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Abstract In the present paper, we study the extrinsic and intrinsic geometry of sub-
manifolds of an almost contact metric manifold admitting a quarter-symmetric metric
connection. We deduce Gauss, Codazzi and Ricci equations corresponding to the
quarter-symmetric metric connection and show some applications of these equations.
Finally, we give an example verifying the results.
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1 Introduction

The importance of the Gauss, Codazzi and Ricci equations in differential geometry is
that if the ambient space has a constant sectional curvature, they play an analogous role
to that of the compatibility equation in the local theory of surfaces. For a submanifold
M of a Riemannian manifold M, if the Riemannian curvature tensors are denoted by
R and R, respectively, then the usual Gauss, Codazzi and Ricci equations are given
by the following:
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g(RX, VZ, W) =g(RX,Y)Z, W) — g(h(X, W), h(Y, Z))

+g(h(Y, W), h(X, 2)), (1.1)
(R(X. 7, Z))l = (Vxh)(Y, Z) — (Vyh)(X, Z), (1.2)
g(RX, YU, V) = g(RH(X,Y)U, V) + g(lAv, Ay1X, Y), (1.3)

for X, Y, Z, W tangentto M and U, V normal to M, where % is the second fundamental
form, A is the associated shape operator of the immersion, and R~ is the curvature
tensor of the normal bundle. For an isometric immersion i : M — M of Riemannian
manifolds, the Gauss equation shows that the curvature tensor of M, when evaluated on
vector fields tangent to M, differs from the curvature tensor of M by a tensor involving
only the second fundamental form of the immersion. Gauss—Codazzi—Ricci equations
are very important instruments for describing a submanifold in a Riemannian space.
By nature, these equations appear in the Cauchy problem of general relativity [20].
On the other hand, in 1975, Golab [13] introduced the notion of quarter-symmetric
connection on a differentiable manifold. A linear connection V is said to be quarter-
symmetric if its torsion tensor 7 defined by T (X, Y) = VxY — Vy X — [X, Y], is of
the form:
TX,Y)=u)YX —u(X)yY, (1.4)

where u is a 1 —form and ¥ is a (1, 1)—tensor field. When T vanishes, the connection
V is called symmetric; otherwise, it is called non-symmetric. V is called a metric
connection if there is a Riemannian metric g such that Vg = 0; otherwise, it is called
non-metric. It is well known that a linear connection is both symmetric and metric
if and only if it is the Riemannian (or, the Levi-Civita) connection. If in (1.4), ¢
is an identity function, then it reduces to semi-symmetric metric connection. Hence,
quarter-symmetric connection is a generalization of semi-symmetric connection. In the
present paper, we deduce the Gauss, Codazzi and Ricci equations for submanifolds of
an almost contact metric manifold admitting a quarter-symmetric metric connection.

In [8], De and Mondal proved the existence and uniqueness of quarter-symmetric
metric connection in Riemannian manifolds. Many authors studied other geometric
properties of almost Hermitian and almost contact manifolds with quarter-symmetric
and semi-symmetric connections ([1,7,14,16,17,19]). Ozgur [16] proved several
results including the equations of Gauss Codazzi and Ricci for submanifolds of a
Riemannian manifold admitting a particular type of semi-symmetric non-metric con-
nection. Later on, hypersurfaces and submanifolds of different ambient manifolds
admitting quarter-symmetric metric connection have been studied by several authors
([9,11,15]). In this paper, we generalize all the results obtained in these previous
studies, by considering submanifolds of any codimension of an almost contact metric
manifold admitting a quarter-symmetric metric connection.

The present paper has been organized as follows:
After preliminaries, in sect. 3, we consider submanifolds of an almost contact metric
manifold endowed with a quarter-symmetric metric connection, and we show that the
connection induced on the submanifold is also a quarter-symmetric metric connection.
Furthermore, we prove that the mean curvature with respect to both the connections
coincides, and applying this result, we obtain a necessary condition of a submanifold to
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Gauss and Ricci Equations 1691

be invariant. In sect. 4, we deduce the Gauss, Codazzi and Ricci equations correspond-
ing to the quarter-symmetric metric connection and obtain some results applying these
equations. Finally, in sect. 5, we provide an example verifying the obtained results.

2 Preliminaries

Let M be an (n + p)—dimensional (where n + p is odd) differentiable manifold
endowed with an almost contact metric structure (¢, &, n, g), where ¢, &, n are tensor
fields on M of types (1, 1), (1, 0), (0, 1), respectively, and g is a compatible metric
with the almost contact structure, such that [2,3,5,21],

P =—1+1®E& ¢t =0,nE) =1,n0¢=0, (2.1)
g(@X, 9Y) = g(X,Y) — n(X)n(Y), 2.2)
g@X,Y) +g(X,pY) =0, 2.3)

for all vector fields X, Y € TM, where TM is the Lie algebra of vector fields of
the manifold M. The fundamental 2—form ® is defined by ®(X,Y) = g(X, ¢Y). If
(¢, 9]+ dn ® & = 0, where [¢, §1(X, V) = ¢°[X, Y] + [¢X,pY] — ¢[¢X, Y] —
¢[X, @Y1, then the almost contact structure is said to be normal [10]. If & = dn,
the almost contact structure becomes a contact structure. A normal contact metric
manifold is called Sasakian. On a Sasakian manifold, we have the following [2,12]:

(Vx¢)Y = g(X.YV)E — n(Y)X, 2.4)
R(X, Y)E = n(Y)X — n(X)Y. 2.5)

An almost contact metric structure (¢, &, n, g) is cosymplectic if and only if ¢ is
parallel. In a cosymplectic manifold, we have (Vx7)Y = 0.

A Riemannian manifold of dimension >2 is said to be Einstein if its Ricci tensor S
satisfies S(X, Y) = ug(X, Y), where p is a constant [6].

Let M be a submanifold of an almost contact metric manifold M with a positive
definite metric g. Let the induced metric on M also be denoted by g. The usual Gauss
and Weingarten formulae are given, respectively, by [4,18]

VxY =VxY +h(X,Y), X,YeTM (2.6)
VxN = —AyX +V§N, NeT*M 2.7)

where V is the induced Riemannian connection on M, & is the second fundamental

form of the immersion, A is the shape operator, and V-1 is the normal connection on

T+ M, the normal bundle of M. From (2.6) and (2.7), one gets
gh(X,Y),N)=g(ANX.Y). (2.8)

The submanifold M of an almost contact manifold M is called invariant (resp. anti-
invariant) if for each point x € M, ¢TxM C TyM (resp. ¢pT M C TXJ-M . The
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1692 A. De, S. Uddin

submanifold is called totally umbilical if h(X,Y) = g(X,Y)H, for all X,Y €
T M, where H is the mean curvature vector of the submanifold, defined by H =
%Z{h(ei, e}, {ei},i = 1,2,...,n being an orthonomal basis of TM and n the
dimension of M. The submanifold is called totally geodesic if h(X,Y) = 0 for all
X,Y € TM. Let the codimension of M be p, and let {Ny}, « = 1,2, ..., p be an
orthonormal basis of T+ M.

3 Basic Results

On a submanifold M of an almost contact metric manifold M with the quarter-
symmetric metric connection V*, we obtain the following results:

Theorem 3.1 The connection induced on a submanifold of an almost contact metric
manifold with a quarter-symmetric metric connection is also a quarter-symmetric
metric connection.

Proof We define the quarter-symmetric metric connection V* on M by
VY = VxY — n(X)gY. 3.1)
If V' is the induced connection on M from the connection V*, then we have
VLY = VyY +m(X,Y), (3.2)
where m is atensor field of type (1, 2) in T+ M, the normal partof M. Wetermm (X, Y)
the second fundamental form with respect to the quarter-symmetric connection.

For X e TM and N € T+ M, we put

$X = PX+ Q0X, PXeTM, QXeT*M, (3.3)
¢N =tN +gN, tNeTM, gN eT* M. (3.4)

Using (3.3), from (3.1) and (3.2), we have
V/XY+m(X, Y)=VxY+h(X,Y) —n(X)PY —n(X)QY. (3.5)
Now equating tangential and normal parts, we have
VyY = VxY — n(X)PY, (3.6)

and
m(X,Y)=h(X,Y)—n(X)QY. 3.7

From (3.6), the torsion tensor with respect to Vs given by

T'(X,Y) =n(Y)PX — n(X)PY.
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Gauss and Ricci Equations 1693

Also using (3.2), we have

(Vyg)(Y. 2) = (Vig) (Y. 2). (3.8)
Hence, the result. O

From (3.6), it follows that if the submanifold is anti-invariant, that is, PX = 0,
then we have the following:

Theorem 3.2 On an anti-invariant submanifold of an almost contact metric manifold
with a quarter-symmetric metric connection, the induced quarter-symmetric connec-
tion and the induced Riemannian connection are equivalent.

So we concentrate mostly on invariant submanifolds. Equation (3.2) is the Gauss
formula for the quarter-symmetric metric connection. Also, from (3.1), we have

ViN = VxN — n(X)¢pN
= —AyX — n(X)tN + V¥N — n(X)gN
= DxN — AyX, (3.9)

where DxN = V)J(‘N — 1n(X)gN is the normal connection, and A;VX = ANyX +
n(X)tN is the shape operator corresponding to the quarter-symmetric metric connec-
tion. By simple calculations, we obtain

gm(X,Y),N) = g(AyX,Y). (3.10)

Equation (3.9) is the Weingarten formula with respect to the quarter-symmmetric
metric connection.

Remark 3.1 Unlike the second fundamental form corresponding to the Levi-Civita
connection, m is neither symmetric nor skew-symmetric, in general, which is evident
from (3.7). Thus, the shape operator A’corresponding to the quarter-symmetric con-
nection is also not symmetric. However, for invariant submanifolds both of them are
symmetric.

We define the covariant derivative of m and n with respect to the quarter-symmetric
metric connection as follows:

(Vim)(Y, Z) = Dx(m(Y, 2)) —m(VyY, Z) —m(Y,VyZ),  (3.11)
(VEn)Y = X(n(¥)) = n(ViY). (3.12)

Equation (3.11) may be called the van der Waerden—Bortolotti connection correspond-
ing to the quarter-symmetric metric connection.
Now, we prove the following:
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1694 A. De, S. Uddin

Theorem 3.3 The mean curvature of the submanifold M with respect to the Rie-
mannian connection coincides with that of M with respect to the quarter-symmetric
metric connection.

Proof Let {eq, e2, ..., €;} be an orthonormal basis of 7M. We consider two cases:
Case I: £ € TM and let ¢;, = &. Then from (3.7), we obtain

me;,e;) = h(e;,e;) —n(e;)Q(e;). (3.13)

Since n(e;) = 0,fori =1,2,...,n—1,and ¢ (e,) = 0, summingupfori = 1,2, ....,n
and dividing by n, we obtain the required result.
Case II: £ ¢ T M, then again from (3.7), we obtain

m(ej, ej) = h(e;, e;) —n(ei)Q(e;) (3.14)

foreachi =1, 2, ..., n. From (3.14), we obtain m(e;, ¢;) = h(e;, ¢;), since n(e;) = 0,
forallthei =1, 2, ..., n. Summing up fori = 1, 2, ..., n and dividing by n, we obtain
the required result. O

The following corrolaries are the direct consequence of the above theorem.

Corollary 3.1 Any submanifold of an almost contact manifold endowed with a
quarter-symmetric metric connection is minimal with respect to the quarter-symmetric
metric connection if and only if it is minimal with respect to the Riemannian connec-
tion.

Corollary 3.2 If a submanifold M of an almost contact manifold endowed with a
quarter-symmetric metric connection is tangent to & and is totally umbilical with
respect to both the connections, then M is invariant. Conversely, if M is invariant,
then M is totally umbilical with respect to quarter-symmetric connection if and only
if M is totally umbilical with respect to the Riemannian connection.

Proof From (3.7), for all X, Y € T M, we have,
n(X)QY =m(X,Y) - h(X,Y). (3.15)

If M is totally umbilical with respect to both quarter-symmetric connection and Rie-
mannian connection, then from Theorem 3.3, we have,

mX,Y)=g(X,Y)H =h(X,7).
Thus, from (3.15), we get forall X, Y € TM,
n(X)QY =0, (3.16)
for any X,Y € TM. Putting X = £ in (3.16), we obtain, QY = 0, forallY € TM,

which implies that M is an invariant submanifold.
The converse part follows directly from (3.7). O
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Gauss and Ricci Equations 1695

Remark 3.2 In this connection, we should note that, if any submanifold of a contact
metric manifold is normal to &, then by the well-known result of Yano and Kon [22],
the submanifold is always anti-invariant.

Theorem 3.4 The covariant derivative of the fundamental 2—form ® with respect
to the quarter-symmetric connection is equal to the covariant derivative of ® with
respect to the Riemannian connection.

Proof We have ®(X,Y) = g(X, ¢Y).
Therefore,

(Vi®@)(Y,2) = X0, Z) — ®(VyY, Z) — ®(Y, V5 Z)
= X0, Z) — ®(VxY, Z) + n(X)® (Y, $Z)
—®(Y, VxZ) + n(X)@(Y, ¢Z)
= (Vx®)(Y, Z), since, (Y, ¢Z) = —D(Y,$Z). (3.17)

Hence, the result. O

4 The Gauss, Codazzi-Mainardi and Ricci Equations

In this section, we find the relations between the curvature tensors corresponding to
the Levi-civita connection and the quarter symmetric metric connection. We denote
the Riemannian curvature tensors corresponding to the Levi-Civita connection and the
quarter-symmetric connection by R and R*, respectively, and that corresponding to
the induced connections V and V' by R and R, respectively.

‘We have,
ViViZ = VxVyZ —n(X)¢(VyZ) — n(Y)Vx¢pZ
+n(X)n(Y)$*Z — X(n(Y)¢Z, 4.1)
VyVxZ = VyVxZ —n(Y)$(Vx Z) — n(X)VypZ
+n(X)n()$*Z — Y (n(X))9Z, (4.2)
and B
VixnZ = VixrZ —n([X. Y])oZ. 4.3)

Therefore, we have

R*X,Y)Z=R(X,Y)Z+n(X)(Vy¢)Z —n(Y)(Vx¢)Z
—[(VxmY — (Vyn)X]oZ. (4.4)

Hence, we derive

R*(X,Y,Z, W) = g(R*(X, Y)Z, W)
=g(RX,NZ, W) +n(X)g((Vy$)Z, W) — n(Y)g((Vx$)Z, W)
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—[(Vxn)Y = (Vyn)X]g(¢Z, W)
=RX.Y,Z,W)+n(X)g((Vy»)Z, W) — n(¥)g((Vxp)Z, W)
—[(Vxn)Y = (Vyn)X]g(@Z, W). 4.5)

From (4.4) and (4.5), we can conclude the following:

Remark 4.1 (i) R*(X,Y,Z,W) #R*(Z,W,X,Y)
(i) R*(X,Y,Z,W) # —-R*(X,Y, W, 2Z)
(iii) The first Bianchi identity with respect to the quarter-symmetric connection is
given by
R*(X,Y)Z+ R*(Y,Z)X + R (Z, X)Y =k(X,Y)Z +k(Y, 2)X + k(Z, X)Y,

where k(X, Y)Z is a_(1,3)-tensor_deﬁned by B B
kX, Y)Z =n(D)[(Vxe)Y — (Vyé)X] — [(Vxn)Y — (Vyn)X]oZ.

Now, putting Z = £ in (4.4), we get
R*(X,Y)§ = R(X, Y)§ +n(X)(Vy$)§ — n(¥)(Vx¢)s (4.6)
From (4.6), we obtain the following:

Remark 4.2 1f the ambient manifold M is a Sasakian manifold, then we have

R*(X,Y)§ = RIX, Y)é + n(X)[n(V)E — Y] — n(V)[n(X)& — X]
=2R(X,Y)E.

Remark 4.3 1f the ambient manifold M is cosymplectic, then
R*(X.Y)é = R(X, Y)E.
Again, we have

ViVEZ = VyVyZ +m(X, VyZ)

+Dx(m(Y, 2)) = A,z X 4.7
ViViZ = VyVyZ +m(Y, Vy Z)

+ Dy (m(X, 2)) = Anx.2)Y. (4.8)
VixnZ = VEX,Y]Z +m([X, Y], Z). (4.9)

By direct computations, we obtain

R*(X,Y)Z = R'(X,Y)Z + (Vym)(Y, Z) — (Vym)(X, Z)
+ A2 Y — Az X (4.10)
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Gauss and Ricci Equations 1697

Hence, the Gauss equation for the quarter symmetric metric connection V* is given
by

R*(X.Y,Z, W) =g(R"(X,Y)Z, W)
=g(R'(X,Y)Z, W)+ g(mY, W), m(X, Z))
—g(mY, 2),mX, W))
=R(X.Y,Z,W)+g(m¥, W), mX, 2))
—g(mY, 2), m(X, W)). 4.11)

Putting X = W =¢;,Y = Z =¢j,in (4.11), we obtain

R*(ei,ej, ej,ej) = R'(ej, ej,ej, e) + g(mlej, ej), m(ej, ¢))
—g(mlej, ej), m(ej, e))). (4.12)

Summing over i and j and using Theorem 3.3, we get
ot =1+ [Iml* — | H|?, (4.13)

where T* and 7’ are the scalar curvatures corresponding to the quarter symmetric metric
connection defined on M and the induced quarter-symmetric metric connection on M,
respectively, and ||m||2 denotes the squared norm of the second fundamental form
with respect to the quarter-symmetric connection. From (4.13), we can also write

1
|H|? > ;(r’ —7%). (4.14)

Hence, the following:

Theorem 4.1 On a minimal submanifold of an almost contact metric manifold admit-
ting a quarter-symmetric metric connection, the scalar curvature corresponding to the
quarter-symmetric connection is never less than that of the induced quarter-symmetric
connecton.

Since {Ny}, « = 1,2, ..., p is a basis of T+M, we can express m(X,Y) =
P
> my(X,Y)Ny, where each my, is a (0, 2) tensor.

a=1
Hence, the Gauss equation (4.11) can be rewritten in the following form:

R*X,Y,Z,W)y=R'(X,Y,Z, W) + i [ma(Y, Wymg (X, Z)
=1
—mg(Y, Z)mo,(X,aW)]. (4.15)
From (3.2) and (3.9), we can easily deduce that
mo(X,Y) = g(Ay X, Y). (4.16)
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Hence, by (4.15), the Gauss equation can also be represented in terms of the shape
operator as

p
R* (XY, Z, W) = R'(X.Y.Z. W)+ > _{g(Ay, Y. W)g(Ay X, Z)

a=l1

—g(Ay, Y. Z)g(Ay, X, W)). (4.17)

From (4.17), we get

P
RY(X.Y. X, Y) = R(X,Y,X.Y)+ > {g(Ay Y. V)g(Ay, X. X)

a=1

—g(Ay, Y, X)g(Ay, X. V). (4.18)

Combining with Remark 3.1, we can state the following:

Theorem 4.2 Let P be a 2—dimensional invariant subspace of T, M and let K*(P)
and K (P) be the sectional curvature of P in M and M, respectively, with respect to
the quarter-symmetric metric connection. If Xand Y form an orthonormal basis of P,
then

p
K*(P) =K (P) + > _{g(Ay,Y. Y)g(Ay, X, X) — g(Ay, X, V)?}.
a=1

Now, contracting equation (4.15) we have the expression of Ricci tensor corre-
sponding to the quarter-symmetric connection as

p
S*(Y,2) = S'(Y, Z)+ D R*(Na, ¥, Z, No)

a=1

P n
+> [Z g(Ay, Y. e)g(Ay, Z. er)— famq (Y, Z):| (if A is symmetric)

a=1 Li=1

P
=5 (Y. Z)+ D R*(Na. Y. Z, No)
a=1
P
+>° [g(A’NaA/Na Y, Z) — fuma(Y, Z)] (if A is symmetric)

a=1

p
=58'(Y,Z)+ D R*(Na., Y, Z, Ny)
a=1
p ’
+ " [malAy, Y. 2) = fuma (Y. 2)]. (4.19)

a=1

where f, denote the trace of A;\,a.
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Suppose that the quarter-symmetric metric connection V* is of constant sectional
curvature. Then

R*X,Y,Z,W) =g, 2)g(X, W) — g(X, Z)g(Y, W)). (4.20)

Therefore, from equation (4.19), we have

p
S' (Y. Z) = D {fama(Y. Z) — ma (A}, Y, Z)}

a=1

P
+ D R*(Na. Y, Z. No).

a=1
Therefore,

P
S'(Y.Z) = Mn— 1Y, Z) + D_{ fama (Y. Z) — ma (AN Y. 2)} . (421)

a=1
Thus, we can state the following:

Theorem 4.3 Let M be an invariant submanifold of an almost contact metric manifold
M of constant sectional curvature with a quarter-symmetric metric connection. Then

(i) the Ricci tensor of M induced from the quarter-symmetric connection is symmet-
ric.

(ii) The Ricci tensor of M induced from the quarter-symmetric connection is not
parallel.

From Eq. (4.21), we can also conclude the following:

Theorem 4.4 Let M be a totally umbilical submanifold of an almost contact metric
manifold M of constant sectional curvature with a quarter-symmetric metric connec-
tion. Then the submanifold M is an Einstein manifold with respect to the quarter-
symmetric metric connection.

From (4.10), we obtain the normal part of R*(X, Y)Z as
RY(X,Y)Z = (Vym)(Y, Z) — (Vym) (X, Z), (4.22)

which is the Codazzi equation corresponding to the quarter-symmetric metric connec-
tion V*.
Let¢y, 4 € T+ M, then we have
R*(X,Y)¢1 = R'(X,Y)¢1 — A, X + Ay Y + Vy (A X)
+V3((A21 Y)+m(Y, A’{IX) —m(X, A/QY) — A’gl([X, Y]).
(4.23)
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So, we have

R*(X,Y,81,8) = g(R*(X, Y)¢1, &)
= g(R' (X, Y)¢1, &) + g(Ay, X, AL Y) — (AL Y, AL, X)
= R'(X,Y, 01, 0) + g(AL X, ALY) — g(AL Y, A X), (4.24)

which is the Ricci equation corresponding to the quarter-symmetric metric connection.

Remark 4.4 If we consider the submanifold M to be invariant, then from Lemma 3.1,
we have the shape operator to be symmetric. Thus, we can express the Ricci equation
in the following form:

R*(X.Y.01.00) = R'(X. Y. 01, 02) + g ([A}, . AL,1X. Y). (4.25)

5 Example
Example 5.1 Let us consider the 5-dimensional manifold M = {(x,y,z,u,v) €

R3, (x,y,z,u,v) #(0,0,0,0,0)}, where (x, y, z, u, v) are the standard coordinates
in RS. The vector fields

I ) 9 I
2 (-Z 472}, =22 3=2". e =2(-ZL +0v2), es =22
. ( ax+yaz) Ty BT ¢ ( 8u+v8z) ST %

are linearly independent at each point of M. Let g be the metirc defined by
1, wheni =j
glei,ej) = 0, wheni # j.

Let 1 be the 1-form defined by n(Z) = g(Z, e3), for all Z € TM, and let ¢ be the
(1, 1) tensor field defined by

per =er, ¢per = —ey, pe3 =0, des =es5, Pes = —ey. (5.2)
Then, using the linearity of ¢ and g, we have
n(es) =1, ¢*Z=—Z+n(Z)es

and
g(PZ, W) =g(Z, W) —n(Z)n(W), ¥ Z,W e TM.

Thus, for ez = &, (1\7[ , ¢, &, n, g) be an almost contact metric manifold. Let V be the
Levi-Civita connection with respect to the metric g. Then, we have

le1, e2] = —2e3 = [e4, e5] and [e;,e;] =0, for all otheri, j.
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Gauss and Ricci Equations 1701

Taking e3 = & and using Koszul’s formula for the metric g, it can be easily calculated
that

€2 = —e3, Vee3=ea,
Veg 4

<1 <

el = —e3, Vege3=—e, Ve =e,
Ve 3

< <

€2 = —eq, eq =es5, Vyes = —ey, e3 =e5, Veez =—ey, (5.3)

and the rest of the terms are 0.

Since {e1, e2, €3, e4, e5} is a frame filed, then any vector field X, Y € T M can be
wrriten as

X =aje; +biex +cre3 +dies + fres, Y = azey + brex + ccez + daeg + fres
where a;, b;, ci, d;, fi € R, i =1, 2 such that
aray +biby +cre2 +dida + fi1fo #0.
Hence, we derive
g(X,Y)=ajax + bi1by + cica + didr + f1 f>. 5.4
Now, using (5.3), we get

VxY = —(bica + bacr)er + (aica + axc)es — (axbrarbr)es
—(c1 f2+cafi)es + (c1da + cady)es.

Thus, from (3.1), we obtain
VXY = ajcaes — bicrey — (axby + arby)es — 2 fies + cad)es. (5.5

Also from (5.4), it follows that V*g = 0. Thus, in an almost contact metric manifold,
the quarter-symmetric metric connection is given by (5.5).

Now, let M be a subset of M and consider an isometric immersion f : M —
M by

fx,y,2) =(x,y,2,0,0).

It can be easily seen that M is a 3-dimensional submanifold of the 5 -dimensional
almost contact metric manifold M. Now, M = {(x,y,2) € R3, (x,y,2) # 0}, where
(x, y, z) are the standard coordinates in R3. The vector fields

5 3 9
:2 —_——_— _— , =2—, =2_
él ( ax+yaz) 2Ty 8T

are linearly independent at each point of M. Let us denote the induced metric by the
same symbol g such that

gler,ez) = gler,e3) = glez,e3) =0
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and
gler,e1) = glea, e2) = g(ez, e3) = 1.

Let V be the Levi-Civita connection with respect to the metric g on M. Then, we have
ler, e2] = —2e3 and [ey, e3] = 0 = [e2, e3].

Taking e3 = & and using Koszul’s formula for the induced metric g, it can be easily
calculated that

Veea = —e3, Veez =ez, Ve =0, Vee3 =—ep, Veer =0,

Ve,e1 = —e3, Vee3 =0, Veep = —ey, Vee =en.

Clearly, {es, es} is the frame for the normal bundle TAM.If we take X, Y € TM,
then we can express them as

X =aje; =bjey +cre3, Y =arer = brexr + cre3
and therefore
VxY = —(bica + baci)er + (arcz2 + axci)er — (a1by + azbr)es  (5.0)
which is the tangential part of Vx Y. The second fundamental form is given by
h(X,Y) = —(c1 f2 + cafi)es + (c1da + cady)es. 5.7
Now, the tangential part of V3 Y is given by
V&Y = —bicre1 + ajcrer — (a1by + azby)es = VxY — n(X)PY. (5.8)
And, the normal part of V3 Y will be
m(X,Y) = —cafies + cadies = h(X, Y) — n(X) QY. (5.9)
It is easy to check that Vi, g = Vi g, forany X € TM.

We can easily check that the submanifold M is minimal with respect to both the
connections, the Levi-Civita as well as the quarter-symmetric connection.
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