1e_4 + f_1e_5, \quad Y = a_2e_1 + b_2e_2 + c_ce_3 + d_2e_4 + f_2e_5$$

where $a_i, b_i, c_i, d_i, f_i \in \mathbb{R}, i = 1, 2$ such that

$$a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2 + f_1f_2 \neq 0.$$

Hence, we derive

$$g(X, Y) = a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2 + f_1f_2.$$
 (5.4)

Now, using (5.3), we get

$$\overline{\nabla}_X Y = -(b_1c_2 + b_2c_1)e_1 + (a_1c_2 + a_2c_1)e_2 - (a_2b_1a_1b_2)e_3 -(c_1f_2 + c_2f_1)e_4 + (c_1d_2 + c_2d_1)e_5.$$

Thus, from (3.1), we obtain

$$\nabla_X^* Y = a_1 c_2 e_2 - b_1 c_2 e_1 - (a_2 b_1 + a_1 b_2) e_3 - c_2 f_1 e_4 + c_2 d_1 e_5.$$
(5.5)

Also from (5.4), it follows that $\nabla^* g = 0$. Thus, in an almost contact metric manifold, the quarter-symmetric metric connection is given by (5.5).

Now, let *M* be a subset of \overline{M} and consider an isometric immersion $f: M \longrightarrow \overline{M}$ by

$$f(x, y, z) = (x, y, z, 0, 0).$$

It can be easily seen that M is a 3-dimensional submanifold of the 5 -dimensional almost contact metric manifold \overline{M} . Now, $M = \{(x, y, z) \in \mathbb{R}^3, (x, y, z) \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . The vector fields

$$e_1 = 2\left(-\frac{\partial}{\partial x} + y\frac{\partial}{\partial z}\right), \ e_2 = 2\frac{\partial}{\partial y}, \ e_3 = 2\frac{\partial}{\partial z}$$

are linearly independent at each point of M. Let us denote the induced metric by the same symbol g such that

$$g(e_1, e_2) = g(e_1, e_3) = g(e_2, e_3) = 0$$

Deringer

and

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1.$$

Let ∇ be the Levi-Civita connection with respect to the metric g on M. Then, we have

$$[e_1, e_2] = -2e_3$$
 and $[e_1, e_3] = 0 = [e_2, e_3].$

Taking $e_3 = \xi$ and using Koszul's formula for the induced metric g, it can be easily calculated that

$$abla_{e_1}e_2 = -e_3, \ \nabla_{e_1}e_3 = e_2, \ \nabla_{e_1}e_1 = 0, \ \nabla_{e_2}e_3 = -e_1, \ \nabla_{e_2}e_2 = 0,$$

 $abla_{e_2}e_1 = -e_3, \ \nabla_{e_3}e_3 = 0, \ \nabla_{e_3}e_2 = -e_1, \ \nabla_{e_3}e_1 = e_2.$

Clearly, $\{e_4, e_5\}$ is the frame for the normal bundle $T^{\perp}M$. If we take $X, Y \in TM$, then we can express them as

$$X = a_1e_1 = b_1e_2 + c_1e_3, \quad Y = a_2e_1 = b_2e_2 + c_2e_3$$

and therefore

$$\nabla_X Y = -(b_1 c_2 + b_2 c_1)e_1 + (a_1 c_2 + a_2 c_1)e_2 - (a_1 b_2 + a_2 b_1)e_3$$
(5.6)

which is the tangential part of $\overline{\nabla}_X Y$. The second fundamental form is given by

$$h(X, Y) = -(c_1 f_2 + c_2 f_1)e_4 + (c_1 d_2 + c_2 d_1)e_5.$$
(5.7)

Now, the tangential part of $\nabla_X^* Y$ is given by

$$\nabla'_X Y = -b_1 c_2 e_1 + a_1 c_2 e_2 - (a_1 b_2 + a_2 b_1) e_3 = \nabla_X Y - \eta(X) PY.$$
(5.8)

And, the normal part of $\nabla_X^* Y$ will be

$$m(X, Y) = -c_2 f_1 e_4 + c_2 d_1 e_5 = h(X, Y) - \eta(X) QY.$$
(5.9)

It is easy to check that $\nabla'_X g = \nabla^*_X g$, for any $X \in TM$.

We can easily check that the submanifold M is minimal with respect to both the connections, the Levi-Civita as well as the quarter-symmetric connection.

References

- Ali, S., Nivas, R.: On submanifolds immersed in a manifold with quarter-symmetric connection. Riv. Mat. Univ. Parma 3, 11–23 (2000)
- Blair, D.E.: Contact Manifolds in Riemannian Geometry, Lecture Note in Mathematics, vol. 509. Springer, Berlin (1976)
- Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematic, vol. 203. Birkhauser Boston Inc, Boston (2002)

- Chen, B.Y.: Geometry of Submanifolds, Pure and Applied Mathematics, vol. 22. Marcel Dekker Inc, New York (1973)
- Chen, B.Y., Martin-Molina, V.: Optimal inequaities, contact δ-invariants and their applications. Bull. Malays. Math. Sci. Soc. 36, 263–276 (2013)
- Yildiz, A., De, U.C., Cetinkaya, A.: N(k)-quasi Einstein manifolds satisfying certain curvature conditions. Bull. Malays. Math. Sci. Soc. 36, 1139–1149 (2013)
- 7. De, U.C., Biswas, S.C.: Quarter-symmetric metric connection in an SP-Sasakian manifold, Comm. Fac. Sci. Univ. Ank. Ser. A **46**, 49–56 (1997)
- De, U.C., Mondal, A.K.: Quarter-symmetric metric connection on 3-dimensional quas-Sasakian manifolds. SUT J. Math. 46, 35–52 (2010)
- De, U.C., Mondal, A.K.: Hypersurfaces of Kenmotsu manifolds endowed with a quarter-symmetric non-metric connection. Kuwait J. Sci. Eng. 39, 43–56 (2012)
- De, U.C., Mondal, A.K.: The tructure of some classes of 3-dimensional normal almost contact metric manifolds. Bull. Malays. Math. Sci. Soc. 36, 501–509 (2013)
- Dogru, Y.: On some properties of submanifolds of a Riemannian manifold endowed with a semisymmetric non-metric connection. An. St. Univ. Ovidius Constanta 19, 85–100 (2011)
- Dwivedi, M.K., Kim, J.S.: On conharmonic curvature tensor in K-contact and Sasakian manifolds. Bull. Malays. Math. Sci. Soc. 34, 171–180 (2011)
- Golab, S.: On semi-symmetric and quarter-symmetric linear connection. Tensor, N. S. 29, 249–254 (1975)
- Mondal, A. K., De, U. C.: Quarter-symmetric nonmetric connection on P-Sasakian Manifolds. ISRN Geom. 1–14 (2012)
- Nakao, Z.: Submanifolds of a Riemannian manifold with semi-symmetric metric connections. Proc. Am. Math. Soc. 54, 261–266 (1976)
- Ozgur, C.: On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. Kuwait J. Sci. Eng. 37, 17–30 (2010)
- 17. Shaikh, A.A., Biswas, S.: On LP-Sasakian manifolds. Bull. Malays. Math. Sci. Soc. 27, 17–26 (2004)
- Shaikh, A.A., De, U.C., Al-Aqeel, A.: Submanifolds of a Lorentzian para-Sasakian manifold. Bull. Malays. Math. Sci. Soc. 28, 223–227 (2005)
- Sular, S., Ozgur, C., De, U.C.: Quarter-symmetric connection in a Kenmotsu manifold. SUT J. Math. 2, 297–306 (2008)
- 20. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)
- 21. Yano, K., Kon, M.: Structures on Manifolds. World Scientific, Singapore (1984)
- Yano, K., Kon, M.: Anti-invariant submanifolds. Lecture Notes in Pure and Applied Mathematics, vol. 21. Marcel Dekker, New York (1976)