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Abstract In this paper, we present some results on the existence of random coinci-
dence points of expansive type completely random operators. Some applications to
random fixed point theorems and random equations are given.
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1 Introduction

Let (�,F , P) be a probability space, X, Y be separable metric spaces and f : � ×
X → Y be a random operator in the sense that for each fixed x in X , the mapping
f (., x) : ω �→ f (ω, x) is measurable. The random operator f is said to be continuous
if for each ω in �, the mapping f (ω, .) : x �→ f (ω, x) is continuous. An X -valued
random variable ξ is said to be a random fixed point of the random operator f :
� × X → X if f (ω, ξ(ω)) = ξ(ω) a.s. and an X -valued random variable ξ is said
to be a random coincidence point of the random operators f, g : � × X → X if
f (ω, ξ(ω)) = g(ω, ξ(ω)) a.s.
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1610 P. T. Anh

The theory of random fixed points and random coincidence points is an important
topic of the stochastic analysis and has been investigated by various authors (see, e.g.
[2–5,14–18]).

In this paper, we are concerned with mapping � : LX
0 (�) → LY

0 (�). Since a
random operator f can be viewed as an action which transforms each deterministic
input x in X into a random output f (x) in LY

0 (ω) while � : LX
0 (�) → LY

0 (�)

can be viewed as an action which transforms each random input u in LX
0 (�) into a

random output�u, we call� a completely random operator. In the Sect. 2, we present
some properties of completely random operators. Section 3 deals with the notion of
random coincidence points of completely random operators and gives some conditions
ensuring the existence of a random coincidence point of expansive type completely
random operators. It should be noted that the existence of a random coincidence point
of completely random operators does not follow from the existence of corresponding
deterministic coincidence point theorem as in the case of the random operator. In the
Sect. 4, some applications to random fixed point theorems and random equations are
presented.

2 Some Properties of Completely Random Operators

Let (�,F , P) be a complete probability space and X be a separable Banach space.
A mapping ξ : � → X is called an X -valued random variable if ξ is (F ,B(X))-
measurable, where B(X) denotes the Borel σ -algebra of X . The set of all (equivalent
classes) X -valued random variables is denoted by LX

0 (�) and it is equipped with the
topology of convergence in probability. For each p > 0, the set of X -valued random
variables ξ such that E‖ξ‖p < ∞ is denoted by LX

p (�).
At first, recall that (see, e.g. [22])

Definition 2.1 Let X,Y be two separable Banach spaces.

(1) A mapping f : � × X → Y is said to be a random operator if for each fixed x
in X , the mapping ω �→ f (ω, x) is measurable.

(2) The random operator f : � × X → Y is said to be continuous if for each ω in �

the mapping x �→ f (ω, x) is continuous.
(3) Let f, g : � × X → Y be two random operators. The random operator g is said

to be a modification of f if for each x in X , we have f (ω, x) = g(ω, x) a.s.
Noting that the exceptional set can depend on x .

The following is the notion of the completely random operator.

Definition 2.2 Let X,Y be two separable Banach spaces.

(1) A mapping � : LX
0 (�) → LY

0 (�) is called a completely random operator.
(2) The completely random operator � is said to be continuous if for each sequence

(un) in LX
0 (�) such that lim un = u a.s., we have lim�un = �u a.s.

(3) The completely random operator � is said to be continuous in probability if
for each sequence (un) in LX

0 (�) such that lim un = u in probability, we have
lim�un = �u in probability.
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Points of Expansive Type Completely Random Operators 1611

(4) The completely randomoperator� is said to be an extension of a randomoperator
f : � × X → Y if for each x in X

�x(ω) = f (ω, x) a.s.

where for each x in X , x denotes the random variable u in LX
0 (�) given by

u(ω) = x a.s.

For later using, we list some following results.

Theorem 2.3 [24, Theorem 2.3] Let f : �×X → Y be a random operator admitting
a continuousmodification. Then, there exists a continuous completely randomoperator
� : LX

0 (�) → LY
0 (�) such that � is an extension of f .

Proposition 2.4 [24, Proposition 2.4] Let � : LX
0 (�) → LY

0 (�) be a completely
random operator. Then, the continuity of � implies the continuity in probability of �.

3 Random Coincidence Points of Completely Random Operators

Let f, g : � × X → X be random operators. Recall that (see, e.g. [1,3,18]), an
X -valued random variable ξ is said to be a random fixed point of the random operator
f if

f (ω, ξ(ω)) = ξ(ω) a.s.

An X -valued random variable u∗ is said to be a random coincidence point of two
random operators f, g if

f (ω, u∗(ω)) = g(ω, u∗(ω)) a.s.

Assume that f, g are continuous. Then, by Theorem 2.3 the mappings �,� :
LX
0 (�) → LX

0 (�) defined respectively by

�u(ω) = f (ω, u(ω))

�u(ω) = g(ω, u(ω))

are completely random operators extending f and g, respectively. For each random
fixed point ξ of f , we get

�ξ(ω) = ξ(ω) a.s.

and for each random coincidence point u∗ of two random operators f, g, we have

�u∗(ω) = �u∗(ω) a.s.

This leads us to the following definition.
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1612 P. T. Anh

Definition 3.1 (1) Let � : LX
0 (�) → LX

0 (�) be a completely random operator. An
X -valued random variable ξ in LX

0 (�) is called a random fixed point of � if

�ξ = ξ.

(2) Let �1,�2, ..., �n : LX
0 (�) → LX

0 (�) be completely random operators. An
X -valued random variable u∗ in LX

0 (�) is called a random coincidence point of
�1,�2, ..., �n if

�1u
∗ = �2u

∗ = ... = �nu
∗. (3.1)

In this section, we present some conditions ensuring the existence of a random
coincidence point of completely random operators.

Theorem 3.2 Let �,�,� : LX
0 (�) → LX

0 (�) be continuous in probability com-
pletely random operators,�,� be surjective and f : [0,∞) → [0,∞) be a mapping
such that for each t > 0,

h(t) = inf
s≥t

f (s)

s
> 0. (3.2)

Assume that for any random variables u, v in LX
0 (�) and t > 0, we have

P (‖�u − �v‖ > t) ≥ P (‖�u − �v‖ + f (‖�u − �v‖) > t) . (3.3)

Then, �,� have a random coincidence point and �,� have a random coincidence
point if there exist random variables u0, v0 in LX

0 (�) and p > 0 such that�v0 = �u0
and

M = E‖�v0 − �u0‖p < ∞. (3.4)

Proof Suppose that E‖�v0 − �u0‖p < ∞ for random variables u0, v0 in LX
0 (�)

such that �v0 = �u0 and p > 0. Because �,� are surjective, there exists a random
variable u1 in LX

0 (�) such that �u1 = �u0, u1 = v0. Again, there exists a random
variable u2 in LX

0 (�) such that �u2 = �u1. By induction, there exists a sequence
(un) in LX

0 (�) such that

�u1 = �u0, �u2 = �u1, ..., �u2n+1 = �u2n, �u2n+2 = �u2n+1 n = 1, 2, ...
(3.5)

We will show that (ξn) given by ξn = �un−1 (n = 1, 2, ...) in (3.5) is a Cauchy
sequence in LX

0 (�). Define the function g(t), t > 0 by

g(t) = 1 + f (t)

t
.

So, we have

f (t) = (g(t) − 1) t.

123



Points of Expansive Type Completely Random Operators 1613

Since f (t) > 0 ∀t > 0, we get g(t) > 1 ∀t > 0. For any random variables u, v in
LX
0 (�), we have

P(‖�u − �v‖ > t) ≥ P(‖�u − �v‖ + f (‖�u − �v‖) > t).

Equivalently,

P(‖�u − �v‖ > t) ≥ P(g (‖�u − �v‖) ‖�u − �v‖ > t). (3.6)

Fixed t > 0. For each s ≥ t > 0, we have

g(s) = 1 + f (s)

s
≥ 1 + h(t) = q(t).

Since g(t) > 1, we get

{g(‖�u − �v‖)‖�u − �v‖ > t} ⊃ {‖�u − �v‖ > t}.

Hence,

P(‖�u − �v‖ > q(t)t) ≥ P(g(�‖u − �v‖)‖�u − �v‖ > q(t)t)
≥ P(g(‖�u−�v‖)‖�u−�v‖ > q(t)t, ‖�u−�v‖ > t)
≥ P(q(t)‖�u − �v‖ > q(t)t, ‖�u − �v‖ > t)
= P(‖�u − �v‖ > t).

Put q = q(t), noting that q > 1 since h(t) > 0.
From this, for each n, we obtain

P(‖ξ2n+1 − ξ2n‖ > qt) = P(‖�u2n+1 − �u2n‖ > qt)
≥ P(‖�u2n+1 − �u2n‖ > t)
= P(‖ξ2n+2 − ξ2n+1‖ > t),

and

P(‖ξ2n − ξ2n−1‖ > qt) = P(‖�u2n − �u2n−1‖ > qt)
≥ P(‖�u2n − �u2n−1‖ > t)
= P(‖ξ2n+1 − ξ2n‖ > t).

By induction and Chebyshev inequality, we get

P(‖ξn+1 − ξn‖ > t) ≤ P(‖ξn − ξn−1‖ > qt)
≤ ...

≤ P(‖ξ2 − ξ1‖ > qn−1t)
= P(‖�u1 − �u0‖ > qn−1t)
= P(‖�v0 − �u0‖ > qn−1t)
≤ E‖�v0 − �u0‖p 1

(qn−1)pt p
= M 1

(qn−1)pt p
.
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1614 P. T. Anh

Let r be a number in (1, q). Then, r > 1 and (r − 1)( 1r + 1
r2

+ ... + 1
rm ) + 1

rm =
1 ∀m ≥ 1. Thus, for any t > 0, n ≥ 2 and m in N , we have

P(‖ξn+m − ξn‖ > t) ≤ P

(
‖ξn+m − ξn‖ >

(
1 − 1

rm

)
t

)

≤ P
(‖ξn+m − ξn+m−1‖ > t (r − 1)/rm

)
+ ... + P(‖ξn+1 − ξn‖ > t (r − 1)/r )

≤ M

[(r − 1)t]p
[ (rm)p

(qn+m−2)p
+ ... + r p

(qn−1)p

]

= M

[(r − 1)t]p
r p

(qn−1)p

[ (
r

q

)p(m−1)

+ ... +
(
r

q

)p

+ 1
]

= M

[(r − 1)t]p
r p

(qn−1)p

1 −
(
r
q

)(m−1)p

1 −
(
r
q

)p

<
Mr p

[(r − 1)t]p
[
1 −

(
r
q

)p] 1

(q p)n−1 n ≥ 2,

which tends to 0 as n → ∞. It implies that (ξn) is a Cauchy sequence in LX
0 (�).

Hence, there exists ξ in LX
0 (�) such that p-lim ξn = ξ . Because � is surjective, there

exists u∗ in LX
0 (�) such that �u∗ = ξ . So, we have

P (‖ξ − ξ2n‖ > qt) = P (‖�u∗ − ξ2n‖ > qt)
= P (‖�u∗ − �u2n‖ > qt)
≥ P (‖�u2n − �u∗‖ + f (‖�u2n − �u∗‖) > qt)
≥ P (‖�u2n − �u∗‖ > t)
= P (‖ξ2n+1 − �u∗‖ > t) .

Let n → ∞, we receive P (‖ξ − �u∗‖ > t) = 0 implying �u∗ = ξ a.s. Then, �,�

have a random coincidence point u∗.
By the same argument, �,� have a random coincidence point v∗. ��

Corollary 3.3 Let �,� : LX
0 (�) → LX

0 (�) be continuous in probability completely
random operators, � be surjective and f : [0,∞) → [0,∞) be a mapping such that
for each t > 0,

h(t) = inf
s≥t

f (s)

s
> 0. (3.7)

Assume that for each pair u, v in LX
0 (�) and t > 0, we have

P (‖�u − �v‖ > t) ≥ P (‖�u − �v‖ + f (‖�u − �v‖) > t) . (3.8)
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Points of Expansive Type Completely Random Operators 1615

Then �,� have a random coincidence point if and only if there exist random
variables u0, v0 in LX

0 (�) and p > 0 such that �v0 = �u0

M = E‖�v0 − �u0‖p < ∞. (3.9)

Proof Put �v = �v, then all the conditions in the Theorem 3.2 are satisfied. ��
Corollary 3.4 Let �,� be completely random operators satisfying the conditions
stated in the Corollary 3.3. Assume that there exists a number q > 1 such that

P (‖�u − �v‖ > t) ≥ P (‖�u − �v‖ > t/q) (3.10)

for all random variables u, v in LX
0 (�) and t > 0. Then �,� have a random coin-

cidence point if and only if there exist random variables u0, v0 in LX
0 (�) and p > 0

such that �v0 = �u0 and (3.9) holds.

Proof Consider the function f (t) = (q − 1)t and h(t) = q − 1 > 0. Then f (t)
satisfies the conditions stated in the Corollary 3.3. ��
Remark The following simple example shows that the random coincidence point of
� and � in the Corollary 3.3 need not be unique.

Example 3.5 Define two completely random operators �,� : LR
0 (�) → LR

0 (�) by

�u = q|u| + η,�u = |u|

where η is a positive random variable, q > 1.
It is easy to check that �,� satisfy all assumptions of Corollary 3.3 with f (t) =

(q − 1)t . On the other hand, � and � have two random coincidence points u∗
1 =

1
q−1η, u∗

2 = − 1
q−1η.

Theorem 3.6 Let �,�,� : LX
0 (�) → LX

0 (�) be continuous in probability com-
pletely random operators, �,� be surjective and f : [0,∞) → [0,∞) be a contin-
uous, increasing function such that f (0) = 0, limt→∞ f (t) = ∞ and q > 1. Assume
that for any random variables u, v in LX

0 (�) and t > 0, we have

P (‖�u − �v‖ > f (t)) ≥ P (‖�u − �v‖ > f (t/q)) . (3.11)

If there exist random variables u0, v0 in LX
0 (�) and p > 0 such that �v0 = �u0 and

M = sup
t>0

t p P (‖�v0 − �u0‖ > f (t)) < ∞. (3.12)

Then,

(1) Assume that there exists a number c > 1/q such that

∞∑
n=1

f (cn) < ∞. (3.13)
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1616 P. T. Anh

Then, the condition (3.12) is sufficient for�,� have a random coincidence point
and �,� have a random coincidence point.

(2) Assume that for each t, s > 0

f (t + s) ≥ f (t) + f (s). (3.14)

Then, the condition (3.12) is also sufficient for �,� have a random coincidence
point and �,� have a random coincidence point.

Proof Let g = f −1 be the inverse function of f . Then, g : [0,∞) → [0,∞) is
increasing with g(0) = 0, limt→∞ g(t) = ∞. The condition (3.11) is equivalent to
the following

P (g (‖�u − �v‖) > t) ≥ P (g(‖�u − �v‖) > t/q) . (3.15)

Let u0 be a random variable in LX
0 (�) such that (3.12) holds. Because �,� are

surjective, there exists a random variable u1 in LX
0 (�) such that�u1 = �u0, u1 = v0.

Again, there exists a randomvariableu2 in LX
0 (�) such that�u2 = �u1.By induction,

there exists a sequence (un) in LX
0 (�) by

�u1 = �u0, �u2 = �u1, ..., �u2n+1 = �u2n, �u2n+2 = �u2n+1 n = 1, 2, ...
(3.16)

Put ξn = �un−1, n = 1, 2, .... From (3.15), for each n, we obtain

P(g(‖ξ2n+1 − ξ2n‖) > qt) = P(g(‖�u2n+1 − �u2n‖) > qt)
≥ P(g(‖�u2n+1 − �u2n‖) > t)
= P(g(‖ξ2n+2 − ξ2n+1‖) > t),

and

P(g(‖ξ2n − ξ2n−1‖) > qt) = P(g(‖�u2n − �u2n−1‖) > qt)
≥ P(g(‖�u2n − �u2n−1‖) > t)
= P(g(‖ξ2n+1 − ξ2n‖) > t).

By induction, we obtain for each n

P (g (‖ξn+1 − ξn‖) > t) ≤ P
(
g(‖ξ2 − ξ1‖) > qn−1t

)
= P

(
g(‖�u1 − �u0‖) > qn−1t

)
= P

(
g(‖�v0 − �u0‖) > qn−1t

)
.

Then,

P (g (‖ξn+1 − ξn‖) > t) ≤ P
(
g(‖�v0 − �u0‖) > qn−1t

)
. (3.17)
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Points of Expansive Type Completely Random Operators 1617

(1) From (3.12), we have

P (g(‖�u0 − �u0‖) > s) = P (‖�u0 − �u0‖ > f (s)) ≤ M

sp
. (3.18)

From (3.17) and (3.18), we get

P (g (‖ξn+1 − ξn‖) > t) ≤ M

q(n−1)pt p
. (3.19)

Taking t = cn , from (3.19), we get

P
(
g (‖ξn+1 − ξn‖) > cn

) ≤ M
1

q(n−1)pcnp
, (3.20)

i.e.

P
(‖ξn+1 − ξn‖ > f (cn)

) ≤ M
1

q(n−1)pcnp
. (3.21)

Since

∞∑
n=1

P
(‖ξn+1 − ξn‖ > f (cn)

) ≤ M
∞∑
n=1

1

q(n−1)pcnp
< ∞,

by the Borel-Cantelli Lemma, there is a set D with probability one such that for
each ω in D there is N (ω)

‖ξn+1(ω) − ξn(ω)‖ ≤ f (cn) ∀n > N (ω).

By (3.13), we conclude that
∑∞

n=1 ‖ξn+1(ω)−ξn(ω)‖ < ∞ for allω in D, which
implies that there exists lim ξn(ω) for allω in D. Consequently, the sequence (ξn)

converges a.s. to ξ in LX
0 (�).

Because � is surjective, there exists u∗ in LX
0 (�) such that �u∗ = ξ . So, we

have

P (‖ξ − ξ2n‖ > f (qt)) = P (‖ξ2n − �u∗‖ > f (qt))
= P (‖�u2n − �u∗‖ > f (qt))
≥ P (‖�u2n − �u∗‖ > f (t))
≥ P (‖ξ2n+1 − �u∗‖ > f (t)) .

Let n → ∞, we receive P (‖ξ − �u∗‖ > f (t)) = 0 for all t > 0 implying
�u∗ = ξ a.s. Then, �,� have a random coincidence point u∗.
By the same argument, �,� have a random coincidence point v∗.

(2) It is easy to see that for each t, s > 0

g(s + t) ≤ g(t) + g(s).

123



1618 P. T. Anh

Hence, for a ≥ ∑m
i=1 si , we have

P (g(‖ξn+m − ξn‖) > a) ≤ P
(
g

(∑m
i=1 ‖ξn+i − ξn+i−1‖

)
> a

)
≤ P

(∑m
i=1 g(‖ξn+i − ξn+i−1‖) >

∑m
i=1 si

)
≤ ∑m

i=1 P (g(‖ξn+i − ξn+i−1‖) > si ) .

From (3.12), we have

P (g (‖ξn+i − ξn+i−1‖) > si ) ≤ Mq(n+i−1)p

s pi
. (3.22)

Put r be a number in (1, q) and si = s(r − 1)/r i . An argument similar to that in
the forward proof yields

lim
n→∞ P(g(‖ξn+m − ξn‖) > s) = 0 ∀s > 0,

so

lim
n→∞ P(‖ξn+m − ξn‖ > f (s)) = 0 ∀s > 0.

Thus, we obtain

lim
n→∞ P(‖ξn+m − ξn‖ > t) = 0 ∀t > 0.

Consequently, the sequence (ξn) converges in probability to ξ in LX
0 (�). Because

� is surjective, there exists u∗ in LX
0 (�) such that �u∗ = ξ . So, we have

P (‖ξ − ξ2n‖ > f (qt)) = P (‖ξ2n − �u∗‖ > f (qt))
= P (‖�u2n − �u∗‖ > f (qt))
≥ P (‖�u2n − �u∗‖ > f (t))
≥ P (‖ξ2n+1 − �u∗‖ > f (t)) .

Let n → ∞, we receive P (‖ξ − �u∗‖ > f (t)) = 0 for all t > 0 implying
�u∗ = ξ a.s. Then, �,� have a random coincidence point u∗.
By the same argument, �,� have a random coincidence point v∗. ��

Corollary 3.7 Let �,� : LX
0 (�) → LX

0 (�) be continuous in probability completely
random operators, � be surjective and f : [0,∞) → [0,∞) be a continuous,
increasing function such that f (0) = 0, limt→∞ f (t) = ∞ and q > 1. Assume that
for any u, v in LX

0 (�) and t > 0, we have

P (‖�u − �v‖ > f (t)) ≥ P (‖�u − �v‖ > f (t/q)) . (3.23)

If there exist random variables u0, v0 in LX
0 (�) and p > 0 such that �v0 = �u0 and

M = sup
t>0

t p P (‖�v0 − �u0‖ > f (t)) < ∞. (3.24)
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Then,

(1) Assume that there exists a number c > 1/q such that

∞∑
n=1

f (cn) < ∞. (3.25)

Then, the condition (3.24) is sufficient for �,� to have a random coincidence
point.

(2) Assume that for each t, s > 0

f (t + s) ≥ f (t) + f (s). (3.26)

Then, the condition (3.24) is also sufficient for�,� to have a random coincidence
point.

Proof It is easy to receive the corollary when we take �v = �v in Theorem 3.6. ��

4 Applications to Random Fixed Point Theorems and Random Equations

In this section, we present some applications to random fixed point theorems and
random equations.

Theorem 4.1 Let � : LX
0 (�) → LX

0 (�) be surjective, continuous in probability
completely random operator and f : [0,∞) → [0,∞) be a continuous, increasing
function such that f (0) = 0, limt→∞ f (t) = ∞ and q > 1. Assume that for each
pair u, v in LX

0 (�)

P (‖�u − �v‖ > f (t)) ≥ P (‖u − v‖ > f (t/q)) . (4.1)

If there exist random variables v0 in LX
0 (�) and p > 0 such that

M = sup
t>0

t p P (‖�v0 − v0‖ > f (t)) < ∞. (4.2)

Then

(1) Assume that there exists a number c > 1/q such that

∞∑
n=1

f (cn) < ∞. (4.3)

Then, the condition (4.2) is sufficient for � to have a unique random fixed point.
(2) Assume that for each t, s > 0

f (t + s) ≥ f (t) + f (s). (4.4)
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Then, the condition (4.2) is also sufficient for � to have a unique random fixed
point.

Proof Consider the completely random operator � given by �u = u. By Corollary
3.7, � and � have a random coincidence point ξ which is exactly the random fixed
point of �.
Let ξ, η be two random fixed points of �. Then, for each t > 0, we have

P (‖ξ − η‖ > f (qt)) = P (‖�ξ − �η‖ > f (qt)) ≥ P (‖ξ − η‖ > f (t)) .

By induction, it follows that

P (‖ξ − η‖ > f (t)) ≤ P
(‖ξ − η‖ > f (qnt)

) ∀n.

Since limn→∞ f (qnt) = +∞, we conclude that P (‖ξ − η‖ > f (qnt)) = 0 for each
t > 0. Hence, g(‖ξ − η‖) = 0 a.s., with g is the inverse function of f . So, we have
ξ = η a.s. as claimed. ��
Theorem 4.2 Let �,� : LX

0 (�) → LX
0 (�) be continuous in probability completely

random operators, � be surjective and f : [0,∞) → [0,∞) be a mapping such that
for each t > 0,

h(t) = inf
s≥t

f (s)

s
> 0. (4.5)

Assume that for each pair u, v in LX
0 (�) and t > 0, we have

P (‖�u − �v‖ > t) ≥ P (‖�u − �v‖ + f (‖�u − �v‖) > t) . (4.6)

If �,� commute i.e. ��u = ��u for any random variable u in LX
0 (�) then � and

� have a unique common random fixed point if there exist random variables u0, v0 in
LX
0 (�) and p > 0 such that �v0 = �u0 and

M = E‖�v0 − �u0‖p < ∞. (4.7)

Proof Suppose that (4.7) holds. By Corollary 3.3, there exists u∗ such that �u∗ =
�u∗ = ξ . For t > 0, we have

P(‖�ξ − ξ‖ > qt) = P(‖�ξ − �u∗‖ > qt)

≥ P(‖�ξ − �u∗‖ > t)

= P(‖��u∗ − ξ‖ > t)

= P(‖��u∗ − ξ‖ > t)

= P(‖�ξ − ξ‖ > t).

By induction, it follows that P(‖�ξ −ξ‖ > t) ≤ P(‖�ξ −ξ‖ > qnt) for any n ∈ N .
Let n → ∞, we have P(‖�ξ − ξ‖ > t) = 0 for any t > 0. Thus, �ξ = ξ i.e. ξ is a
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random fixed point of �. We have �ξ = ��u∗ = ��u∗ = �ξ = ξ . So ξ is also a
random fixed point of �.

Let ξ1 and ξ2 be two common random fixed points of � and �. For each t > 0, we
have

P(‖ξ1 − ξ2‖ > qnt) = P(‖�ξ1 − �ξ2‖ > qnt)

≥ P(‖�ξ1 − �ξ2‖ > qn−1t)

= P(‖ξ1 − ξ2‖ > qn−1t)

≥ ...

≥ P(‖ξ1 − ξ2‖ > t).

Let n → ∞, we have P(‖ξ1 − ξ2‖ > t) = 0 for all t > 0. Hence, ξ1 = ξ2. ��
Corollary 4.3 Let � : LX

0 (�) → LX
0 (�) be a surjective, continuous in probability

and probabilistic q-expansive completely random operator in the sense that there
exists a number q > 1 such that

P (‖�u − �v‖ > t) ≥ P (‖u − v‖ > t/q) (4.8)

for all random variables u, v in LX
0 (�) and t > 0. Then,� has a unique random fixed

point if there exists a random variable v0 in LX
0 (�) and p > 0 such that

E ‖�v0 − v0‖p < ∞. (4.9)

Proof Consider� : LX
0 (�) → LX

0 (�) given by�u = u, the function f (t) = (1−q)t
and h(t) = 1−q > 0. Then�,� and f (t) satisfy the conditions stated in the Theorem
4.2 and �,� commute. Thus, � and � have a common random fixed point ξ i.e. �
has a random fixed point ξ .

Theorem 4.4 Let �,� : LX
0 (�) → LX

0 (�) be continuous in probability completely
random operators, � be surjective and

P (‖�u − �v‖ > f (t)) ≥ P (‖�u − �v‖ > f (t/q)) (4.10)

for all u, v in LX
0 (�), t > 0 and f : [0,∞) → [0,∞) be a continuous, increasing

function such that f (0) = 0, limt→∞ f (t) = ∞ satisfying either (4.3) or (4.4) and
q > 1. Consider random equation of the form

�u − λ�u = η, (4.11)

where λ is a real number and η is a random variable in LX
0 (�).

Assume that

0 < |λ| ≤ inf
t>0

f
(

q
q ′ t

)
f (t)

, (4.12)
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where q ′ > 1. Then the equation (4.11) has a unique random solution if there exists
a random variable v0 in LX

0 (�) and a number p > 0 such that

M = sup
t>0

t p P (‖�v0 − λ�v0 − η‖ > |λ| f (t)) < ∞. (4.13)

Proof Suppose that the condition (4.13) holds. Define a completely random operator
� by

�u = �u − η

λ
.

From (4.13) it follows that

M = sup
t>0

t p P (‖�v0 − �u0‖ > f (t)) < ∞. (4.14)

Let g = f −1 be the inverse function of f . Then, g : [0,∞) → [0,∞) is continuous,
increasing with g(0) = 0, limt→∞ g(t) = ∞. For each t > 0, there exists t ′ so that
f (t ′) = |λ| f (t) i.e. t ′ = g(|λ| f (t)). So, we have

P (‖�u − �v‖ > f (t)) = P (‖�u − �v‖ > |λ| f (t))
= P

(‖�u − �v‖ > f
(
t ′
))

≥ P
(‖�u − �v‖ > f

(
t ′/q

))
= P

(
‖�u − �v‖ > f

(
t
q ′

q ′t ′
qt

))
.

From (4.12), we receive |λ| f (t) ≤ f
(

q
q ′ t

)
. Then, we deduce g (|λ| f (t)) ≤ q

q ′ t .

So, t ′ ≤ q
q ′ t and

q ′t ′
qt ≤ 1. Hence,

P

(
‖�u − �v‖ > f

(
t

q ′
q ′t ′

qt

))
≥ P

(‖�u − �v‖ > f
(
t/q ′,

))

which implies

P (‖�u − �v‖ > f (t)) ≥ P
(‖�u − �v‖ > f

(
t/q ′)) .

Consequently, � and � satisfy the conditions stated in the Corollary 3.7. Hence, �

and� has a random coincidence point ξ i.e. the equation (4.11) has a random solution
ξ . ��
Corollary 4.5 Let � : LX

0 (�) → LX
0 (�) be a surjective, continuous in probability

completely random operator satisfying the following condition

P (‖�u − �v‖ > f (t)) ≥ P (‖u − v‖ > f (t/q)) (4.15)
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for all u, v in LX
0 (�), t > 0 , where f : [0,∞) → [0,∞) is a continuous, increasing

function such that f (0) = 0, limt→∞ f (t) = ∞ satisfying either (4.3) or (4.4) and
q > 1. Consider random equation of the form

�u − λu = η, (4.16)

where λ is a real number and η is a random variable in LX
0 (�).

Assume that

0 < |λ| ≤ inf
t>0

f
(

q
q ′ t

)
f (t)

, (4.17)

where q ′ > 1. Then the equation (4.16) has a unique random solution if and only if
there exists a random variable v0 in LX

0 (�) and a number p > 0 such that

M = sup
t>0

t p P (‖�v0 − λv0 − η‖ > |λ| f (t)) < ∞. (4.18)

Proof Applying the Theorem 4.4 for the completely random operator � given by
�u = u. ��
Corollary 4.6 Let �,� : LX

0 (�) → LX
0 (�) be continuous in probability completely

random operators, � be surjective satisfying the following condition

P (‖�u − �v‖ > t) ≥ P (‖�u − �v‖ > t/q) (4.19)

for all u, v in LX
0 (�) and a number q > 1. Consider the random equation

�u − λ�u = η, (4.20)

where λ is a real number and η is a random variable in LX
p (�), p > 0.

Assume that 0 < |λ| < q. Then, the random equation (4.20) has a solution if there
exists a random variable v0 in LX

0 (�) such that

E‖�v0 − λ�v0‖p < ∞. (4.21)

Proof Suppose that there exists a random variable u0 in LX
0 (�) such that (4.10) holds.

So, � and � satisfy (4.15) where f (t) = t . Take |λ| < s < q, then q ′ = q/s > 1
and

0 < |λ| < s = q

q ′ =
f
(

q
q ′ t

)
f (t)

.

Moreover, for each t > 0

t p P (‖�v0 − λ�v0 − η‖ > |λ|t) ≤ E‖�v0 − λ�v0 − η‖p

|λ|p < ∞ (4.22)
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since

E(‖�u0 − λ�u0 − η‖p) ≤ CpE(‖�u0 − λ�u0‖p) + CpE‖η‖p < ∞,

where Cp is a constant. Hence, the condition (4.13) is satisfied. By Theorem 4.4, we
conclude that the equation (4.20) has a random solution. ��
Taking the completely random operator � given by �u = u, we obtain

Corollary 4.7 Let � : LX
0 (�) → LX

0 (�) be a surjective, continuous in probability
completely random operator satisfying the following condition

P (‖�u − �v‖ > t) ≥ P (‖u − v‖ > t/q) (4.23)

for all u, v in LX
0 (�) and a number q > 1. Consider the random equation

�u − λu = η, (4.24)

where λ is a real number satisfying 0 < |λ| < q and η is a random variable in LX
p (�),

p > 0. Then, the random equation (4.24) has a unique random solution if there exists
a random variable v0 in LX

0 (�) such that

E‖�v0 − λv0‖p < ∞. (4.25)
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