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Abstract Take three integersm ≥ 0, k ≥ 1, and n ≥ 2. Let a ( �≡ 0) be a holomorphic
function in a domain D of C such that multiplicities of zeros of a are at most m and
divisible by n + 1. In this paper, we mainly obtain the following normality criterion:
LetF be the family of meromorphic functions on D such that multiplicities of zeros
of each f ∈ F are at least k + m and such that multiplicities of poles of f are at
leastm+1. If each pair ( f, g) ofF satisfies that f n f (k) and gng(k) share a (ignoring
multiplicity), then F is normal.

Keywords Meromorphic function · Holomorphic function · Normal family ·
Sharing holomorphic functions
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1 Introduction

In this paper, we use the standard notations of the Nevanlinna theory as presented in
[11,17,50,52]. By definition, two meromorphic functions F and G are said to share
a IM if F − a and G − a assume the same zeros ignoring multiplicity. When a = ∞,
the zeros of F − a mean the poles of F .
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Let D be a domain inC and letF be meromorphic functions defined in the domain
D. Then F is said to be normal in D, in the sense of Montel, if for any sequence
{ fn} ⊂ F there exists a subsequence { fn j } such that fn j converges spherically locally
uniformly in D, to a meromorphic function or∞ (cf. [15,38]). For simplicity, we take
→ to stand for convergence and ⇒ for convergence spherically locally uniformly.

LetM (D) (resp.A (D)) be the set of meromorphic (resp. holomorphic) functions
on D. Let n be an integer and take a positive integer k. We will study normality of the
subset F of M (D) such that f n f (k) satisfies some conditions for each f ∈ F .

First of all, we look at some background for the case n = 0. Hayman [17] proved
that if F ∈ M (C) is transcendental, then either F (k) assumes every finite non-zero
complex number infinitely often for any positive integer k or F assumes every finite
complex number infinitely often. A normality criterion corresponding to Hayman’s
theorem is obtained by Gu [14] which is stated as follows: If F is the family in
M (D) such that each f ∈ F satisfies f (k) �= a and f �= b, where a, b are two
complex numbers with a �= 0, thenF is normal in the sense of Montel. In particular,
ifF ⊂ A (D), the normality criterionwas conjectured byMontel (see [38], p. 125) for
k = 1, and proved by Miranda [30]. Further, Yang [51] and Schwick [40] confirmed
that the normality criterion due to Gu is true if a is replaced by a non-zero holomorphic
function on D. In 2001, Jiang and Gao [22] proved that if F is the family in A (D)

such that the multiplicities of zeros of each f ∈ F are least k + m + 2 for another
non-negative integer m and such that each pair ( f, g) ofF satisfies that f (k) and g(k)

share a IM (ignoring multiplicity), where a ∈ A (D) and multiplicities of zeros of a
are at mostm, then F is normal in D, and obtained a similar result whenF ⊂ M (D).
For other generations, see [3–5,10,23,27,28,43,44] and [46].

Next, we introduce some developments for the case n ≥ 1 and k = 1. In 1959,
Hayman [16] proposed a conjecture: If F ∈ M (C) is transcendental, then FnF ′
assumes every finite non-zero complex number infinitely often for any positive integer
n. Hayman himself [16,18] showed that it is true for n ≥ 3, and for n = 2, F ∈ A (C).
Mues [31] confirmed the conjecture for n = 2 in 1979. Furthermore, the case of n = 1
was considered by Clunie [9] when F ∈ A (C), finally settled by Bergweiler and
Eremenko [2], Chen and Fang [6]. Related to these results on value distribution,
Hayman [18] conjectured that if F is the family of M (D) such that each f ∈ F
satisfies f n f ′ �= a for a positive integer n and a non-zero complex number a, thenF
is normal. This conjecture has been confirmed by Yang and Zhang [54] (for n ≥ 5,
and for n ≥ 2 with F ⊂ A (D)), Gu [13] (for n = 3, 4), Pang [34] (for n ≥ 2;
cf. [12]) and Oshkin [32] (for n = 1 with F ⊂ A (D); cf. [24]). Finally, Pang
[34] (or see [6,55,56]) indicated that the conjecture for n = 1 is a consequence of
his theorem and Chen-Fang’s theorem [6]. Recently, based on the ideas of sharing
values, Zhang [58] proved that ifF is the family ofM (D) such that each pair ( f, g)
of F satisfies that f n f ′ and gng′ share a finite non-zero complex number a IM
for n ≥ 2, then F is normal. There are examples showing that this result is not
true for the case n = 1. Further, Jiang [22] concluded that if F is the family of
M (D) such that each pair ( f, g) of F satisfies that f n f ′ and gng′ share a IM for
n ≥ 2m + 2, where a ∈ A (D) and multiplicities of zeros of a are at most m, thenF
is normal.
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Normality Criteria of Meromorphic Functions 1333

Similarly, we also have analogs related to some conditions of f
(
f (k)

)l
for a pos-

itive integer l. For example, Zhang and Song [60] announced that if F ∈ M (C) is

transcendental; a( �≡ 0) a small function of F ; l ≥ 2, then F
(
F (k)

)l − a has infinitely
many zeros. A simple proof was given by Alotaibi [1]. The normality criterion corre-
sponding to this result was obtained by Jiang and Gao [21] which is stated as follows:
Let l, k ≥ 2,m ≥ 0 be three integers such that m is divisible by l + 1 and suppose
that a( �≡ 0) is a holomorphic function in D with zeros of multiplicity m. If F is the
family ofA (D) (resp.M (D)) such that multiplicities of zeros of each f ∈ F are at
least k + m (resp. max{k + m, 2m + 2}) and such that each pair ( f, g) ofF satisfies

that f
(
f (k)

)l
and g

(
g(k)

)l
share a IM, thenF is normal. For more results related to

this topic, see Hennekemper [19], Hu andMeng [20], Li [25,26], Schwick [39], Wang
and Fang [42], Yang et al. [49].

Finally, we consider general cases of n ≥ 1 and k ≥ 1. In 1994, Zhang and Li [61]
proved that if F ∈ M (C) is transcendental, then FnL[F] − a has infinitely many
zeros for n ≥ 2 and a �= 0,∞, where

L[F] = ak F
(k) + ak−1F

(k−1) + · · · + a0F

in which ai (i = 0, 1, 2, · · · , k) are small functions of F . In 1999, Pang and Zalcman
[36] obtained a corresponding normality criterion as follows: If F is the family of
A (D) such that zeros of each f ∈ F have multiplicities at least k and such that each
f ∈ F satisfies f n f (k) �= a for a non-zero complex number a, thenF is normal. In
2005, Zhang [59] showed that when n ≥ 2, this result is also true if a is replaced by
a non-vanishing holomorphic functions in D. For other related results, see Meng and
Hu [29], Qi [37], Wang [41], Xu [45], Yang and Hu [48], Yang and Yang [53].

Take three integers m ≥ 0, k ≥ 1, and n ≥ 2. Let a ( �≡ 0) be a holomorphic
function in D such that multiplicities of zeros of a are at most m and divisible by
n + 1. In this paper, we obtain the following normality criteria:

Theorem 1.1 Let F be the family of M (D) such that multiplicities of zeros of each
f ∈ F are at least k +m and such that multiplicities of poles of f are at least m + 1
whenever f have zeros and poles. If each pair ( f, g) of F satisfies that f n f (k) and
gng(k) share a IM, then F is normal in D.

In special, if a has no zeros, which means m = 0, then Theorem 1.1 has the
following form:

Corollary 1.1 LetF be the family ofM (D) such that multiplicities of zeros of each
f ∈ F are at least k. If each pair ( f, g) of F satisfies that f n f (k) and gng(k) share
a IM, then F is normal in D.

It is easy to see that this result extends above normality criteria due to Pang and
Zalcman [36], and Zhang [59]. Furthermore, we can improve partially the normality
criterion due to Jiang [22] as follows:

Theorem 1.2 If F is the family of M (D) such that each f ∈ F satisfies that
f n f ′ �= a, then F is normal in D.
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1334 D.-W. Meng, P.-C. Hu

The condition a(z) �≡ 0 in Theorem 1.1 and 1.2 is necessary. This fact can be
illustrated by the following example:

Example 1.1 Let D = {z ∈ C | |z| < 1}. Let a(z) ≡ 0 and

F =
{
f j (z) = e j (z−

1
2 )

∣∣∣ j = 1, 2, . . .
}

Obviously, f ni f (k)
i and f nj f (k)

j share a IM for distinct positive integers i and j (resp.
f nj f ′

j �= a), but the familyF is not normal at z = 1/2.

In Corollary 1.1, the condition that multiplicities of zeros of each f ∈ F are at
least k is sharp. For example, we consider the following family:

Example 1.2 Denote D as in Example 1.1. Let a(z) = ez and

F =
{

f j (z) = j

(
z − 1

2 j

)k−1
∣∣∣∣
∣
j = 1, 2, . . .

}

.

Any f j ∈ F has only a zero of multiplicity k−1 in D and for distinct positive integers

i and j, f ni f (k)
i and f nj f (k)

j share a IM. However, the familyF is not normal at z = 0.

2 Preliminary Lemmas

In order to prove our results, we require the following Zalcman’s lemma (cf. [56]):

Lemma 2.1 Take a positive integer k. Let F be a family of meromorphic functions
in the unit disk 
 with the property that zeros of each f ∈ F are of multiplicity at
least k. If F is not normal at a point z0 ∈ �, then for 0 ≤ α < k, there exist a
sequence {zn} ⊂ � of complex numbers with zn → z0; a sequence { fn} of F ; and a
sequence {ρn} of positive numbers with ρn → 0 such that gn(ξ) = ρ−α

n fn(zn + ρnξ)

locally uniformly (with respect to the spherical metric) to a non-constant meromorphic
function g(ξ) on C. Moreover, the zeros of g(ξ) are of multiplicity at least k, and the
function g(ξ) may be taken to satisfy the normalization g�(ξ) ≤ g�(0) = 1 for any
ξ ∈ C. In particular, g(ξ) has at most order 2.

This result is Pang’s generalization (cf. [33,35,47]) to the Main Lemma in [55]
(where α is taken to be 0), with improvements due to Schwick [39], Chen and Gu [7].
In Lemma 2.1, the order of g is defined using the Nevanlinna’s characteristic function
T (r, g):

ord(g) = lim sup
r→∞

log T (r, g)

log r
.

Here, as usual, g� denotes the spherical derivative

g�(ξ) = |g′(ξ)|
1 + |g(ξ)|2 .

123



Normality Criteria of Meromorphic Functions 1335

Lemma 2.2 Let p ≥ 0, k ≥ 1, and n ≥ 2 be three integers, and let a be a non-zero
polynomial of degree p. If f is a non-constant rational function which has only zeros
of multiplicity at least k + p and has only poles of multiplicity at least p + 1, then
f n f (k) − a has at least one zero.

Proof If f is a polynomial, then f (k) �≡ 0 since f is non-constant and has only zeros
of multiplicity at least k+ p which further means deg( f ) ≥ k+ p. Noting that n ≥ 2,
we immediately obtain that

deg
(
f n f (k)

)
≥ n deg( f ) ≥ n(k + p) > p = deg(a).

Therefore, it follows that f n f (k) − a is also a non-constant polynomial, and hence
f n f (k) − a has at least one zero. Next, we assume that f has poles. Set

f (z) = A(z − α1)
m1(z − α2)

m2 · · · (z − αs)
ms

(z − β1)n1(z − β2)n2 · · · (z − βt )nt
, (2.1)

where A is a non-zero constant, αi distinct zeroes of f with s ≥ 0, and β j distinct
poles of f with t ≥ 1. For simplicity, we put

m1 + m2 + · · · + ms = M ≥ (k + p)s, (2.2)

n1 + n2 + · · · + nt = N ≥ (p + 1)t. (2.3)

From Eq. (2.1), we obtain

f (k)(z) = (z − α1)
m1−k(z − α2)

m2−k · · · (z − αs)
ms−kg(z)

(z − β1)n1+k(z − β2)n2+k · · · (z − βt )nt+k
, (2.4)

where g is a polynomial of degree ≤ k(s + t − 1). From Eqs. (2.1) and (2.7), we get

f n(z) f (k)(z) = An(z − α1)
M1(z − α2)

M2 · · · (z − αs)
Ms g(z)

(z − β1)N1(z − β2)N2 · · · (z − βt )Nt
, (2.5)

in which

Mi = (n + 1)mi − k, i = 1, 2, · · · , s,

N j = (n + 1)n j + k, j = 1, 2, · · · , t.

Differentiating Eq. (2.5) yields

{
f n f (k)

}(p+1)
(z) = (z − α1)

M1−p−1(z − α2)
M2−p−1 · · · (z − αs)

Ms−p−1g0(z)

(z − β1)N1+p+1 · · · (z − βt )
Nt+p+1 ,

(2.6)
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1336 D.-W. Meng, P.-C. Hu

where g0(z) is a polynomial of degree ≤ (p + k + 1)(s + t − 1). We assume, to the
contrary, that f n f (k) − a has no zero, then

f n(z) f (k)(z) = a(z) + C

(z − β1)N1(z − β2)N2 · · · (z − βt )Nt
, (2.7)

where C is a non-zero constant. Subsequently, Eq. (2.12) yields

{
f n f (k)

}(p+1)
(z) = g1(z)

(z − β1)N1+p+1 · · · (z − βt )Nt+p+1 , (2.8)

where g1(z) is a polynomial of degree ≤ (p + 1)(t − 1).
Comparing Eq. (2.6) with Eq. (2.8), we get

(p + 1)(t − 1) ≥ deg(g1) ≥ (n + 1)M − ks − (p + 1)s,

and hence

M <
p + k + 1

n + 1
s + p + 1

n + 1
t. (2.9)

From Eqs. (2.5) and (2.7), we have

(n + 1)N + kt + p = (n + 1)M − ks + deg(g).

Since deg(g) ≤ k(s + t − 1), we find

(n + 1)N ≤ (n + 1)M − ks + k(s + t − 1) − kt − p,

and thus
N < M. (2.10)

By Eqs. (2.9), (2.10) and noting that M ≥ (k + p)s, N ≥ (p + 1)t , we deduce that

M <
p + k + 1

n + 1
s + p + 1

n + 1
t ≤

{
p + k + 1

(n + 1)(k + p)
+ 1

n + 1

}
M. (2.11)

Note that n ≥ 2 implies

p + k + 1

(n + 1)(k + p)
+ 1

n + 1
= 2(k + p) + 1

(n + 1)(k + p)
≤ 1.

Hence it follows from Eq. (2.11) that M < M , which is a contradiction. Lemma 2.2
is proved. �

Lemma 2.3 Let p ≥ 0, k ≥ 1, and n ≥ 2 be three integers, and let a be a non-zero
polynomial of degree p. If f is a non-constant rational function which has only zeros
of multiplicity at least k + p and has only poles of multiplicity at least p + 1, then
f n f (k) − a has at least two distinct zeros.
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Normality Criteria of Meromorphic Functions 1337

Proof Lemma 2.2 implies that f n f (k) − a has at least one zero. Assume, to the
contrary, that f n f (k) −a has only one zero z0. If f is a polynomial, then we can write

f n(z) f (k)(z) − a(z) = A′(z − z0)
d ,

where A′ is a non-zero constant and d is a positive integer. Since f is a non-constant
polynomial which has only zeros of multiplicity at least k + p, we find f (k) �≡ 0, and
hence

d = deg( f n f (k) − a) ≥ deg( f n) ≥ n(k + p) ≥ 2p + 2.

By computing, we find

{
f n f (k)

}(p+1)
(z) = A′d(d − 1) . . . (d − p)(z − z0)

d−p−1,

hence
{
f n f (k)

}(p+1)
has a unique zero z0. Take a zero ξ0 of f , then it is a zero

of f n with multiplicity at least 2p + 2. It follows that ξ0 is a common zero of
{
f n f (k)

}(p)
and

{
f n f (k)

}(p+1)
, which further implies that ξ0 = z0. Therefore, we

obtain
{
f n f (k)

}(p)
(z0) = 0.

On the other hand, we get

{
f n f (k)

}(p)
(z) = a(p)(z) + A′d(d − 1) . . . (d − p + 1)(z − z0)

d−p,

which means {
f n f (k)

}(p)
(z0) = a(p)(z0) �= 0

since deg(a) = p. This is contradictory to
{
f n f (k)

}(p)
(z0) = 0.

If f has poles, we can express f by Eq. (2.1) again, and then find

f n(z) f (k)(z) = a(z) + C ′(z − z0)l

(z − β1)N1(z − β2)N2 · · · (z − βt )Nt
, (2.12)

where C ′ is a non-zero constant and l is a positive integer. We distinguish two cases
to deduce contradictions.
Case 1 p ≥ l. Since p ≥ l, the expression Eq. (2.5) together with Eq. (2.12) implies
that

(n + 1)N + kt + p = (n + 1)M − ks + deg(g).

Therefore, we can also conclude Eq. (2.10), that is, N < M . Differentiating Eq. (2.12),
we obtain

{
f n f (k)

}(p+1)
(z) = g2(z)

(z − β1)N1+p+1 · · · (z − βt )Nt+p+1 ,
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1338 D.-W. Meng, P.-C. Hu

where g2(z) is a polynomial of degree at most (p + 1)t − (p − l + 1), and hence

(p + 1)t − (p − l + 1) ≥ deg(g2) ≥ (n + 1)M − ks − (p + 1)s,

where the last estimate follows from Eq. (2.6). Then we have

p − l

n + 1
<

p + k + 1

n + 1
s + p + 1

n + 1
t − M ≤

{
p + k + 1

(n + 1)(k + p)
+ 1

n + 1
− 1

}
M

(2.13)

since M ≥ (k + p)s, N ≥ (p + 1)t, M > N . It follows that

p + k + 1

(n + 1)(k + p)
+ 1

n + 1
≤ 1

since n ≥ 2. Therefore, from Eq. (2.13), we conclude that p − l < 0, a contradiction
with the assumption p ≥ l.
Case 2. l > p. The expression Eq. (2.12) yields

{
f n f (k)

}(p+1)
(z) = (z − z0)l−p−1g3(z)

(z − β1)N1+p+1 · · · (z − βt )Nt+p+1 , (2.14)

where g3(z) is a polynomial with deg(g3) ≤ (p+ 1)t . We claim that z0 �= αi for each
i . Otherwise, if z0 = αi for some i , then Eq. (2.12) yields

a(p)(z0) =
{
f n f (k)

}(p)
(αi ) = 0

because each αi is a zero of f n f (k) of multiplicity ≥ n(k + p) ≥ 2p + 2. This is
impossible since deg(a) = p. Hence (z − z0)l−p−1 is a factor of the polynomial g0
in Eq. (2.6). By Eqs. (2.6) and (2.14), we conclude that

(p + 1)t ≥ deg(g3) ≥ (n + 1)M − ks − (p + 1)s,

which is equivalent to

M ≤ p + k + 1

n + 1
s + p + 1

n + 1
t. (2.15)

If l �= (n + 1)N + kt + p, then Eq. (2.5) together with Eq. (2.12) implies

(n + 1)N + kt + p ≤ (n + 1)M − ks + deg(g),

so we get N < M from deg(g) ≤ k(s + t − 1). Therefore, using the facts M ≥
(k + p)s, N ≥ (p + 1)t , Eq. (2.15) implies a contradiction
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Normality Criteria of Meromorphic Functions 1339

M <

{
p + k + 1

(n + 1)(k + p)
+ 1

n + 1

}
M ≤ M.

Hence l = (n + 1)N + kt + p.
Now we must have N ≥ M , otherwise, when N < M , we can deduce the contra-

diction M < M from Eq. (2.15). Comparing Eq. (2.6) with Eq. (2.14), we find

(p + k + 1)(s + t − 1) ≥ deg(g0) ≥ l − p − 1

since (z − z0)l−p−1|g0, and hence

(n + 1)N + kt + p = l ≤ (p + k + 1)s + (p + k + 1)t − k,

which further yields

N <
p + k + 1

n + 1
s + p + 1

n + 1
t.

Since M ≥ (k + p)s and N ≥ (p + 1)t , it follows from Eq. (2.15) that

N <
p + k + 1

(n + 1)(k + p)
M + 1

n + 1
N .

Hence N ≥ M yields

N <

{
p + k + 1

(n + 1)(k + p)
+ 1

n + 1

}
N . (2.16)

Since n ≥ 2, we obtain consequently

p + k + 1

(n + 1)(k + p)
+ 1

n + 1
≤ 1.

Hence Eq. (2.16) yields N < N . This is a contradiction. Proof of Lemma 2.3 is
completed. �


Lemma 2.4 Let p ≥ 0 and n ≥ 2 be two integers such that p is divisible by n+1, and
let a be a non-zero polynomial of degree p. If f is a non-constant rational function,
then f n f ′ − a has at least one zero.

Proof If f is a non-constant polynomial, then f ′ �≡ 0. We consequently conclude that

deg
(
f n f ′) = (n + 1) deg( f ) − 1 �= p

since p is divisible by n+1. It follows that f n f ′−a is also a non-constant polynomial,
so that f n f ′ − a has at least one zero.
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1340 D.-W. Meng, P.-C. Hu

If f has poles, we can express f by Eq. (2.1) again, and then by differentiating
Eq. (2.1), we deduce that

f ′(z) = (z − α1)
m1−1(z − α2)

m2−1 · · · (z − αs)
ms−1h(z)

(z − β1)n1+1(z − β2)n2+1 · · · (z − βt )nt+1 , (2.17)

where h(z) is a polynomial of form

h(z) = (M − N )zs+t−1 + · · · .

From Eqs. (2.1) and (2.17), we obtain

f n f ′ = P

Q
,

in which

P(z) = An(z − α1)
(n+1)m1−1(z − α2)

(n+1)m2−1 · · · (z − αs)
(n+1)ms−1h(z),

Q(z) = (z − β1)
(n+1)n1+1(z − β2)

(n+1)n2+1 · · · (z − βt )
(n+1)nt+1.

We suppose, to the contrary, that f n f ′ − a has no zero. When M �= N , we have

f n f ′ = a + B

Q
= P

Q
,

where B is a non-zero constant. Therefore, we obtain

deg(P) = deg(Qa + B) = deg(Q) + p.

This implies that

(n + 1)M − s + (s + t − 1) = (n + 1)N + t + p,

or equivalently

M − N = p + 1

n + 1
,

in which p is divisible by n + 1. This is impossible since M − N is an integer.
If M = N , we can rewrite Eq. (2.1) as follows

f (z) = A + B ′(z − γ1)
l1(z − γ2)

l2 · · · (z − γr )
lr

(z − β1)n1(z − β2)n2 · · · (z − βt )nt
,

where B ′ is a non-zero constant, γi are distinct with li ≥ 1, r ≥ 0, and

M ′ = l1 + · · · + lr < N .
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Normality Criteria of Meromorphic Functions 1341

Thus we find

f ′(z) = (z − γ1)
l1−1(z − γ2)

l2−1 · · · (z − γr )
lr−1h̄(z)

(z − β1)n1+1(z − β2)n2+1 · · · (z − βt )nt+1 ,

where h̄(z) is a polynomial of form

h̄(z) = (M ′ − N )zr+t−1 + · · · .

Similarly, since deg(P) = deg(Q) + p, we have

nM + M ′ − r + (r + t − 1) = (n + 1)N + t + p = (n + 1)M + t + p,

that is,
M ′ = M + p + 1.

This is impossible since M ′ < N = M . Therefore, f n f ′ − a has at least one zero.
�


The following lemma is a direct consequence of a result from [61]:

Lemma 2.5 Let n, k be two positive integers with n ≥ 2, and let a ( �≡ 0) be a
polynomial. If f is a transcendental meromorphic function in C, then f n f (k) − a has
infinitely zeros.

3 Proof of Theorem 1.1

Without loss of generality, we may assume that D = {z ∈ C | |z| < 1}. For any point
z0 in D, either a(z0) = 0 or a(z0) �= 0 holds. For simplicity, we assume z0 = 0 and
distinguish two cases.
Case 1 a(0) �= 0. To the contrary, we suppose thatF is not normal at z0 = 0. Then, by
Lemma 2.1, there exist a sequence {z j } of complex numbers with z j → 0 ( j → ∞); a
sequence { f j } ofF ; and a sequence {ρ j } of positive numbers with ρ j → 0 ( j → ∞)

such that

g j (ξ) = ρ
− k

n+1
j f j (z j + ρ jξ)

converges uniformly to a non-constant meromorphic function g(ξ) in C with respect
to the spherical metric. Moreover, g(ξ) is of order at most 2. By Hurwitz’s theorem,
the zeros of g(ξ) have at least multiplicity k + m.

On every compact subset of C which contains no poles of g, we have uniformly

f nj (z j + ρ jξ) f (k)
j (z j + ρ jξ) − a(z j + ρ jξ)

= gnj (ξ)g(k)
j (ξ) − a(z j + ρ jξ) ⇒ gn(ξ)g(k)(ξ) − a(0). (3.1)

If gng(k) ≡ a(0), then g has no zeros and poles. Then there exist constants ci such
that (c1, c2) �= (0, 0), and

g(ξ) = ec0+c1ξ+c2ξ2
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since g is a non-constant meromorphic function of order at most 2. Obviously, this is
contrary to the case gng(k) ≡ a(0). Hence we have gng(k) �≡ a(0).

By Lemmas 2.3 and 2.5, the function gng(k) − a(0) has two distinct zeros ξ0 and
ξ∗
0 . We choose a positive number δ small enough such that D1 ∩ D2 = ∅ and such
that gng(k) − a(0) has no other zeros in D1 ∪ D2 except for ξ0 and ξ∗

0 , where

D1 = {ξ ∈ C | |ξ − ξ0| < δ}, D2 = {ξ ∈ C | |ξ − ξ∗
0 | < δ}.

By Eq. (3.1) and Hurwitz’s theorem, there exist points ξ j ∈ D1, ξ
∗
j ∈ D2 such that

f nj (z j + ρ jξ j ) f
(k)
j (z j + ρ jξ j ) − a(z j + ρ jξ j ) = 0,

and

f nj (z j + ρ jξ
∗
j ) f

(k)
j (z j + ρ jξ

∗
j ) − a(z j + ρ jξ

∗
j ) = 0

for sufficiently large j .
By the assumption in Theorem 1.1, f n1 f (k)

1 and f nj f (k)
j share a IM for each j . It

follows

f n1 (z j + ρ jξ j ) f
(k)
1 (z j + ρ jξ j ) − a(z j + ρ jξ j ) = 0,

and

f n1 (z j + ρ jξ
∗
j ) f

(k)
1 (z j + ρ jξ

∗
j ) − a(z j + ρ jξ

∗
j ) = 0.

By letting j → ∞ and noting z j + ρ jξ j → 0, z j + ρ jξ
∗
j → 0, we obtain

f n1 (0) f (k)
1 (0) − a(0) = 0.

Since the zeros of f n1 (ξ) f (k)
1 (ξ) − a(ξ) have no accumulation points, in fact we have

z j + ρ jξ j = 0, z j + ρ jξ
∗
j = 0,

or equivalently

ξ j = − z j
ρ j

, ξ∗
j = − z j

ρ j
.

This contradicts with the facts that ξ j ∈ D1, ξ
∗
j ∈ D2, D1 ∩ D2 = ∅. Thus F is

normal at z0 = 0.
Case 2 a(0) = 0. We assume that z0 = 0 is a zero of a of multiplicity p. Then we
have p ≤ m by the assumption. Write a(z) = z pb(z), in which b(0) = bp �= 0. Since
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multiplicities of all zeros of a are divisible by n + 1, then d = p/(n + 1) is just a
positive integer. Thus we obtain a new family of M (D) as follows

H =
{
f (z)

zd

∣∣∣
∣ f ∈ F

}
.

We claim that H is normal at 0.
Otherwise, ifH is not normal at 0, then by lemma 2.1, there exist a sequence {z j }

of complex numbers with z j → 0 ( j → ∞); a sequence {h j } of H ; and a sequence
{ρ j } of positive numbers with ρ j → 0 ( j → ∞) such that

g j (ξ) = ρ
− k

n+1
j h j (z j + ρ jξ) (3.2)

converges uniformly to a non-constant meromorphic function g(ξ) in C with respect
to the spherical metric, where g�(ξ) ≤ 1, ord(g) ≤ 2, and h j has the following form

h j (z) = f j (z)

zd
.

We will deduce contradiction by distinguishing two cases.
Subcase 2.1 There exists a subsequence of z j/ρ j , for simplicity we still denote it as
z j/ρ j , such that z j/ρ j → c as j → ∞, where c is a finite number. Thus we have

Fj (ξ) = f j (ρ jξ)

ρ
k

n+1+d
j

=
(ρ jξ)dh j (z j + ρ j (ξ − z j

ρ j
))

(ρ j )d(ρ j )
k

n+1

⇒ ξdg(ξ − c) = h(ξ),

and

Fn
j (ξ)F (k)

j (ξ) − a(ρ jξ)

ρ
p
j

= f nj (ρ jξ) f (k)
j (ρ jξ) − a(ρ jξ)

ρ
p
j

⇒ hn(ξ)h(k)(ξ) − bpξ
p.

(3.3)
Noting p ≤ m, it follows from Lemmas 2.3 and 2.5 that hn(ξ)h(k)(ξ) − bpξ p has

two distinct zeros at least. Additionally, with similar discussion to the proof of Case 1,
we can conclude that hn(ξ)h(k)(ξ)− bpξ p �≡ 0. Let ξ1 and ξ∗

1 be two distinct zeros of
hn(ξ)h(k)(ξ)−bpξ p. We choose a positive number γ properly, such that D3∩D4 = ∅
and such that hn(ξ)h(k)(ξ) − bpξ p has no other zeros in D3 ∪ D4 except for ξ1 and
ξ∗
1 , where

D3 = {ξ ∈ C | |ξ − ξ1| < γ }, D4 = {ξ ∈ C | |ξ − ξ∗
1 | < γ }.

By Eq. (3.3) and Hurwitz’s theorem, there exist points ζ j ∈ D3, ζ
∗
j ∈ D4 such that

f nj (ρ jζ j ) f
(k)
j (ρ jζ j ) − a(ρ jζ j ) = 0,
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and

f nj (ρ jζ
∗
j ) f

(k)
j (ρ jζ

∗
j ) − a(ρ jζ

∗
j ) = 0

for sufficiently large j . By the similar arguments in Case 1, we obtain a contradiction.
Subcase 2.2 There exists a subsequence of z j/ρ j , for simplicity we still denote it as
z j/ρ j , such that z j/ρ j → ∞ as j → ∞. Then

f (k)
j (z j + ρ jξ) =

{
(z j + ρ jξ)dh j (z j + ρ jξ)

}(k)

= (z j + ρ jξ)dh(k)
j (z j + ρ jξ) +

k∑

i=1

ai (z j + ρ jξ)d−i h(k−i)
j (z j + ρ jξ)

= (z j + ρ jξ)dρ
− nk

n+1
j g(k)

j (ξ) +
k∑

i=1

ai (z j + ρ jξ)d−iρ
− nk

n+1+i
j g(k−i)

j (ξ),

in which ai (i = 1, 2, · · · , k) are all constants. Since z j/ρ j → ∞, b(z j +ρ jξ) → bp
as j → ∞, it follows that

bp
f nj (z j + ρ jξ) f (k)

j (z j + ρ jξ)

a(z j + ρ jξ)
− bp = bp

(z j + ρ jξ)pgnj (ξ)g(k)
j (ξ)

b(z j + ρ jξ)(z j + ρ jξ)p

+
k∑

i=1

bp
(z j + ρ jξ)pgnj (ξ)g(k−i)

j (ξ)

b(z j + ρ jξ)(z j + ρ jξ)p

(
ρ j

z j + ρ jξ

)i

− bp ⇒ gn(ξ)g(k)(ξ) − bp (3.4)

on every compact subset ofCwhich contains no poles of g. Since all zeros of f j ∈ F
have at least multiplicity k + m, then multiplicities of zeros of g are at least k. Then
from Lemmas 2.3 and 2.5, the function gn(ξ)g(k)(ξ) − bp has at least two distinct
zeros. With similar discussion to the proof of Case 1, we can get a contradiction.

Hence the claim is proved, that is, H is normal at z0 = 0. Therefore, for any
sequence { ft } ⊂ F there exist �r = {z : |z| < r} and a subsequence {htk } of
{ht (z) = ft (z)/zd} ⊂ H such that htk ⇒ I or ∞ in �r , where I is a meromorphic
function. Next, we distinguish two cases.
Case A Assume ftk (0) �= 0 when k is sufficiently large. Then I (0) = ∞, and hence
for arbitrary R > 0, there exists a positive number δ with 0 < δ < r such that
|I (z)| > R when z ∈ �δ . Hence when k is sufficiently large, we have |htk (z)| > R/2,
which means that 1/ ftk is holomorphic in �δ . In fact, when |z| = δ/2,

∣∣
∣∣

1

ftk (z)

∣∣
∣∣ =

∣∣
∣∣

1

htk (z)z
d

∣∣
∣∣ ≤ M = 2d+1

Rδd
.
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By applying maximum principle, we have

∣∣∣
∣

1

ftk (z)

∣∣∣
∣ ≤ M

for z ∈ �δ/2. It follows from Motel’s normal criterion that there exists a convergent
subsequence of { ftk }, that is,F is normal at 0.
Case B There exists a subsequence of ftk , for simplicity we still denote it as ftk , such
that ftk (0) = 0. Then we get I (0) = 0 since htk (z) = ftk (z)/z

d ⇒ I (z), and hence
there exists a positive number ρ with 0 < ρ < r such that I (z) is holomorphic in �ρ

and has a unique zero z = 0 in �ρ . Therefore, we have ftk (z) ⇒ zd I (z) in �ρ since
htk converges spherically locally uniformly to a holomorphic function I in �ρ . Thus
F is normal at 0.

Similarly, we can prove that F is normal at arbitrary z0 ∈ D, and hence F is
normal in D.

4 Proof of Corollary 1.1

Using Lemmas 2.3 and 2.5, we find that if f is a non-constant meromorphic function
which has only zeros of multiplicity at least k, then f n f (k) −a has at least two distinct
zeros for a non-zero complex number a. Therefore, noting that a has no zeroes, we can
verify thatF is normal in D by utilizing the samemethod in the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Without loss of generality, we assume that D = {z ∈ C | |z| < 1} and z0 = 0. Now
we distinguish two cases by either a(0) = 0 or a(0) �= 0.
Case 1 a(0) �= 0. To the contrary, we suppose that F is not normal at 0. Using the
notations in the proof of Theorem 1.1, we also obtain

f nj (z j + ρ jξ) f ′
j (z j + ρ jξ) − a(z j + ρ jξ)

= gnj (ξ)g′
j (ξ) − a(z j + ρ jξ) ⇒ gn(ξ)g′(ξ) − a(0), (5.1)

where gng(k) �≡ a(0).
By Lemmas 2.4 and 2.5, the function gng′ − a(0) has a zero ξ2. By Eq. (5.1) and

Hurwitz’s theorem, there exist points η j → ξ2 ( j → ∞) such that for sufficiently
large j, z j + ρ jη j ∈ D and
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1346 D.-W. Meng, P.-C. Hu

f nj (z j + ρ jη j ) f
′
j (z j + ρ jη j ) − a(z j + ρ jη j ) = 0,

which contradicts the assumption that f n f ′ �= a.
Case 2 a(0) = 0. Using the notations in the proof of Theorem 1.1, we also get the
formulas Eqs. (3.1)–(3.4). Therefore, with the similar method in Case 1, we can prove
that F is normal at z0, and hence F is normal in D.
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