
Bull. Malays. Math. Sci. Soc. (2015) 38:1317–1330
DOI 10.1007/s40840-014-0097-6

On Graded Second and Coprimary Modules and Graded
Secondary Representations

Seçil Çeken · Mustafa Alkan

Received: 15 February 2013 / Revised: 3 May 2013 / Published online: 17 December 2014
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2014

Abstract In this paper we introduce and study the concepts of graded second (gr-
second) and graded coprimary (gr-coprimary) modules which are different from sec-
ond and coprimary modules over arbitrary-graded rings. We list some properties
and characterizations of gr-second and gr-coprimary modules and also study graded
prime submodules of modules with gr-coprimary decompositions. We also deal with
graded secondary representations for graded injective modules over commutative-
graded rings. By using the concept of σ -suspension (σ )M of a graded module M, we
prove that a graded injective module over a commutative graded Noetherian ring has
a graded secondary representation.

Keywords Graded second module · Graded coprimary module · Graded prime
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1 Introduction

Second submodules of modules over commutative rings were introduced in [16] as the
dual notion of prime submodules. Recently this submodule class has been studied in
detail by some authors (see [2,3]). Second modules over arbitrary rings were defined
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1318 S. Çeken, M. Alkan

in [1] and used as a tool for the study of attached prime ideals over noncommutative
rings. In [6], second modules have been studied in detail in the noncommutative
setting. In [4], the authors have introduced and studied graded second modules over
commutative-graded rings. Most of their results are related to reference [16] which
have been proved for second submodules.

In [9], the authors introduced the concept of coprimary module which is a gener-
alization of second modules. They gave some characterizations and properties of this
module class and study coprimary decompositions of modules.

Secondary modules are generalizations of secondmodules over commutative rings.
In [15], secondary modules were considered over commutative-graded rings. In [15],
Sharp defined graded secondary modules and used them as a tool for the study of
asymptotic behavior of attached prime ideals.

In this paper we introduce and study graded second and graded coprimary modules
over arbitrary-graded rings. We also deal with graded secondary representations for
graded injective modules over commutative-graded rings.

First, we recall some basic properties of graded rings and modules which will be
used in the sequel. We refer to [10] and [11] for these basic properties and more infor-
mation on graded rings and modules. Throughout this paper, all rings are assumed
to have identity elements and all modules are unital right modules unless otherwise
stated. Let G be a multiplicative group and e denote the identity element of G. A
ring R is called a graded ring (or G-graded ring) if there exist additive subgroups
Rg of R indexed by the elements g ∈ G such that R = ⊕g∈G Rg and RgRh ⊆ Rgh

for all g, h ∈ G. If the inclusion is an equality, then the ring R is called strongly
graded. The elements of Rg are called homogeneous of degree g and all the homo-
geneous elements are denoted by h(R), i.e. h(R) = ∪g∈G Rg . If x ∈ R, then x can
be written uniquely as �g∈Gxg , where xg is called homogeneous component of x in
Rg . Moreover, Re is a subring of R and 1 ∈ Re. Also, if r ∈ Rg and r is a unit, then
r−1 ∈ Rg−1. AG-graded ring R = ⊕g∈G Rg is called a crossed product if Rg contains
a unit for every g ∈ G. Note that a G -crossed product R = ⊕g∈G Rg is a strongly
graded ring (see [11, 1.1.2. Remark]). For a G-graded ring R,Ugr (R) denotes the
set of units of R that are homogeneous, and Z(R) denotes the set of central elements
of R.

An ideal I of R is said to be a graded ideal if I = ⊕g∈G(I ∩ Rg). Left and right
graded ideals are defined analogously. A proper graded ideal P of a graded ring R
is said to be a graded prime ideal (or gr-prime ideal) of R if whenever A and B are
graded ideals of R such that AB ⊆ P , then either A ⊆ P or B ⊆ P . A proper graded
ideal P is a graded prime ideal of R if and only if whenever a and b are homogeneous
elements of R such that aRb ⊆ P , then either a ∈ P or b ∈ P . If 0 is a graded prime
ideal of R, then R is said to be a graded prime (or gr-prime) ring.

Let R be a G-graded ring. A right R-module M is said to be a graded R-module
(or G-graded R-module) if there exists a family of additive subgroups {Mg}g∈G of
M such that M = ⊕g∈GMg and MgRh ⊆ Mgh for all g, h ∈ G. Also if an element
of M belongs to ∪g∈GMg = h(M), then it is called homogeneous. Note that Mg is a
Re-module for every g ∈ G.

Let M = ⊕g∈GMg be a G-graded R-module and N be a submodule of M . Then
N is called a graded submodule of M if N = ⊕g∈GNg, where Ng = N ∩ Mg for all
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Coprimary Modules and Graded Secondary Representations 1319

g ∈ G. In this case, Ng is called the g-component of N . Moreover, M/N becomes a
G-graded R-module with g-component (M/N )g = (Mg + N )/N for g ∈ G.

Let N be an arbitrary submodule of a graded R-moduleM . Then by N∗ wemean the
graded submodule ofM generated by all homogeneous elements x ∈ N . It is clear that
N∗ is the largest graded submodule contained in N . Note that N∗ = ⊕g∈G(N ∩ Mg).

Let M and M ′ be graded R-modules. Then an R-module homomorphism, f :
M−→M ′ is called a graded homomorphismof degree g, if f (Mh)⊆M ′

gh for all h∈G.
Let R be a G-graded ring. One can form the category gr-R of graded right R-

modules whose objects are graded right R-modules and whose morphisms are graded
module homomorphisms of degree e. For M ∈gr-R and σ ∈ G, the σ -suspension
(σ )M of M is defined to be the graded R-module obtained from M by putting
((σ )M)τ = Mστ for all τ ∈ G.

Let R = ⊕g∈G Rg be a G-graded ring. We define graded second (or gr-second)
modules and list some properties of them. We prove that if G is an abelian group and
R is a left graded fully bounded ring such that R/P is a left gr-Goldie ring for every
gr-prime ideal P of R, then a graded right R-moduleM is a gr-second R-module if and
only if Q = annR(M) is a gr-prime ideal of R and M is a gr-divisible right (R/Q)-
module (Theorem 2.3). We study the existence of gr-second factor modules of certain
graded modules. We also prove that every non-zero gr-Artinian module contains only
a finite number of maximal gr-second submodules (Theorem 2.5). After that we define
the concept of graded coprimary (or gr-coprimary) module (which is a generalization
of gr-second module) and study gr-coprimary decompositions of graded modules. In
particularwe prove that ifM is a rightmodulewhich has a gr-coprimary decomposition
over a graded ring R such that for each homogeneous element a of R, the graded
right ideal aR is generated by a central homogeneous element, then every graded
prime submodule of M has a gr-coprimary decomposition (Theorem 3.1). We deal
with gr-secondary representations for gr-injective modules over commutative graded
rings. By using the concept of σ -suspension (σ )M of a graded module M, we prove
that a gr-injective module over a commutative gr-noetherian ring has a gr-secondary
representation (Corollary 4.1). This result is the graded version of [14, Theorem 2.3].

2 Graded Second Modules

An R-module M is called a second module provided M 
= 0 and annR (M) =
annR (M/N ) for every proper submodule N of M . By a second submodule of a mod-
ule, we mean a submodule which is also a second module. In [6], it was proved that
an R-module M is a second R-module if and only if MI = M or MI = 0 for every
ideal I of R.

Remark 2.1 [12, Lemma 1] Let M be a graded R-module and let I be a graded ideal
of R. Then MI and (0 :M I ) are graded submodules of M and annR(M) is a graded
ideal of R.

Definition 2.1 Let R be aG-graded ring. A graded R-module M is said to be a graded
second (or gr-second) R-module if M 
= 0 and annR(M) = annR(M/N ) for every
proper graded submodule N of M .

123



1320 S. Çeken, M. Alkan

Let M be a graded R-module and K be a graded submodule of M . K is said to be
a graded second submodule of M if it is a graded second module itself.

It can be easily checked that if M is a gr-second R-module, then annR(M) = P
is a gr-prime ideal of R. In this case M is called graded P-second (or gr-P-second)
module.

Proposition 2.1 Let R be a G-graded ring and M be a graded R-module. M is a
gr-second R-module if and only if M I = 0 or M I = M for every graded ideal I
of R.

Proof Use the similar arguments as in the ungraded case (see [6, Lemma 2.1]). ��
Note that a non-zero graded module M over a commutative graded ring R is gr-

second if and only if Mr = 0 or Mr = M for every r ∈ h(R).
A graded R-module M is said to be graded simple (or gr-simple) if 0 and M are its

only graded submodules. It is clear that every gr-simple R-module is gr-second.
Clearly every second gradedmodule is a gr-secondmodule. But the converse of this

statement is not true in general. If R = k[x, x−1] is the ring of Laurent polynomials,
where k is a field, then the right R-module RR is a gr-second R-module but it is not a
second R-module. (See also [4, Remark 2.1]).

Theorem 2.1 Let R be a G-graded ring and M = ⊕g∈GMg be a graded R-module.
Then we have the following.

(1) If M is a gr-second R-module, then Mg is a second Re-module for every g ∈ G
with Mg 
= 0.

(2) If R is a strongly graded ring and Mg is a second Re-module for every g ∈ G,
then M is a gr-second R-module.

(3) If R is a crossed product, Ugr (R) ⊆ Z(R) and Me is a second Re-module, then
Mg is a second Re-module for every g ∈ G.

(4) If R is a graded integral domain, M is a torsion-free graded R-module and N is
a second submodule of M such that N contains a nonzero homogeneous element,
then N∗ is a gr-second submodule of M.

Proof (1) Let J be an ideal of Re. Then I = ⊕g∈G Rg J is a graded ideal of R. Since
M is gr-second, MI = 0 or MI = M . Let g ∈ G with Mg 
= 0. If MI = 0, then
Mg J = MgRe J ⊆ Mg I = 0 and so Mg J = 0. If MI = M , then we get that
Mg J = Mg . Thus Mg is a second Re-module.

(2) Clearly M 
= 0. Let I = ⊕g∈G Ig be a graded ideal of R. Then Ie is an ideal of
Re. Since R is strongly graded, I = RIe by [10, A-I.3.8. Corollary]. It follows
that MI = MRIe = MIe = ⊕g∈G(Mg Ie). If Mg Ie = 0 for some g ∈ G,
then MI = 0 by [10, A-I.3.7. Corollary]. If Mg Ie 
= 0 for every g ∈ G, then
Mg Ie = Mg and we get that MI = M .

(3) Since R is a strongly graded ring, Me = MgRg−1 and so Mg 
= 0 for every
g ∈ G. Let I be an ideal of Re and g ∈ G. Then MeI = 0 or MeI = Me.
Since R is crossed product, Rg−1 contains a unit, say x . If MeI = 0, then Mg I =
Mgxx−1 I ⊆ Mex−1 I = MeI x−1 = 0 and so Mg I = 0. If MeI = Me, then
Mg = Mgxx−1 ⊆ Mex−1 = MeI x−1 = Mex−1 I ⊆ Mg I and so Mg = Mg I .
Thus Mg is a second Re-module.
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Coprimary Modules and Graded Secondary Representations 1321

(4) N∗ 
= 0, by the hypothesis. Let 0 
= r ∈ h(R). Since M is torsion-free, N∗r 
= 0.
Let x ∈ N∗. We can write x = xg1 + · · · + xgt with xgi ∈ N ∩ Mgi , xgi 
= 0 for
each 1 ≤ i ≤ t . Since Nr = N , we can write xgi = (nhi1 + · · · + nhiti )r with
nhi j ∈ h(M) and nhi1 + · · · + nhiti ∈ N . Then xgi = nhi j r for some 1 ≤ j ≤ ti
and nhik r = 0 for k 
= j . Since M is torsion-free, nhik = 0 for k 
= j . Thus
nhi j ∈ h(N ) and so xgi ∈ N∗r for each 1 ≤ i ≤ t . This shows that N∗r = N∗
and hence N∗ is a gr-second submodule of M . ��

Proposition 2.2 Let R be a G-graded ring, M be a graded R-module and A be a
graded ideal of R such that M A = 0. Then, M is a gr-second R-module if and only
if M is a gr-second (R/A)-module.

Proof Use the similar arguments as in the ungraded case (see [6, Corollary 2.4]). ��

Let R be a G-graded ring and M be a graded R-module. A graded submodule N
of M is said to be a graded essential (or gr-essential) submodule of M , if for every
non-zero graded submodule L of M we have L ∩ N 
= 0.

Let N be a graded submodule of a graded module M . Then N is gr-essential in M
if and only if N is essential in M by [11, 2.3.5 Proposition].

A graded prime ring R is said to be left graded bounded if each gr-essential left
ideal contains a non-zero graded ideal. A graded ring R is said to be left graded fully
bounded if the ring R/P is left graded bounded for every graded prime ideal P of R.
Right graded bounded and right graded fully bounded rings are defined analogously.

A left graded fully bounded ring need not be left fully bounded. For example,
consider R = �[x, ϕ] where ϕ is an automorphism of the skewfield �, x is a variable
and multiplication is given by xa = ϕ(a)x . R is a left graded fully bounded ring
because every graded left ideal of R is two-sided. But R is not left fully bounded if ϕ

is not an inner automorphism of �. (See [10, page 241]).
A graded ring R having finite Goldie dimension in the category of graded left

R-modules and satisfying the ascending chain condition on graded left annihilators
is called a left graded Goldie (or left gr-Goldie) ring. Right graded Goldie rings are
defined analogously.

A left gr-Golide ring is not necessarily a left Goldie ring. Let k be a field and R
be the polynomial ring k[x, y] subject to the relation xy = yx = 0. Put Rn = kxn

if n ≥ 0 and Rm = kym if m < 0. As a consequence of [10, C-I.1.1 Example],
R = ⊕n∈ZRn is a left gr-Goldie ring but not a left Goldie ring.

Let R be a ring. An element c of R is called right regular provided cr 
= 0 for every
non-zero element r in R. There is an analogous definition of left regular elements. An
element c of R is called regular provided it is right and left regular.

Let R be a prime, right Goldie ring. Then every essential right ideal of R contains
a regular element of R by a theorem of Goldie. In [7], Goodearl and Stafford proved
the graded version this theorem.

Theorem 2.2 [7, Theorem 4] Let G be an abelian group and R be a G-graded, gr-
prime, right gr-Goldie ring. Then, any essential, graded right ideal I of R contains a
homogeneous regular element.
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1322 S. Çeken, M. Alkan

Let R be aG-graded ring and M be a graded R-module. Following [10], we say that
M is a graded divisible (or gr-divisible) R-module ifM = Mc for every homogeneous
regular element c in R. (See also [10, Page 179]).

Clearly every divisible graded module is gr-divisible. But a gr-divisible module is
not necessarily divisible as the following example shows.

Example 2.1 If R = k[x, x−1] is the ring of Laurent polynomials, where k is a field,
then the right R-module RR is a gr-divisible R-module but not a divisible R-module.

Theorem 2.3 Let G be an abelian group and R be a G-graded ring.

(1) If R is a gr-prime, right or left gr-Goldie ring, then every non-zero gr-divisible
right R-module is 0-gr-second.

(2) Let R be a left graded fully bounded ring such that R/P is a left gr-Goldie ring
for every gr-prime ideal P of R. Then a graded right R-module M is a gr-second
R-module if and only if Q = annR(M) is a gr-prime ideal of R and M is a
gr-divisible right (R/Q)-module.

Proof (1) Let X be a non-zero gr-divisible R-module and A = annR(X). Suppose
that A 
= 0. Then A is a gr-essential right (and left) ideal of R. A is an essential
right (and left) ideal of R by [11, Proposition 2.3.5]. A contains a homogeneous
regular element c, by Theorem 2.2. But this implies that X = Xc ⊆ X A = 0, a
contradiction. Therefore A = 0. Let B be a non-zero graded ideal of R. Since R is
a gr-prime ring, B is an essential graded ideal of R. So B contains a homogeneous
regular element d by Theorem 2.2. It follows that X = Xb ⊆ XB and hence
X = XB. Thus X is a 0 -gr-second R-module.

(2) Suppose that M is a gr-second R-module and Q = annR(M). Then Q is a gr-
prime ideal of R. Let R denote the left gr-bounded left gr-Goldie ring R/Q, and
c be a homogeneous regular element of R. Then the graded essential left ideal Rc
contains non-zero two-sided graded ideal A of R. There exists a graded ideal A
of R such that A = A/Q. M = MA ⊆ M(Rc + Q) = Mc and hence M = Mc.
It follows that Mc = M for the R-module M . Thus M is a gr-divisible right
R-module. The converse follows from Proposition 2.2 and (1). ��

Lemma 2.1 Let R be a G-graded ring such that R satisfies ascending chain condition
on gr-prime ideals and for every proper graded ideal I of R there exists a finite
collection of gr-prime ideals Qi (1 ≤ i ≤ n) such that Q1...Qn ⊆ I ⊆ Q1 ∩ ... ∩ Qn.
Let M be a non-zero graded R-module.

(1) M is a gr-second R-module if and only if, for each gr-prime ideal P of R, either
MP = 0 or M = MP.

(2) There exists a gr-second factor module of M.

Proof (1) The necessity is clear. Conversely, suppose that M = MP or MP = 0
for every gr-prime ideal P of R. Let I be any proper graded ideal of R. By the
hypothesis, there exists a finite family of gr-prime ideals Qi (1 ≤ i ≤ n) such that
Q1 . . . Qn ⊆ I ⊆ Q1 ∩ · · · ∩ Qn . If MQi = 0 for some 1 ≤ i ≤ n then MI = 0.
Otherwise M = MQi (1 ≤ i ≤ n) and hence

M = MQn = MQn−1Qn = · · · = MQ1 . . . Qn ⊆ MI ⊆ M.
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Coprimary Modules and Graded Secondary Representations 1323

Thus M = MI . It follows that MI = 0 or M = MI for every graded ideal I of
R and so M is a gr-second R-module.

(2) By hypothesis there exists a finite family of gr-prime ideals Pi (1 ≤ i ≤ t)
such that P1...Pn ⊆ annR(M) ⊆ ∩n

i=1Pi . This implies that MP1...Pn = 0. If
MPi = M for every 1 ≤ i ≤ n, then 0 = MP1...Pn = ... = MPn = M , a
contradiction. Thus M 
= MPi for some 1 ≤ i ≤ t . Let P be a gr-prime ideal
of R maximal in the collection of gr-prime ideals Q of R such that M 
= MQ.
Note that M 
= MP . Let T be any gr-prime ideal of R properly containing P .
By the choice of P , we have M = MT . Thus M/MP = (M/MP)(T/P). By
(1), M/MP is a gr-second (R/P)-module. Then Proposition 2.2 gives that the
R-module M/MP is a gr-second R-module. ��

By [8, Proposition 1.1], the conditions on the graded ring R in Lemma 2.1 are
satisfied when R is a graded ring which satisfies ascending chain condition on graded
ideals.

Let R be a G-graded ring, M be a graded R-module and K be a graded submodule
of M . K is called graded small (or gr-small) submodule of M if whenever L is a
graded submodule of M such that K + L = M we must have L = M .

Clearly every small graded submodule of a graded module is gr-small. But a gr-
small submodule need not be a small submodule. For example, if k is a field and
R = k[x] is the polynomial ring, then (x) is a gr-small submodule of RR but not a
small submodule of RR .

We say that M is a graded hollow (or gr-hollow) module if M 
= 0 and every proper
graded submodule of M is gr-small.

Clearly every hollow graded module is gr-hollow. The following example shows
that the converse of this statement is not true in general.

Example 2.2 Let k be a field and R = k[x] be the polynomial ring. Consider the right
R-module RR . Every proper graded ideal of R is of the form (xn) for some n ∈ Z

+.
So RR is a gr-hollow module but it is not a hollow module.

Theorem 2.4 Let R be a G-graded ring and M be a gr-hollow module.

(1) There exists at most one gr-prime ideal P of R such that M/N is a gr-P-second
R-module for some graded submodule N of M.

(2) If R satisfies ascending chain condition on gr-prime ideals and for every proper
graded ideal I of R there exists a finite collection of gr-prime ideals Qi (1 ≤ i ≤ n)

such that Q1...Qn ⊆ I ⊆ Q1 ∩ ...∩ Qn, then there exists only one gr-prime ideal
P of R such that M/N is a gr-P-second R-module for some graded submodule
N of M, where P = {�g∈Grg ∈ R : MrgR 
= M for every g ∈ G}.

Proof (1) Let P1 and P2 be gr-prime ideals of R such that M/N1 is a gr-P1-second
R-module and M/N2 is a gr-P2-second R-module for some graded submodules
N1, N2 of M . As M is gr-hollow, N1 + N2 is a proper graded submodule of M .
M/ (N1 + N2) � (M/Ni )/(N1 + N2/Ni ) is a non-zero graded factor module
of the gr-second module M/Ni for each i = 1, 2. So M/(N1 + N2) must be a
gr-seond R-module and P1 = P2.
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(2) We know that there exists only one gr-prime ideal Q of R such that M/N is a
gr-Q-second module for some graded submodule N of M , by Lemma 2.1 and (1).
We must show that Q = P . If x = �g∈Gxg ∈ Q, then xg ∈ Q for every g ∈ G
as Q is a graded ideal. So MxgR ⊆ N 
= M for every g ∈ G and this shows that
x ∈ P . Conversely, if x = �g∈Gxg ∈ P , then MxgR 
= M for every g ∈ G.
Since M is gr-hollow, we have MxgR+N 
= M for every g ∈ G, and since M/N
is graded Q-second, we have that M/(MxgR+ N ) is a graded Q-second module
for every g ∈ G. Thus xg ∈ annR(M/MxgR + N ) = Q for every g ∈ G. This
implies that x ∈ Q. ��

Let R be a graded ring and M be a non-zero graded R-module. By a maximal
gr-second submodule of M we mean a gr-second submodule L of M such that L is
not properly contained in another gr-second submodule of M . Let (Ni )i∈I be a chain
of gr-second submodules of M . We can prove that ∪i∈I Ni is a gr-second submodule
of M by using similar arguments as in the ungraded case. (See [6, Proposition 4.2] ).
By using this result and Zorn’s Lemma, we can prove that every gr-second submodule
of M is contained in a maximal gr-second submodule of M .

Theorem 2.5 Let R be a G-graded ring and M be a non-zero graded Artinian R-
module. Then M contains only a finite number of maximal gr-second submodules.

Proof Use the similar arguments as in the ungraded case (see [6, Theorem 4.4]). ��

3 Graded Coprimary Modules

In [9], the authors defined a coprimary module as follows: Let R be a ring. Given a
prime ideal P of R, a non-zero R-module M is called P-coprimary if

(i) (N : M) ⊆ P for every proper submodule N of M , and
(ii) Ph ⊆ annR(M) for some positive integer h.

M is called coprimary if it is P-coprimary for some prime ideal P of R.
In this sectionwe introduce and study the notion of graded coprimarymodulewhich

is a generalization of the notion of gr-second module.

Definition 3.1 Let R be a graded ring and P be a gr-prime ideal R. A non-zero graded
R-module M is called graded P-coprimary (or gr-P-coprimary) provided there exists
a positive integer n such that

Pn ⊆ (0 :R M) ⊆ (N :R M) ⊆ P,

for every proper graded submodule N of M . The graded module M is called graded
coprimary (or gr-coprimary) if it is graded P-coprimary for some gr-prime ideal P .

A non-zero graded R-module M has a gr-coprimary decomposition if there exist
a positive integer n and graded submodules Mi (1 ≤ i ≤ n) of M such that M =
M1 + · · · + Mn , and Mi is gr-coprimary for each 1 ≤ i ≤ n. If M has a gr-coprimary
decomposition, then we say that M has a normal gr-coprimary decomposition if there
exist a positive integer n, distinct gr-prime ideals Pi (1 ≤ i ≤ n) of R, and gr-Pi
-coprimary submodules Mi (1 ≤ i ≤ n) of M such that
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Coprimary Modules and Graded Secondary Representations 1325

(i) M = M1 + · · · + Mn , and
(ii) M 
= M1 + · · · + Mi−1 + Mi+1 + · · · + Mn for all 1 ≤ i ≤ n.

In this case the set {P1, . . . , Pn} is called graded attached primes of M and denoted
by Att∗(M).

It is clear that every gr-second module is gr-coprimary. Also it is easy to see that
every graded factor module of a gr-coprimary module is gr-coprimary.

Lemma 3.1 Let R be a graded ring and P be a gr-prime ideal of R. Then a non-zero
graded R-module M is gr-P-coprimary if and only if, for every graded ideal A of
R, M = MA if A � P and there exists a positive integer h such that M Ah = 0 if
A ⊆ P.

Proof This is straightforward. ��
Definition 3.2 Let R be a graded ring, M be a graded R-module and N be a graded
submodule of M . N is called a graded pure submodule of M if N I = MI ∩ N for
every graded ideal I of R.

Proposition 3.1 Let R be a graded ring, P be a gr-prime ideal of R, M be a graded
R-module and N be a non-zero proper graded pure submodule of M. M is a gr-P-
coprimary module if and only if N and M/N are gr-P-coprimary modules.

Proof Suppose that M is gr-P-coprimary. Then Ph ⊆ annR(M) for some h ∈ Z
+.

Let A be graded ideal of R. If A ⊆ P , then N Ah = 0. If A � P , then N A =
MA ∩ N = M ∩ N = N . Thus N is gr-P-coprimary. It is clear that M/N is gr-
P-coprimary. Conversely suppose that N and M/N are gr-P-coprimary modules.
Then Ph1 ⊆ annR(N ) and Ph2 ⊆ annR(M/N ) for some h1, h2 ∈ Z

+. Let h =
max(h1, h2). Then we have MPh ⊆ N and 0 = N Ph = MPh ∩ N = MPh . Let
A be a graded ideal of R. If A ⊆ P , then MAh = 0. If A � P , then N A = N and
MA + N = M . It follows that MA + N A = MA + (MA ∩ N ) = MA = M . Thus
M is gr-P-coprimary. ��

In [8], the authors defined a graded prime module as follows. A graded R-module
M is called a graded prime module provided that annR(N ) = annR(M) for all non-
zero graded R-submodules N of M . A graded submodule K of M is called a graded
prime (or gr-prime) submodule of M , if M/K is a graded prime module. In this case
P = (K : M) is a gr-prime ideal of R and K is called graded P-prime submodule of
M . (See [5,8,12] for more details about graded prime submodules).

Theorem 3.1 Let R be a G-graded ring such that for each a ∈ h(R) the graded
right ideal aR is generated by a central homogeneous element and let M be a graded
R-module.

(1) If M is gr-coprimary and N is a nonzero graded P-prime submodule of M, then
N is gr-P-coprimary.

(2) If N is a gr-P-coprimary submodule of M and K is a graded prime sumodule of
M, then N ∩ K is gr-P-coprimary.
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(3) If M has a gr-coprimary decomposition and N is a graded prime submodule of
M, then N has a gr-coprimary decomposition.

Proof (1) Let M be gr-Q-coprimary module. Then (N : M) = P ⊆ Q and Qh ⊆
annR(M) ⊆ P for some h ∈ Z

+. So we get that Q = P .
There exists a positive integer h such that Ph ⊆ annR(M) ⊆ annR(N ). Let A
be a graded ideal of R. If A ⊆ P , then N Ah = 0. Assume that A � P . Let
a ∈ A\P be a homogeneous element. By hypothesis, aR = bR = Rb for some
b ∈ h(R) ∩ Z(R) and hence M = M(RaR) = M(Rb) = Mb. Let n ∈ N . Then
n = mb for somem = �t

i=1mgi ∈ M, (mgi 
= 0). Since N is gradedmgi b ∈ N for
every 1 ≤ i ≤ t . Let i ∈ {1, . . . , t}. Since b ∈ Z(R),mgi bR = mgi Rb ⊆ N and
so b ∈ annR(N +mgi R/N ). If N +mgi R 
= N , then annR(N +mgi R/N ) = P
and so b ∈ P . But this implies that a ∈ P , a contradiction. Thus N + mgi R = N
and we have thatmgi ∈ N . This shows that n ∈ Nb ⊆ N (RaR) ⊆ N A. Therefore
we get that N = N A.

(2) It can be easily shown that N ∩K is a graded prime submodule of N . So the result
follows from (1).

(3) Let M = �k
i=1Si be a normal gr-coprimary decomposition of M and Att∗(M) =

{P1, . . . , Pk}. Let N be a graded P-prime submodule of M . Then Si � N for
some Si , say S1. We show that P = P1. There exists a homogeneous element
yh ∈ S1\N . Also there exists a positive integer n1 such that Pn1

1 ⊆ annR(S1).
Since yh P

n1
1 = 0 ⊆ N and N is graded P-prime, we get that P1 ⊆ P . For the

other containment, suppose that there exists a homogeneous element c ∈ P\P1.
Since RcR � P1 and S1 is gr-P1-coprimary, we get that S1 = S1(RcR) ⊆
M(RcR) = M(cR) ⊆ N which is a contradiction. Therefore P1 = P . Similarly,
if S j � N for j 
= 1, then P = P1 = Pj , a contradiction. Thus S j ⊆ N for every
2 ≤ j ≤ n. It follows that N = N ∩ (S1 +�n

j=2S j ) = �n
j=2S j + (N ∩ S1). Now

the result follows from (2). ��

A G-graded ring R is said to be gr-regular if for every homogeneous element
x ∈ h(R) there exists y ∈ R such that x = xyx . By [10, C-I.5.1. Proposition], a
G-graded ring R is gr-regular if and only if every principal left (right) graded ideal
is generated by a homogeneous idempotent element. A gr-regular ring R is said to be
gr-abelian regular if all homogeneous idempotent elements of R are central.

Clearly every regular (resp. abelian regular) graded ring is gr-regular (resp. gr-
abelian regular). But the converse of this statement is not true in general. Let k be a
field and consider the first Weyl algebra A1(k) that is the algebra generated by the
elements of k together with x and y, which commute with the elements of k and satisfy
the equation xy − yx = 1. Put S = A1(k), deg(x) = 1 and deg(y) = −1. Then S is a
graded ring such that S0 = k[xy]. By [10, C-I.5.24. Example] , the total graded ring
of fractions of S, Qg(S) is a gr-abelian regular ring but not a regular ring and hence
not an abelian regular ring.

Corollary 3.1 Let R be a gr-abelian regular ring and M be a graded R-module
which has a gr-coprimary decomposition. Then every gr-prime submodule of M has
a gr-coprimary decomposition.
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Proof By [10, C-I.5.1 Proposition], the conditions on the graded ring R in Theorem
3.1 are satisfied when R is a gr-Abelian regular ring. Thus the result follows. ��

4 Graded Secondary Representations For Graded Injective Modules

In this section we deal with graded secondary representations for graded injective
modules over commutative graded rings.

Let R be a commutative G-graded ring and I be a graded ideal of R. The graded
radical of I (in abbreviation “Gr(I )”) is the set of all x = �g∈Gxg ∈ R such that
for each g ∈ G there exists ng > 0 with x

ng
g ∈ I . Note that, if r is a homogeneous

element of R, then r ∈ Gr(I ) if and only if rn ∈ I for some n ∈ N.
Let R be a commutative G-graded ring. In [15], Sharp defined graded secondary

modules as follows: A graded R-module M is said to be graded secondary (or gr-
secondary) if M 
= 0 and, for each homogeneous element r of R, the endomor-
phism of M given by multiplication by r is either surjective or nilpotent. In this
case Gr(annR(M)) = P is a gr-prime ideal of R, and M is said to be graded P-
secondary. M is said to have a gr-secondary representation if it can be written as a
sum M = M1 + · · · + Mk with each Mi gr-secondary.

Clearly every gr-second module over a commutative graded ring is gr-secondary.
Also note that, when R is a commutative graded Noetherian ring, M is gr-coprimary
if and only if M is gr-secondary.

Proposition 4.1 Let R be a graded integral domain and M be a torsionfree graded
R-module which has a secondary representation. Then M has a gr-secondary repre-
sentation.

Proof First, we show that if N1 and N2 are submodules of M , then (N1 + N2)
∗ =

N∗
1 + N∗

2 . Clearly N∗
1 + N∗

2 ⊆ (N1 + N2)
∗. Let x ∈ h((N1 + N2)

∗). x = n1 + n2 for
some n1 ∈ N1, n2 ∈ N2. Since x is homogeneous, n1 and n2 must be homogeneous
of the same degree with x . Hence n1 ∈ N∗

1 , n2 ∈ N∗
2 and so x ∈ N∗

1 + N∗
2 .

Let M = N1 + · · · + Nk be a secondary representation of M with Ni a secondary
submodule of M for 1 ≤ i ≤ k. Then we have M = N∗

1 + · · · + N∗
k . It can be proved

that N∗
i = 0 or N∗

i is a gr-secondary submodule of M for i = 1, . . . , k, as in the proof
of Theorem 2.1–4.1. This shows that M has a gr-secondary representation. ��

Le R be a commutative graded ring. Following [13], we say that I is a graded
primary ideal of R (in abbreviation, “G-primary ideal”) if I 
= R and whenever
a, b ∈ h(R) with ab ∈ I then a ∈ I or b ∈ Gr(I ). In this case Gr(I ) = P is a
gr-prime ideal of R and I is called G-P-primary. Let I be a proper graded ideal of
R. In [13], a graded primary G-decomposition of I is defined as an intersection of
finitely many graded primary ideals of R. Such a graded primary G-decomposition
I = Q1 ∩ ... ∩ Qn with Gr(Qi ) = Pi for i = 1, . . . , n of I is said to be a minimal
graded primary G-decomposition of I precisely when

(i) P1, . . . , Pn are different gr-prime ideals of R, and
(ii) Q j � ∩n

i=1
i 
= j

Qi for all j = 1, . . . , n.
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I is said to be a G-decomposable graded ideal of R precisely when it has a graded
primary G-decomposition. Note that every G-decomposable graded ideal of R has a
minimal graded primary G-decomposition.

Let R be aG-graded ring and E be a graded R-module. Following [10], we say that
E is a gr-injective R-module if E is an injective object in gr-R. In [10] it was shown
that every injective graded module is gr-injective but a gr-injective module need not
be injective. (See [10, A-I.2.5. Corollary and A-I.2.6. Remark]).

By using the notion of σ -suspension (σ )M of a graded module M , we obtain the
following two lemmas which are the graded versions of [14, Lemma 2.1 and 2.2].

Lemma 4.1 Let R be a commutative G-graded ring, Q be a graded P-primary ideal
of R and E be a gr-injective R-module. Then (0 :E Q) is zero or graded P-secondary
submodule of E.

Proof Suppose that (0 :E Q) 
= 0. Let a ∈ R be a homogeneous element of degree
σ .

If a ∈ P , then an ∈ Q for some positive integer n, so that (0 :E Q)an = 0.
If a /∈ P , then we see that (0 :E Q) = (0 :E Q)a as follows. Let x ∈ (0 :E Q)

be a homogeneous element of degree δ. Define the map φ : (δ−1) (R/Q) −→ E
for which φ(b + Q) = xb for all b + Q ∈ (δ−1) (R/Q). Clearly φ is an R-module
homomorphism. Let b+ Q ∈ (δ−1) (R/Q)τ for τ ∈ G. Then b = bδ−1τ +q for some
bδ−1τ ∈ R

δ−1τ
and q ∈ Q. We have xb = x(bδ−1τ + q) = xbδ−1τ ∈ Eτ . So φ is a

graded R-module homomorphism.
Let ga : (δ−1) (R/Q) −→ (σδ−1) (R/Q) be the map defined by ga(y + Q) =

ya+ Q for all y+ Q ∈ R/Q. Clearly ga is an R-module homomorphism. If y+ Q ∈
(δ−1) (R/Q)τ for τ ∈ G, then y = yδ−1τ + q ′ for some yδ−1τ ∈ Rδ−1τ and q ′ ∈ Q.
We have ya + Q = (yδ−1τ + q ′)a + Q = ayδ−1τ + Q ∈ (σδ−1) (R/Q)τ . Thus ga is
a graded R-module homomorphism.

If y+Q ∈ ker(ga), where y = �m
i=1ygi , ygi 
= 0, then ya = �m

i=1ygi a ∈ Q. Since
Q is a graded ideal, ygi a ∈ Q for all 1 ≤ i ≤ m.We get that ygi ∈ Q for all 1 ≤ i ≤ m,
as Q is graded P-primary. Therefore y ∈ Q, so that ga is a monomorphism in gr-R.
The diagram

E
φ ↑

0 −→ (δ−1) (R/Q)
ga−→ (σδ−1) (R/Q)

has exact row in gr-R. Since E is a gr-injective module, this diagram can be completed
with a graded R-module homomorphism ψ : (σδ−1) (R/Q) −→ E such that ψga =
φ. Thus x = φ(1) = ψga(1) = ψ(1a) = ψ(1)a. Since ψ(1) ∈ (0 :E Q), we have
x ∈ (0 :E Q)a. As (0 :E Q) is generated by homogeneous elements, we get that
(0 :E Q) = (0 :E Q)a, and the result follows. ��
Lemma 4.2 Let R be a commutative graded ring, I1, . . . , In be graded ideals of R
and E be a gr-injective R-module. Then

n∑

i=1

(0 :E Ii ) =
(
0 :E

n⋂

i=1

Ii

)
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Proof Let x ∈ (0 :E ∩n
i=1 Ii ) be a homogeneous element of degree σ . Let π :

(σ−1)R −→ (σ−1)
(
R/ ∩n

i=1 Ii
)
and, for each i = 1, . . . , n, πi : (σ−1)R −→

(σ−1) (R/Ii ), be the natural graded homomorphisms. There is an R-monomorphism
f : (σ−1)

(
R/ ∩n

i=1 Ii
) −→ ⊕n

i=1(σ
−1) (R/Ii ) for which f (π(a)) = (π1(a), . . . ,

πn(a)) for all a ∈ R. If π(a) = a + ∩n
i=1 Ii ∈ (σ−1)

(
R/ ∩n

i=1 Ii
)
τ
for τ ∈

G, then a = rσ−1τ + y for some rσ−1τ ∈ Rσ−1τ and y ∈ ∩n
i=1 Ii . We have

(π1(a), . . . , πn(a)) = (rσ−1τ +y+ I1, . . . , rσ−1τ +y+ In) = (rσ−1τ + I1, . . . , rσ−1τ +
In) ∈ ⊕n

i=1(σ
−1) (R/Ii )τ = (⊕n

i=1(σ
−1) (R/Ii ))τ . Thus f is a graded R-module

homomorphism.
Also, there is an R-module homomorphism g : (σ−1)

(
R/ ∩n

i=1 Ii
) −→ E for

which g(π(a)) = xa for all a ∈ R. If a + ∩n
i=1 Ii ∈ (σ−1)

(
R/ ∩n

i=1 Ii
)
τ
for τ ∈ G,

then a = sσ−1τ + z for some sσ−1τ ∈ Rσ−1τ and z ∈ ∩n
i=1 Ii . We have xa = x(sσ−1τ +

z) = xsσ−1τ ∈ Eτ . Thus g is a graded R-module homomorphism.
As E is gr-injective, the diagram

E
g ↑

0 −→ (σ−1)
(
R/ ∩n

i=1 Ii
) f−→ ⊕n

i=1(σ
−1) (R/Ii )

can be completed with a graded homomorphism h : ⊕n
i=1(σ

−1) (R/Ii ) −→ E such
that h f = g. Now x = g(π(1)) = h f (π(1)) ∈ Im(h), and it is clear that Im(h) ⊆
�n
i=1(0 :E Ii ). It follows that (0 :E ∩n

i=1 Ii ) ⊆ �n
i=1(0 :E Ii ). Since the reverse

inclusion is clear the result follows. ��
Theorem 4.1 Let R be a commutative graded ring and the zero ideal of R have
a graded primary G-decomposition. If E is a gr-injective R-module, then E has a
gr-secondary representation.

More precisely, let 0 = Q1∩...∩Qn be aminimal graded primaryG-decomposition
of the zero ideal of R, with Qi a graded G-Pi -primary ideal for i = 1, . . . , n. Then

E = (0 :E Q1) + · · · + (0 :E Qn), and (0 :E Qi ) is either zero or graded
Pi -secondary for i = 1, . . . , n.

Proof (0 :E Qi ) is either zero or gr-secondary for each 1 ≤ i ≤ n, by Lemma
4.1. Lemma 4.2 shows that E = (0 :E 0) = (0 :E ∩n

i=1Qi ) = �n
i=1(0 :E Qi ),

where (0 :E Qi ) is either zero or graded Pi -secondary. Thus E has a gr-secondary
representation. ��

In [14, Theorem 2.3], it was proved that every injective module over a commutative
Noetherian ring has a secondary representation. In the following corollary we get the
graded version of this result by using the concept of σ -suspension (σ )M of a graded
module M .

Corollary 4.1 Let R be a commutative gradedNoetherian ring and E be a gr-injective
R-module. Then E has a gr-secondary representation.

Proof Since R is commutative graded Noetherian, every proper graded ideal of R has
a graded primary G-decomposition by [13, Corollary 2.16]. So E has a gr-secondary
representation by Theorem 4.1. ��
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