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Abstract Björner, Lovász and Shor introduced a chip-firing game on a finite graph
G as follows. We put some chips on each vertex of G, we say that a vertex is ready if
it has at least as many chips as its degree, in which case we can fire it and the result
is that it distributes one chip to each of its neighbors, this may cause other vertices to
be ready, and so on. This game continues until no vertex can be fired. In this paper,
we study chip-firing games on complete graphs. We obtain a sufficient and necessary
condition for chip-firing games on complete graphs to be finite.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. For notations and
terminologies not defined here, we followWest [15]. In 1986, Spencer [13] introduced
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a “balancing game” in an infinite undirected path, which was generalized by Björner,
Lovász, and Shor [4] to a graph as follows.

We obtain an initial configuration by putting some chips on each vertex of a graph
G, the sum of chips on all vertices is N . We say that a vertex is ready if it has at least
as many chips as its degree, in which case the vertex distributes one chip to each of
its neighbors, this process is called a firing. This may cause other vertices to be ready,
and so on. This game terminates if each vertex has fewer chips than its degree. The
game introduced above is called chip-firing game.

Chip-firing game has been around for no more than 20years, but it has rapidly
become an important and interesting object of study in structural combinatorics. The
reason for this is partly due to its relation with the Tutte polynomial and group theory,
but also because of the contribution of people in theoretical physics who know it as
the Abelian sandpile model.

For the partial studies on this topic, see for examples: In [3,4], some important
properties of chip-firing games on graphs and digraphs were studied. In [10], Jeffs
and Seager described infinite configurations on an n-cycle with n chips. In [2], Biggs
showed that the set of configurations that are stable and recurrent for a game can be
given the structure of an Abelian group, and that the order of the group is equal to
the tree number of the graph. In [11], López showed that the generating function of
critical configurations of a version of a chip-firing game on a graph G is an evaluation
of the Tutte polynomial of G. And Heuvel proved that the number of steps needed
to reach a critical configuration is polynomial in the number of edges of the graph
and the number of chips in the initial configuration in [9]. In particular, chip-firing
game is closely related to the Abelian sandpile model introduced in [7], and a detailed
argument for sandpile model can be found in [6]. From [12], we can know that for a
Abelian sandpile model, if the toppling matrix�i j is symmetric and the loading of the
system at site i equals the dissipation at i , then the Abelian sandpile model coincides
with the parallel chip-firing game on a graph, in which all ready vertices must fire
simultaneously. For other related topics, we suggest readers to refer to [1,5,8].

In this paper, we study the finiteness of chip-firing games on complete graphs. We
obtain a sufficient and necessary condition for chip-firing games to be finite.

2 Some Properties of Chip-Firing Games on Complete Graphs

Let G be a connected graph with vertex set {v1, . . . , vn}, and put ai chips on vertex vi ,
i = 1, 2, . . . , n. Denote the configuration of the chip-firing game at this moment by a
vector α = (a1, . . . , an) ∈ N

n,
∑

i ai = N . Assume a vertex vi is ready and we fire it,
this means decreasing ai by the degree d(vi ) of vertex vi , and increasing a j by one for
each neighbor v j of vi . We call a sequence of configurations (α0, α1, . . . , αk, . . .) a
fired sequence if the configurations αk is obtained from αk−1 by firing a ready vertex,
says vαk−1 . A fired sequence corresponds to a fired vertex sequence. Clearly, a chip-
firing game with an initial distribution may have many distinct fired sequences and
each of them is called a legal game. Bjöner et al [4] reported the following results:

Theorem 2.1 [4] Given a connected graph and an initial distribution of chips, either
every legal game can be continued infinitely, or every legal game terminates after the
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same number of moves with the same final configuration. The number of times a given
vertex is fired is the same in every legal game.

Theorem 2.2 [4] Let G be a graph with n vertices, m edges, N chips. We have

(a) if N > 2m − n, then the game is infinite.
(b) if m ≤ N ≤ 2m − n, then there exists an initial configuration guaranteeing finite

termination and also one guaranteeing infinite game.
(c) if N < m, then the game is finite.

Theorem 2.3 [4] If a chip-firing game is infinite, then every vertex is fired infinitely
often.

Furthermore, Tardos [14] proved the following theorem.

Theorem 2.4 [14] If a chip-firing game terminates, then there is a vertex which is not
fired at all.

From Theorems 2.3 and 2.4, it is easy to see that

Corollary 2.1 A chip-firing game on a simple finite connected graph is finite if and
only if there is a vertex which is not fired at all.

By Theorem 2.1, if the initial configuration of a chip-firing game is determined,
then the finiteness of the game is also determined. If a chip-firing game with initial
configurationα is finite,we say thatα is afinite configuration (or simply,α isfinite), and
infinite configuration (or infinite) otherwise. Furthermore, cα(v) denotes the number
of chips on vertex v in configuration α.

Fom now on, we assume the chip-firing games mentioned below are based on
complete graph Kn . By Theorem 2.2, we know that chip-firing games on Kn are
finite when N <

(n
2

)
, and are infinite when N > 2

(n
2

) − n. Thus, it is sufficient to
consider the finiteness of chip-firing games when

(n
2

) ≤ N ≤ 2
(n
2

) − n. Assume
that N = (n

2

)
. For the configuration α = (0, 1, 2, . . . , n − 1), we can see that there

always is a vertex having n − 1 chips after any number of firings, then the con-
figuration α = (0, 1, 2, . . . , n − 1) is infinite. Two configurations (a1, . . . , an) and
(b1, . . . , bn) of Kn are said to be equivalent , denoted by (a1, . . . , an) ∼= (b1, . . . , bn),
if {a1, . . . , an} = {b1, . . . , bn}. Clearly, the equivalent configurations have the same
finiteness. Furthermore, if a configuration α′ can reach an equivalent configuration of
(0, 1, 2, . . . , n − 1) by firing a sequence of vertices, then α′ is infinite.

Theorem 2.5 Letα = (0, 1, 2, . . . , n−1) be a configuration on Kn. If a configuration
β can reach an equivalent configuration α′ of α by firing a sequence of vertices, then
β is an equivalent configuration of α.

Proof Assume β reaches α′ along a fired sequence (β, α1, . . . , αk−1, αk, α
′). Without

loss of generality, we assume that αk reaches α′ by firing a vertex v1. Then each of
other vertices of Kn obtains a chip by firing v1. Thus cα′(vi ) > 0 for i = 2, 3, . . . , n.
Since α′ is equivalent configuration of α, we have cα′(v1) = 0 and cαk (v1) = n − 1.
Note that cαk (vi ) = cα′(vi ) − 1 for i = 2, . . . , n. Thus αk ∼= (0, 1, 2, . . . , n − 1).
Similarly, αk−1, . . . , α1, β are all equivalent configurations of α. ��
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Theorem 2.6 Given a chip-firing game on Kn with initial configuration α and N =(n
2

)
. Then α is infinite if and only if α ∼= (0, 1, 2, . . . , n − 1).

Proof The sufficiency is true clearly. We next prove the necessity.
Let α0 = (cα0(v1), . . . , cα0(vn)) = (c1, . . . , cn) be any infinite configuration on

Kn with
∑n

k=1 ck = (n
2

)
such that the vertex vi has ci chips.Without loss of generality,

we assume c1 ≤ · · · ≤ cn . Since α0 is infinite and vn possesses the largest number
of chips in α0, cn ≥ n − 1. We play the chip-firing game according to the following
rules:

(O1) We fire the vertex with the maximum number of chips in each configuration
(this is allowed because of the Abelian property of the chip-firing game).

(O2) If more than one vertex have maximum number of chips in the same configura-
tion, then we fire the one with the maximum subscript.

Claim 1 c1 = 0.

Suppose c1 > 0. Since α0 is infinite, there exists a fired sequence (α0, α1, . . . , αk,

. . .) and a fired vertex sequence (vi1 , vi2 , . . . , vik , . . .) such that vik = v1 and vi j 	= v1
for j < k. Note that the rules O1 and O2, and c1 ≤ c2 ≤ . . . ≤ cn . We have k ≥ n
and each of the vertices v2, . . . , vn has been fired at least once when v1 is fired. Now,
we consider a new game with initial configuration α′

0 obtained from α0 by remov-
ing a chip on v1. Clearly, we can fire the vertices vi1 , . . . , vik−1 along the sequence
(vi1 , vi2 , . . . , vik , . . .), and let the corresponding fired sequence is

(
α′
0, α

′
1, · · · , α′

k−1

)
.

Note that k − 1 ≥ n − 1, v1 has at least n − 1 chips in α′
k−1, and then v1 is ready.

Consequently, each vertex can be fired at least once in this new game. Thus α′
0 is

infinite by Theorem 2.4. But, the sum of chips in α′
0 is

(n
2

) − 1. So α′
0 is finite by

Theorem 2.2, a contradiction. The proof of Claim 1 is completed.
According toO1 andO2,wehavevi1 = vn . Sinceα1 is also infinite,min{cα1(vi )|i =

1, 2, . . . , n} = 0 by Claim 1. Note that in α1, each vh(1 ≤ h ≤ n − 1) gets a chip
from vn when vn is fired. Thus cα1(vn) = 0 and cα0(vn) = n − 1. Similarly, we have
vi2 = vn−1, cα2(vn−1) = 0, cα0(vn−1) = n − 2; · · · ; vin−1 = v2, cαn−1(v2) = 0,
cα0(v2) = 1. Thus α0 = (0, 1, . . . , n − 1). ��
Theorem 2.7 Let α be an initial configuration of Kn such that α ∼= β =
(cβ(v1), cβ(v2), . . . , cβ(vn)) = (c1, c2, . . . , cn) with x = c1 = c2 = · · · = ck ≤
ck+1 ≤ · · · ≤ cn. Then α is finite if N <

(n
2

) + max
{(k

2

)
,
(x+1

2

)}
.

Proof In the following discussion, we play each chip-firing game according to the
rules O1 and O2.

If 0 ≤ x ≤ k − 1, then N <
(n
2

) + (k
2

)
. Suppose β is infinite. Let β1

be a configuration obtained by firing vn, . . . , vk+1 continuously such that β1 =(
n − 1, . . . , n − 1, c′

k+1, . . . , c
′
n

)
.

As β1 is also infinite, each vertex can be fired in a chip-firing game with initial con-
figuration β1 by Theorem 2.3. Assume the fired vertex sequence of above game isA .
We consider a new configuration β ′

1 = (
n − k, n − k + 1, . . . , n − 1, c′

k+1, . . . , c
′
n

)

and play a new game with initial configuration β ′
1 along the fired vertex sequenceA .
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Clearly, each of vertices v1, . . . , vn can be fired in the new game. Thus, β ′
1 is infinite

by Theorem 2.4. But, the sum of chips is N − (k
2

)
<

(n
2

)
in β ′

1. Thus β ′
1 is finite by

Theorem 2.2, a contradiction.
If k ≤ x < n − 1, then N <

(n
2

) + (x+1
2

)
. Assume β is infinite. Now we consider a

new configurationβ ′ = (0, 1, 2, . . . , x, cx+2, . . . , cn). Let the sumof chips inβ ′ is N ′.
Then, N −N ′ = ∑x

i=0(ci+1− i) ≥ ∑x
i=0(x− i) = (x+1

2

)
. Note that N <

(n
2

)+(x+1
2

)
.

Thus, N ′ ≤ N−(x+1
2

)
<

(n
2

)+(x+1
2

)−(x+1
2

) = (n
2

)
. And soβ ′ is finite byTheorem2.2.

As β is infinite and c1 = c2 = · · · = ck ≤ · · · ≤ cx+1 ≤ · · · ≤ cn , there exists a
fired vertex sequence B = (u1, u2, . . . , un−x−1), where ui ∈ {vx+2, vx+3, . . . , vn}
for i = 1, 2, . . . , n − x − 1. Then a chip-firing game with initial configuration β ′
can reach a configuration β ′′ = (

n − x − 1, n − x, . . . , n − 1, c′
x+2, . . . , c

′
n

)
along

the fired vertex sequenceB. Clearly, vx+1, . . . , v1 can also be fired one by one in this
game. In β ′′, for any vertex u ∈ {vx+2, vx+3, . . . , vn} which has not been fired, it is
easy to see that cβ ′′(u) ≥ n − 1. By Theorem 2.4, β ′ is infinite, a contradiction.

Therefore, β and α are finite. ��

3 A Sufficient and Necessary Condition

In this section, we will give a sufficient and necessary condition for chip-firing games
on complete graphs to be finite.

Lemma 3.1 Let α be an initial configuration of Kn with N chips,
(n
2

) ≤ N ≤ 2
(n
2

)−n.
Then by firing some sequence of vertices starting at α, we can reach a configuration
β such that cβ(v) ≤ 2n − 3 for each v ∈ V (Kn).

Proof We consider a configuration α′ on Kn : For each v ∈ V (Kn), let c′
α(v) = k

if cα(v) = 2k or 2k + 1, k ∈ N. Clearly, the sum of chips in α′ is less than
(n
2

)
.

By Theorem 2.2, α′ is finite. Assume
(
v′
1, v

′
2, . . . , v

′
t

)
is a fired vertex sequence such

that the chip-firing game with initial configuration α′ terminates. Now, we play a
new chip-firing game with initial configuration α along the fired vertex sequence(
v′
1, v

′
1, v

′
2, v

′
2, . . . , v

′
t , v

′
t

)
. Let the corresponding fired sequence be (α, . . . , β). We

have that β satisfies the condition of lemma. ��
Take a configuration α = (c(v1), . . . , c(vn)) = (c1, . . . , cn) of Kn such that c1 ≥

· · · ≥ cn . If there are vk, vk+1 such that ck − ck+1 ≥ 2, we call (vk, vk+1) a faultage.
Take a chip-firing game on Kn with

(n
2

) ≤ N ≤ 2
(n
2

) − n. It can always reach a
configuration β depicted in Lemma 3.1: cβ(v) ≤ 2n−3 for each v ∈ V (Kn). Without
loss of generality, we assume that cβ(v1) ≥ cβ(v2) ≥ · · · ≥ cβ(vn) and β contains
k − 1 faultages. We now divide v1, v2, . . . , vn into k ordered parts by above k − 1
faultages. Denote the hth part by ρh . Then we have that the vertices in ρh are ordered
in decreasing number of chips. Denote the first vertex of ρh (the one with the smallest
index in ρh) by v′

h , 1 ≤ h ≤ k. Clearly, v′
h possesses the largest number of chips in ρh .

We have that there is no faultage in each part. Let cβ(v′
h) = c∗

h . Denote the number of
vertices of the hth part by sh . Now, we have:

Property 3.1 In a chip-firing game, if there exists a vertex u which can be fired at
least three times, then the game is infinite. In fact, let u ∈ ρh . Then, the first vertex
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v′
h of ρh can also be fired at least three times. Note that c∗

k ≤ c∗
h ≤ 2n − 3 + c∗

k .
Furthermore, if v′

h fires three times, it must have received at least n − c∗
k chips before

its third firing. Thus v′
k receives at least n − c∗

k chips as well, so it fires at least once.
Thus all vertices would have been fired, so by Theorem 2.4, our claim holds.

Property 3.2 Let u1, u2 be two vertices with cβ(u1) − cβ(u2) = p. It is not difficult
to see that if we have a fired sequence (β, β1, . . . , βt ) such that u1, u2 were fired the
same number of times, then cβt (u1) − cβt (u2) = p.

We call firing a part ρi if the vertices of the part ρi are fired in succession. In
the following theorem, we will complete the characterization of the finiteness of
chip-firing games on complete graphs. Combining Lemma 3.1 with the above argu-
ment, we only need to consider such chip-firing games: with initial configuration
β = (c(v1), c(v2), . . . , c(vn)),

(n
2

) ≤ N ≤ 2
(n
2

) − n, cβ(v1) ≥ · · · ≥ cβ(vn) and
β contains k − 1 faultages. For each v ∈ V (Kn), cβ(v) ≤ 2n − 3. Suppose the
number of vertices of the hth part is sh , and the first vertex of the hth part is v′

h ,
cβ(v′

h) = c∗
h, 1 ≤ h ≤ k. We have:

Theorem 3.1 Achip-firinggamewith initial configurationβ is finite if andonly if there
exists two integers i, j ∈ {1, 2, . . . , k}, j ≤ i ≤ k such that c∗

i +∑i−1
b=1 sb+

∑ j−1
c=1 sc <

n − 1, c∗
j + ∑i−1

b=1 sb + ∑ j−1
c=1 sc − n < n − 1.

Proof First, β contains k − 1 faultages, we denote the hth part by ρh, 1 ≤ h ≤ k. We
play the chip-firing game according to the rules O1 and O2.

Now, we assume that the game is finite. By Property 3.1, each of the vertices on
the game is fired at most twice. We define H1, H2 as follows: Let H1 (resp. H2) be
the set of the parts whose vertices were fired at least once (resp. twice). Assume
H1 = {ρ1, ρ2, . . . , ρi−1}, H2 = {ρ1, ρ2, . . . , ρ j−1}. Obviously, j ≤ i . As β is finite,
i − 1 < k by Theorem 2.4. Note that the game terminates, then v′

i cannot satisfy the

condition of firing and the vertices of ρ j cannot be fired twice. That is, c∗
i +∑i−1

b=1 sb+
∑ j−1

c=1 sc < n − 1 and c∗
j + ∑i−1

b=1 sb + ∑ j−1
c=1 sc − n < n − 1.

Conversely, let i, j ∈ {1, 2, . . . , k} be two minimum integers such that j ≤ i ≤
k, c∗

i + ∑i−1
b=1 sb + ∑ j−1

c=1 sc < n − 1, c∗
j + ∑i−1

b=1 sb + ∑ j−1
c=1 sc − n < n − 1.

Then we have that v′
i can not satisfy the condition of firing and v′

j cannot be fired
twice. If j = 1, the chip-firing game clearly terminates and β is finite. If not, since
c∗
i + ∑i−1

b=1 sb + ∑ j−1
c=1 sc < n − 1, we have c∗

k + ∑i−1
b=1 sb + ∑ j−1

c=1 sc < n − 1. It

follows from 0 ≤ c∗
1 − c∗

k ≤ 2n − 3 that c∗
1 + ∑i−1

b=1 sb + ∑ j−1
c=1 sc − 2n < n − 1

and then v′
1 cannot satisfy the condition of firing at this moment. Note that v′

1, v
′
i , v

′
j

cannot be fired at this moment, thus no vertex can be fired. Therefore, the chip-firing
game terminates. That is, β is finite. ��

4 Conclusions

For a chip-firing game on a graph, a natural question is to consider its finiteness. But it
is difficult to find exactly the boundary between infinite and finite games, sowe hope to

123



Chip-Firing Games on Complete Graphs 1469

make progress for some special graphs. In [10], Jeffs and Seager accurately described
infinite configurations on an n-cycle with n chips. And in this paper, we provide a
necessary and sufficient description of whether a chip-firing game is infinite on the
complete graph Kn , and find two other results: one upper bound on the total number
of chips for which the chip-firing game is finite, and another necessary and sufficient
condition for which a game with N = (n

2

)
chips is infinite. Although Jeffs’ article

and our article depend heavily on the symmetry of the cycle or complete graph, but
which are new and significative attempt in this area. In the next step, we can try to do
some work in other special graphs, such as wheel, complete bipartite graph, complete
k-partite graph, and so on. We hope to find a broader characterization of what exactly
makes a chip-firing game infinite.
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