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Abstract In the present paper, we study the extrinsic and intrinsic geometry of sub-
manifolds of an almost contact metric manifold admitting a quarter-symmetric metric
connection. We deduce Gauss, Codazzi and Ricci equations corresponding to the
quarter-symmetric metric connection and show some applications of these equations.
Finally, we give an example verifying the results.
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1 Introduction

The importance of the Gauss, Codazzi and Ricci equations in differential geometry is
that if the ambient space has a constant sectional curvature, they play an analogous role
to that of the compatibility equation in the local theory of surfaces. For a submanifold
M of a Riemannian manifold M̄ , if the Riemannian curvature tensors are denoted by
R and R̄, respectively, then the usual Gauss, Codazzi and Ricci equations are given
by the following:

Communicated by Young Jin Suh.

A. De (B)
Faculty of Engineering and Science, University TunkuAbdul Rahman, 50744Kuala Lumpur,Malaysia
e-mail: de.math@gmail.com

S. Uddin
Institute of mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: siraj.ch@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-014-0105-x&domain=pdf


1690 A. De, S. Uddin

g
(
R̄(X,Y )Z ,W

) = g
(
R(X,Y )Z ,W

) − g
(
h(X,W ), h(Y, Z)

)

+g
(
h(Y,W ), h(X, Z)

)
, (1.1)

(
R̄(X,Y, Z)

)⊥ = (∇Xh)(Y, Z) − (∇Y h)(X, Z), (1.2)

g
(
R̄(X,Y )U, V

) = g
(
R⊥(X,Y )U, V

) + g
([AV , AU ]X,Y

)
, (1.3)

for X,Y, Z ,W tangent toM andU, V normal toM , where h is the second fundamental
form, A is the associated shape operator of the immersion, and R⊥ is the curvature
tensor of the normal bundle. For an isometric immersion i : M → M̄ of Riemannian
manifolds, theGauss equation shows that the curvature tensor of M̄ , when evaluated on
vector fields tangent to M , differs from the curvature tensor of M by a tensor involving
only the second fundamental form of the immersion. Gauss–Codazzi–Ricci equations
are very important instruments for describing a submanifold in a Riemannian space.
By nature, these equations appear in the Cauchy problem of general relativity [20].

On the other hand, in 1975, Golab [13] introduced the notion of quarter-symmetric
connection on a differentiable manifold. A linear connection ∇ is said to be quarter-
symmetric if its torsion tensor T defined by T (X,Y ) = ∇XY − ∇Y X − [X,Y ], is of
the form:

T (X,Y ) = u(Y )ψX − u(X)ψY, (1.4)

where u is a 1−form and ψ is a (1, 1)−tensor field. When T vanishes, the connection
∇ is called symmetric; otherwise, it is called non-symmetric. ∇ is called a metric
connection if there is a Riemannian metric g such that ∇g = 0; otherwise, it is called
non-metric. It is well known that a linear connection is both symmetric and metric
if and only if it is the Riemannian (or, the Levi-Civita) connection. If in (1.4), ψ

is an identity function, then it reduces to semi-symmetric metric connection. Hence,
quarter-symmetric connection is a generalization of semi-symmetric connection. In the
present paper, we deduce the Gauss, Codazzi and Ricci equations for submanifolds of
an almost contact metric manifold admitting a quarter-symmetric metric connection.

In [8], De and Mondal proved the existence and uniqueness of quarter-symmetric
metric connection in Riemannian manifolds. Many authors studied other geometric
properties of almost Hermitian and almost contact manifolds with quarter-symmetric
and semi-symmetric connections ([1,7,14,16,17,19]). Ozgur [16] proved several
results including the equations of Gauss Codazzi and Ricci for submanifolds of a
Riemannian manifold admitting a particular type of semi-symmetric non-metric con-
nection. Later on, hypersurfaces and submanifolds of different ambient manifolds
admitting quarter-symmetric metric connection have been studied by several authors
([9,11,15]). In this paper, we generalize all the results obtained in these previous
studies, by considering submanifolds of any codimension of an almost contact metric
manifold admitting a quarter-symmetric metric connection.

The present paper has been organized as follows:
After preliminaries, in sect. 3, we consider submanifolds of an almost contact metric
manifold endowed with a quarter-symmetric metric connection, and we show that the
connection induced on the submanifold is also a quarter-symmetric metric connection.
Furthermore, we prove that the mean curvature with respect to both the connections
coincides, and applying this result, we obtain a necessary condition of a submanifold to
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Gauss and Ricci Equations 1691

be invariant. In sect. 4, we deduce the Gauss, Codazzi and Ricci equations correspond-
ing to the quarter-symmetric metric connection and obtain some results applying these
equations. Finally, in sect. 5, we provide an example verifying the obtained results.

2 Preliminaries

Let M̄ be an (n + p)−dimensional (where n + p is odd) differentiable manifold
endowed with an almost contact metric structure (φ, ξ, η, g), where φ, ξ , η are tensor
fields on M̄ of types (1, 1), (1, 0), (0, 1), respectively, and g is a compatible metric
with the almost contact structure, such that [2,3,5,21],

φ2 = −I + η ⊗ ξ, φξ = 0, η(ξ) = 1, η ◦ φ = 0, (2.1)

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), (2.2)

g(φX,Y ) + g(X, φY ) = 0, (2.3)

for all vector fields X,Y ∈ T M̄, where T M̄ is the Lie algebra of vector fields of
the manifold M̄ . The fundamental 2−form � is defined by �(X,Y ) = g(X, φY ). If
[φ, φ] + dη ⊗ ξ = 0, where [φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ] − φ[φX,Y ] −
φ[X, φY ], then the almost contact structure is said to be normal [10]. If � = dη,

the almost contact structure becomes a contact structure. A normal contact metric
manifold is called Sasakian. On a Sasakian manifold, we have the following [2,12]:

(∇̄Xφ
)
Y = g(X,Y )ξ − η(Y )X, (2.4)

R̄(X,Y )ξ = η(Y )X − η(X)Y. (2.5)

An almost contact metric structure (φ, ξ, η, g) is cosymplectic if and only if φ is
parallel. In a cosymplectic manifold, we have

(∇̄Xη
)
Y = 0.

A Riemannian manifold of dimension >2 is said to be Einstein if its Ricci tensor S
satisfies S(X,Y ) = μg(X,Y ), where μ is a constant [6].

Let M be a submanifold of an almost contact metric manifold M̄ with a positive
definite metric g. Let the induced metric on M also be denoted by g. The usual Gauss
and Weingarten formulae are given, respectively, by [4,18]

∇̄XY = ∇XY + h(X,Y ), X,Y ∈ T M (2.6)

∇̄X N = −AN X + ∇⊥
X N , N ∈ T⊥M (2.7)

where ∇ is the induced Riemannian connection on M, h is the second fundamental
form of the immersion, A is the shape operator, and ∇⊥ is the normal connection on
T⊥M , the normal bundle of M. From (2.6) and (2.7), one gets

g(h(X,Y ), N ) = g(AN X,Y ). (2.8)

The submanifold M of an almost contact manifold M̄ is called invariant (resp. anti-
invariant) if for each point x ∈ M, φTxM ⊂ TxM (resp. φTxM ⊂ T⊥

x M. The
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1692 A. De, S. Uddin

submanifold is called totally umbilical if h(X,Y ) = g(X,Y )H , for all X,Y ∈
T M , where H is the mean curvature vector of the submanifold, defined by H =
1
n

∑{h(ei , ei )}, {ei }, i = 1, 2, ..., n being an orthonomal basis of T M and n the
dimension of M . The submanifold is called totally geodesic if h(X,Y ) = 0 for all
X,Y ∈ T M . Let the codimension of M be p, and let {Nα}, α = 1, 2, ..., p be an
orthonormal basis of T⊥M .

3 Basic Results

On a submanifold M of an almost contact metric manifold M̄ with the quarter-
symmetric metric connection ∇∗, we obtain the following results:

Theorem 3.1 The connection induced on a submanifold of an almost contact metric
manifold with a quarter-symmetric metric connection is also a quarter-symmetric
metric connection.

Proof We define the quarter-symmetric metric connection ∇∗ on M̄ by

∇∗
XY = ∇̄XY − η(X)φY. (3.1)

If ∇′
is the induced connection on M from the connection ∇∗, then we have

∇∗
XY = ∇′

XY + m(X,Y ), (3.2)

wherem is a tensor field of type (1, 2) in T⊥M , the normal part ofM .We termm(X,Y )

the second fundamental form with respect to the quarter-symmetric connection.
For X ∈ T M and N ∈ T⊥M , we put

φX = PX + QX, PX ∈ T M, QX ∈ T⊥M, (3.3)

φN = t N + qN , t N ∈ T M, qN ∈ T⊥M. (3.4)

Using (3.3), from (3.1) and (3.2), we have

∇′
XY + m(X,Y ) = ∇XY + h(X,Y ) − η(X)PY − η(X)QY. (3.5)

Now equating tangential and normal parts, we have

∇′
XY = ∇XY − η(X)PY, (3.6)

and
m(X,Y ) = h(X,Y ) − η(X)QY. (3.7)

From (3.6), the torsion tensor with respect to ∇′
is given by

T ′(X,Y ) = η(Y )PX − η(X)PY.
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Gauss and Ricci Equations 1693

Also using (3.2), we have

(∇′
X g

)
(Y, Z) = (∇∗

X g
)
(Y, Z). (3.8)

Hence, the result. ��
From (3.6), it follows that if the submanifold is anti-invariant, that is, PX = 0,

then we have the following:

Theorem 3.2 On an anti-invariant submanifold of an almost contact metric manifold
with a quarter-symmetric metric connection, the induced quarter-symmetric connec-
tion and the induced Riemannian connection are equivalent.

So we concentrate mostly on invariant submanifolds. Equation (3.2) is the Gauss
formula for the quarter-symmetric metric connection. Also, from (3.1), we have

∇∗
X N = ∇̄X N − η(X)φN

= −AN X − η(X)t N + ∇⊥
X N − η(X)qN

= DX N − A
′
N X, (3.9)

where DX N = ∇⊥
X N − η(X)qN is the normal connection, and A

′
N X = AN X +

η(X)t N is the shape operator corresponding to the quarter-symmetric metric connec-
tion. By simple calculations, we obtain

g(m(X,Y ), N ) = g(A′
N X,Y ). (3.10)

Equation (3.9) is the Weingarten formula with respect to the quarter-symmmetric
metric connection.

Remark 3.1 Unlike the second fundamental form corresponding to the Levi-Civita
connection, m is neither symmetric nor skew-symmetric, in general, which is evident
from (3.7). Thus, the shape operator A′corresponding to the quarter-symmetric con-
nection is also not symmetric. However, for invariant submanifolds both of them are
symmetric.

We define the covariant derivative ofm and η with respect to the quarter-symmetric
metric connection as follows:

(∇∗
Xm

)
(Y, Z) = DX

(
m(Y, Z)

) − m
(∇′

XY, Z
) − m

(
Y,∇′

X Z
)
, (3.11)

(∇∗
Xη

)
Y = X

(
η(Y )

) − η
(∇′

XY
)
. (3.12)

Equation (3.11) may be called the van derWaerden–Bortolotti connection correspond-
ing to the quarter-symmetric metric connection.

Now, we prove the following:
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1694 A. De, S. Uddin

Theorem 3.3 The mean curvature of the submanifold M with respect to the Rie-
mannian connection coincides with that of M with respect to the quarter-symmetric
metric connection.

Proof Let {e1, e2, ..., en} be an orthonormal basis of T M . We consider two cases:
Case I: ξ ∈ T M and let en = ξ . Then from (3.7), we obtain

m(ei , ei ) = h(ei , ei ) − η(ei )Q(ei ). (3.13)

Since η(ei ) = 0, for i = 1, 2, ..., n−1, and φ(en) = 0, summing up for i = 1, 2, ..., n
and dividing by n, we obtain the required result.
Case II: ξ /∈ T M , then again from (3.7), we obtain

m(ei , ei ) = h(ei , ei ) − η(ei )Q(ei ) (3.14)

for each i = 1, 2, ..., n. From (3.14), we obtainm(ei , ei ) = h(ei , ei ), since η(ei ) = 0,
for all the i = 1, 2, ..., n . Summing up for i = 1, 2, ..., n and dividing by n, we obtain
the required result. ��

The following corrolaries are the direct consequence of the above theorem.

Corollary 3.1 Any submanifold of an almost contact manifold endowed with a
quarter-symmetric metric connection is minimal with respect to the quarter-symmetric
metric connection if and only if it is minimal with respect to the Riemannian connec-
tion.

Corollary 3.2 If a submanifold M of an almost contact manifold endowed with a
quarter-symmetric metric connection is tangent to ξ and is totally umbilical with
respect to both the connections, then M is invariant. Conversely, if M is invariant,
then M is totally umbilical with respect to quarter-symmetric connection if and only
if M is totally umbilical with respect to the Riemannian connection.

Proof From (3.7), for all X,Y ∈ T M , we have,

η(X)QY = m(X,Y ) − h(X,Y ). (3.15)

If M is totally umbilical with respect to both quarter-symmetric connection and Rie-
mannian connection, then from Theorem 3.3, we have,

m(X,Y ) = g(X,Y )H = h(X,Y ).

Thus, from (3.15), we get for all X,Y ∈ T M ,

η(X)QY = 0, (3.16)

for any X,Y ∈ T M . Putting X = ξ in (3.16), we obtain, QY = 0, for all Y ∈ T M ,
which implies that M is an invariant submanifold.

The converse part follows directly from (3.7). ��
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Gauss and Ricci Equations 1695

Remark 3.2 In this connection, we should note that, if any submanifold of a contact
metric manifold is normal to ξ , then by the well-known result of Yano and Kon [22],
the submanifold is always anti-invariant.

Theorem 3.4 The covariant derivative of the fundamental 2−form � with respect
to the quarter-symmetric connection is equal to the covariant derivative of � with
respect to the Riemannian connection.

Proof We have �(X,Y ) = g(X, φY ).
Therefore,

(∇∗
X�

)
(Y, Z) = X�(Y, Z) − �

(∇∗
XY, Z

) − �
(
Y,∇∗

X Z
)

= X�(Y, Z) − �
(∇̄XY, Z

) + η(X)�(Y, φZ)

−�
(
Y, ∇̄X Z

) + η(X)�(Y, φZ)

= (∇̄X�
)
(Y, Z), since, �(Y, φZ) = −�(Y, φZ). (3.17)

Hence, the result. ��

4 The Gauss, Codazzi-Mainardi and Ricci Equations

In this section, we find the relations between the curvature tensors corresponding to
the Levi-civita connection and the quarter symmetric metric connection. We denote
the Riemannian curvature tensors corresponding to the Levi-Civita connection and the
quarter-symmetric connection by R̄ and R∗, respectively, and that corresponding to
the induced connections ∇ and ∇′

by R and R
′
, respectively.

We have,

∇∗
X∇∗

Y Z = ∇̄X ∇̄Y Z − η(X)φ
(∇̄Y Z

) − η(Y )∇̄XφZ

+ η(X)η(Y )φ2Z − X (η(Y ))φZ , (4.1)

∇∗
Y∇∗

X Z = ∇̄Y ∇̄X Z − η(Y )φ
(∇̄X Z) − η(X)∇̄YφZ

+ η(X)η(Y )φ2Z − Y
(
η(X)

)
φZ , (4.2)

and
∇∗[X,Y ]Z = ∇̄[X,Y ]Z − η

([X,Y ])φZ . (4.3)

Therefore, we have

R∗(X,Y )Z = R̄(X,Y )Z + η(X)
(∇̄Yφ

)
Z − η(Y )

(∇̄Xφ
)
Z

− [
(∇̄Xη)Y − (∇̄Y η

)
X

]
φZ . (4.4)

Hence, we derive

R∗(X,Y, Z ,W ) = g(R∗(X,Y )Z ,W )

= g
(
R̄(X,Y )Z ,W

) + η(X)g
(
(∇̄Yφ)Z ,W

) − η(Y )g
(
(∇̄Xφ)Z ,W

)
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1696 A. De, S. Uddin

− [(∇̄Xη
)
Y − (∇̄Y η

)
X

]
g(φZ ,W )

= R̄(X,Y, Z ,W ) + η(X)g
(
(∇̄Yφ)Z ,W

) − η(Y )g
(
(∇̄Xφ)Z ,W

)

− [(∇̄Xη
)
Y − (∇̄Y η

)
X

]
g(φZ ,W ). (4.5)

From (4.4) and (4.5), we can conclude the following:

Remark 4.1 (i) R∗(X,Y, Z ,W ) 
= R∗(Z ,W, X,Y )

(ii) R∗(X,Y, Z ,W ) 
= −R∗(X,Y,W, Z)

(iii) The first Bianchi identity with respect to the quarter-symmetric connection is
given by

R∗(X,Y )Z + R∗(Y, Z)X + R∗(Z , X)Y = k(X,Y )Z + k(Y, Z)X + k(Z , X)Y,

where k(X,Y )Z is a (1,3)-tensor defined by
k(X,Y )Z = η(Z)

[(∇̄Xφ
)
Y − (∇̄Yφ

)
X

] − [(∇̄Xη
)
Y − (∇̄Y η

)
X

]
φZ .

Now, putting Z = ξ in (4.4), we get

R∗(X,Y )ξ = R̄(X,Y )ξ + η(X)
(∇̄Yφ

)
ξ − η(Y )

(∇̄Xφ
)
ξ (4.6)

From (4.6), we obtain the following:

Remark 4.2 If the ambient manifold M̄ is a Sasakian manifold, then we have

R∗(X,Y )ξ = R̄(X,Y )ξ + η(X)
[
η(Y )ξ − Y

] − η(Y )
[
η(X)ξ − X

]

= 2R̄(X,Y )ξ.

Remark 4.3 If the ambient manifold M̄ is cosymplectic, then

R∗(X,Y )ξ = R̄(X,Y )ξ.

Again, we have

∇∗
X∇∗

Y Z = ∇′
X∇′

Y Z + m
(
X,∇′

Y Z
)

+ DX
(
m(Y, Z)

) − A′
m(Y,Z)X. (4.7)

∇∗
Y∇∗

X Z = ∇′
Y∇′

X Z + m(Y,∇′
X Z)

+ DY
(
m(X, Z)

) − Am(X,Z)Y. (4.8)

∇∗[X,Y ]Z = ∇′
[X,Y ]Z + m

([X,Y ], Z)
. (4.9)

By direct computations, we obtain

R∗(X,Y )Z = R′(X,Y )Z + (∇′
Xm

)
(Y, Z) − (∇′

Ym
)
(X, Z)

+ A′
m(X,Z)Y − A′

m(Y,Z)X. (4.10)
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Gauss and Ricci Equations 1697

Hence, the Gauss equation for the quarter symmetric metric connection ∇∗ is given
by

R∗(X,Y, Z ,W ) = g
(
R∗(X,Y )Z ,W

)

= g
(
R′(X,Y )Z ,W

) + g
(
m(Y,W ),m(X, Z)

)

− g
(
m(Y, Z),m(X,W )

)

= R′(X,Y, Z ,W ) + g
(
m(Y,W ),m(X, Z)

)

− g
(
m(Y, Z),m(X,W )

)
. (4.11)

Putting X = W = ei , Y = Z = e j , in (4.11), we obtain

R∗(ei , e j , e j , ei ) = R′(ei , e j , e j , ei ) + g
(
m(ei , e j ),m(e j , ei )

)

− g
(
m(e j , e j ),m(ei , ei )

)
. (4.12)

Summing over i and j and using Theorem 3.3, we get

τ ∗ = τ ′ + ||m||2 − n2‖H‖2, (4.13)

where τ ∗ and τ ′ are the scalar curvatures corresponding to the quarter symmetricmetric
connection defined on M̄ and the induced quarter-symmetric metric connection on M ,
respectively, and ||m||2 denotes the squared norm of the second fundamental form
with respect to the quarter-symmetric connection. From (4.13), we can also write

‖H‖2 ≥ 1

n2
(
τ ′ − τ ∗). (4.14)

Hence, the following:

Theorem 4.1 On a minimal submanifold of an almost contact metric manifold admit-
ting a quarter-symmetric metric connection, the scalar curvature corresponding to the
quarter-symmetric connection is never less than that of the induced quarter-symmetric
connecton.

Since {Nα}, α = 1, 2, ..., p is a basis of T⊥M , we can express m(X,Y ) =
p∑

α=1
mα(X,Y )Nα , where each mα is a (0, 2) tensor.

Hence, the Gauss equation (4.11) can be rewritten in the following form:

R∗(X,Y, Z ,W ) = R′(X,Y, Z ,W ) +
p∑

α=1

[
mα(Y,W )mα(X, Z)

−mα(Y, Z)mα(X,W )
]
. (4.15)

From (3.2) and (3.9), we can easily deduce that

mα(X,Y ) = g
(
A

′
Nα

X,Y
)
. (4.16)
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1698 A. De, S. Uddin

Hence, by (4.15), the Gauss equation can also be represented in terms of the shape
operator as

R∗(X,Y, Z ,W ) = R′(X,Y, Z ,W ) +
p∑

α=1

{g(A′
Nα
Y,W )g(A

′
Nα

X, Z)

− g(A
′
Nα
Y, Z)g(A

′
Nα

X,W )}. (4.17)

From (4.17), we get

R∗(X,Y, X,Y ) = R′(X,Y, X,Y ) +
p∑

α=1

{g(A′
Nα
Y,Y )g(A

′
Nα

X, X)

− g(A
′
Nα
Y, X)g(A

′
Nα

X,Y )}. (4.18)

Combining with Remark 3.1, we can state the following:

Theorem 4.2 Let P be a 2−dimensional invariant subspace of TxM and let K ∗(P)

and K
′
(P) be the sectional curvature of P in M̄ and M, respectively, with respect to

the quarter-symmetric metric connection. If Xand Y form an orthonormal basis of P ,
then

K ∗(P) = K
′
(P) +

p∑

α=1

{g(A′
Nα
Y,Y )g(A

′
Nα

X, X) − g(A
′
Nα

X,Y )2}.

Now, contracting equation (4.15) we have the expression of Ricci tensor corre-
sponding to the quarter-symmetric connection as

S∗(Y, Z) = S′(Y, Z) +
p∑

α=1

R∗(Nα,Y, Z , Nα)

+
p∑

α=1

[
n∑

i=1

g(A
′
Nα
Y, ei )g(A

′
Nα

Z , ei )− fαmα(Y, Z)

]

(if A is symmetric)

= S′(Y, Z) +
p∑

α=1

R∗(Nα,Y, Z , Nα)

+
p∑

α=1

[
g(A

′
Nα

A
′
Nα
Y, Z) − fαmα(Y, Z)

]
(if A is symmetric)

= S′(Y, Z) +
p∑

α=1

R∗(Nα,Y, Z , Nα)

+
p∑

α=1

[
mα(A

′
Nα
Y, Z) − fαmα(Y, Z)

]
. (4.19)

where fα denote the trace of A′
Nα
.
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Suppose that the quarter-symmetric metric connection ∇∗ is of constant sectional
curvature. Then

R∗(X,Y, Z ,W ) = λ(g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )). (4.20)

Therefore, from equation (4.19), we have

S′(Y, Z) =
p∑

α=1

{
fαmα(Y, Z) − mα(A′

Nα
Y, Z)

}

+
p∑

α=1

R∗(Nα,Y, Z , Nα).

Therefore,

S′(Y, Z) = λ(n − 1)g(Y, Z) +
p∑

α=1

{
fαmα(Y, Z) − mα(A′

Nα
Y, Z)

}
. (4.21)

Thus, we can state the following:

Theorem 4.3 Let M be an invariant submanifold of an almost contactmetricmanifold
M̄ of constant sectional curvature with a quarter-symmetric metric connection. Then

(i) the Ricci tensor of M induced from the quarter-symmetric connection is symmet-
ric.

(ii) The Ricci tensor of M induced from the quarter-symmetric connection is not
parallel.

From Eq. (4.21), we can also conclude the following:

Theorem 4.4 Let M be a totally umbilical submanifold of an almost contact metric
manifold M̄ of constant sectional curvature with a quarter-symmetric metric connec-
tion. Then the submanifold M is an Einstein manifold with respect to the quarter-
symmetric metric connection.

From (4.10), we obtain the normal part of R∗(X,Y )Z as

R⊥(X,Y )Z = (∇′
Xm)(Y, Z) − (∇′

Ym)(X, Z), (4.22)

which is the Codazzi equation corresponding to the quarter-symmetric metric connec-
tion ∇∗.

Let ζ1, ζ2 ∈ T⊥M , then we have

R∗(X,Y )ζ1 = R′(X,Y )ζ1 − A′
DY ζ1

X + A′
DX ζ1

Y + ∇′
Y (A′

ζ1
X)

+∇′
X (A′

ζ1
Y ) + m(Y, A′

ζ1
X) − m(X, A′

ζ1
Y ) − A′

ζ 1

([X,Y ]).
(4.23)
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So, we have

R∗(X,Y, ζ1, ζ2) = g(R∗(X,Y )ζ1, ζ2)

= g(R′(X,Y )ζ1, ζ2) + g(A′
ζ1
X, A′

ζ2
Y ) − g(A′

ζ1
Y, A′

ζ2
X)

= R′(X,Y, ζ1, ζ2) + g(A′
ζ1
X, A′

ζ2
Y ) − g(A′

ζ1
Y, A′

ζ2
X), (4.24)

which is the Ricci equation corresponding to the quarter-symmetricmetric connection.

Remark 4.4 If we consider the submanifold M to be invariant, then from Lemma 3.1,
we have the shape operator to be symmetric. Thus, we can express the Ricci equation
in the following form:

R∗(X, Y, ζ1, ζ2) = R′(X,Y, ζ1, ζ2) + g
([A′

ζ1
, A′

ζ2
]X,Y

)
. (4.25)

5 Example

Example 5.1 Let us consider the 5-dimensional manifold M̄ = {(x, y, z, u, v) ∈
R
5, (x, y, z, u, v) 
= (0, 0, 0, 0, 0)},where (x, y, z, u, v) are the standard coordinates

in R5. The vector fields

e1=2

(
− ∂

∂x
+ y

∂

∂z

)
, e2=2

∂

∂y
, e3 = 2

∂

∂z
, e4 = 2

(
− ∂

∂u
+ v

∂

∂z

)
, e5 = 2

∂

∂v
(5.1)

are linearly independent at each point of M̄ . Let g be the metirc defined by

g(ei , e j ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, when i = j

0, when i 
= j.

Let η be the 1-form defined by η(Z) = g(Z , e3), for all Z ∈ T M̄ , and let φ be the
(1, 1) tensor field defined by

φe1 = e2, φe2 = −e1, φe3 = 0, φe4 = e5, φe5 = −e4. (5.2)

Then, using the linearity of φ and g, we have

η(e3) = 1, φ2Z = −Z + η(Z)e3

and
g(φZ , φW ) = g(Z ,W ) − η(Z)η(W ), ∀ Z ,W ∈ T M̄ .

Thus, for e3 = ξ, (M̄, φ, ξ, η, g) be an almost contact metric manifold. Let ∇̄ be the
Levi-Civita connection with respect to the metric g. Then, we have

[e1, e2] = −2e3 = [e4, e5] and [ei , e j ] = 0, for all other i, j.
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Taking e3 = ξ and using Koszul’s formula for the metric g, it can be easily calculated
that

∇̄e1e2 = −e3, ∇̄e1e3 = e2, ∇̄e2e1 = −e3, ∇̄e2e3 = −e1, ∇̄e3e1 = e2,

∇̄e3e2 = −e1, ∇̄e3e4 = e5, ∇̄e3e5 = −e4, ∇̄e4e3 = e5, ∇̄e5e3 = −e4, (5.3)

and the rest of the terms are 0.
Since {e1, e2, e3, e4, e5} is a frame filed, then any vector field X,Y ∈ T M̄ can be

wrriten as

X = a1e1 + b1e2 + c1e3 + d1e4 + f1e5, Y = a2e1 + b2e2 + cce3 + d2e4 + f2e5

where ai , bi , ci , di , fi ∈ R, i = 1, 2 such that

a1a2 + b1b2 + c1c2 + d1d2 + f1 f2 
= 0.

Hence, we derive

g(X,Y ) = a1a2 + b1b2 + c1c2 + d1d2 + f1 f2. (5.4)

Now, using (5.3), we get

∇̄XY = −(b1c2 + b2c1)e1 + (a1c2 + a2c1)e2 − (a2b1a1b2)e3
−(c1 f2 + c2 f1)e4 + (c1d2 + c2d1)e5.

Thus, from (3.1), we obtain

∇∗
XY = a1c2e2 − b1c2e1 − (a2b1 + a1b2)e3 − c2 f1e4 + c2d1e5. (5.5)

Also from (5.4), it follows that ∇∗g = 0. Thus, in an almost contact metric manifold,
the quarter-symmetric metric connection is given by (5.5).

Now, let M be a subset of M̄ and consider an isometric immersion f : M −→
M̄ by

f (x, y, z) = (x, y, z, 0, 0).

It can be easily seen that M is a 3-dimensional submanifold of the 5 -dimensional
almost contact metric manifold M̄ . Now, M = {(x, y, z) ∈ R

3, (x, y, z) 
= 0}, where
(x, y, z) are the standard coordinates in R3. The vector fields

e1 = 2

(
− ∂

∂x
+ y

∂

∂z

)
, e2 = 2

∂

∂y
, e3 = 2

∂

∂z

are linearly independent at each point of M . Let us denote the induced metric by the
same symbol g such that

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0
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and
g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let ∇ be the Levi-Civita connection with respect to the metric g on M . Then, we have

[e1, e2] = −2e3 and [e1, e3] = 0 = [e2, e3].

Taking e3 = ξ and using Koszul’s formula for the induced metric g, it can be easily
calculated that

∇e1e2 = −e3, ∇e1e3 = e2, ∇e1e1 = 0, ∇e2e3 = −e1, ∇e2e2 = 0,

∇e2e1 = −e3, ∇e3e3 = 0, ∇e3e2 = −e1, ∇e3e1 = e2.

Clearly, {e4, e5} is the frame for the normal bundle T⊥M . If we take X,Y ∈ T M ,
then we can express them as

X = a1e1 = b1e2 + c1e3, Y = a2e1 = b2e2 + c2e3

and therefore

∇XY = −(b1c2 + b2c1)e1 + (a1c2 + a2c1)e2 − (a1b2 + a2b1)e3 (5.6)

which is the tangential part of ∇̄XY . The second fundamental form is given by

h(X,Y ) = −(c1 f2 + c2 f1)e4 + (c1d2 + c2d1)e5. (5.7)

Now, the tangential part of ∇∗
XY is given by

∇′
XY = −b1c2e1 + a1c2e2 − (a1b2 + a2b1)e3 = ∇XY − η(X)PY. (5.8)

And, the normal part of ∇∗
XY will be

m(X,Y ) = −c2 f1e4 + c2d1e5 = h(X,Y ) − η(X)QY. (5.9)

It is easy to check that ∇′
X g = ∇∗

X g, for any X ∈ T M .
We can easily check that the submanifold M is minimal with respect to both the

connections, the Levi-Civita as well as the quarter-symmetric connection.
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