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Abstract Take three integersm > 0, k > 1,andn > 2. Leta (£ 0) be a holomorphic
function in a domain D of C such that multiplicities of zeros of a are at most m and
divisible by n + 1. In this paper, we mainly obtain the following normality criterion:
Let .# be the family of meromorphic functions on D such that multiplicities of zeros
of each f € .% are at least k + m and such that multiplicities of poles of f are at
least m 4 1. If each pair ( f, g) of .7 satisfies that f” f*) and g" ¢®) share a (ignoring
multiplicity), then .% is normal.

Keywords Meromorphic function - Holomorphic function - Normal family -
Sharing holomorphic functions
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1 Introduction

In this paper, we use the standard notations of the Nevanlinna theory as presented in
[11,17,50,52]. By definition, two meromorphic functions F and G are said to share
aIMif F —a and G — a assume the same zeros ignoring multiplicity. When a = oo,
the zeros of F' — a mean the poles of F.
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Let D be a domain in C and let .% be meromorphic functions defined in the domain
D. Then % is said to be normal in D, in the sense of Montel, if for any sequence
{fn} C 7 there exists a subsequence { f,; } such that f;,; converges spherically locally
uniformly in D, to a meromorphic function or oo (cf. [15,38]). For simplicity, we take
— to stand for convergence and = for convergence spherically locally uniformly.

Let .# (D) (resp. 7 (D)) be the set of meromorphic (resp. holomorphic) functions
on D. Let n be an integer and take a positive integer k. We will study normality of the
subset .% of .# (D) such that f" f® satisfies some conditions for each f € .Z.

First of all, we look at some background for the case n = 0. Hayman [17] proved
that if F € .#(C) is transcendental, then either F*) assumes every finite non-zero
complex number infinitely often for any positive integer k or F' assumes every finite
complex number infinitely often. A normality criterion corresponding to Hayman’s
theorem is obtained by Gu [14] which is stated as follows: If .% is the family in
(D) such that each f € .7 satisfies f® # a and f # b, where a, b are two
complex numbers with a # 0, then .% is normal in the sense of Montel. In particular,
if .# C &/ (D), the normality criterion was conjectured by Montel (see [38], p. 125) for
k = 1, and proved by Miranda [30]. Further, Yang [51] and Schwick [40] confirmed
that the normality criterion due to Gu is true if a is replaced by a non-zero holomorphic
function on D. In 2001, Jiang and Gao [22] proved that if .# is the family in .2/ (D)
such that the multiplicities of zeros of each f € .% are least k + m + 2 for another
non-negative integer m and such that each pair (f, g) of .7 satisfies that f® and g
share a IM (ignoring multiplicity), where a € </ (D) and multiplicities of zeros of a
are at most m, then F is normal in D, and obtained a similar result when .% C .Z (D).
For other generations, see [3-5,10,23,27,28,43,44] and [46].

Next, we introduce some developments for the case n > 1 and k = 1. In 1959,
Hayman [16] proposed a conjecture: If F € .#(C) is transcendental, then F"F’
assumes every finite non-zero complex number infinitely often for any positive integer
n. Hayman himself [16, 18] showed that it is true forn > 3,and forn = 2, F € &7 (C).
Mues [31] confirmed the conjecture for n = 2 in 1979. Furthermore, the case of n = 1
was considered by Clunie [9] when F € o7 (C), finally settled by Bergweiler and
Eremenko [2], Chen and Fang [6]. Related to these results on value distribution,
Hayman [18] conjectured that if .% is the family of .# (D) such that each f € &
satisfies f" f’ # a for a positive integer n and a non-zero complex number a, then .#
is normal. This conjecture has been confirmed by Yang and Zhang [54] (for n > 5,
and for n > 2 with # C & (D)), Gu [13] (for n = 3,4), Pang [34] (for n > 2;
cf. [12]) and Oshkin [32] (for n = 1 with .% C &/(D); cf. [24]). Finally, Pang
[34] (or see [6,55,56]) indicated that the conjecture for n = 1 is a consequence of
his theorem and Chen-Fang’s theorem [6]. Recently, based on the ideas of sharing
values, Zhang [58] proved that if .7 is the family of .# (D) such that each pair (f, g)
of & satisfies that f” f’ and g"g’ share a finite non-zero complex number a IM
for n > 2, then .% is normal. There are examples showing that this result is not
true for the case n = 1. Further, Jiang [22] concluded that if .# is the family of
(D) such that each pair (f, g) of .# satisfies that f" f" and g"g’ share a IM for
n > 2m + 2, where a € /(D) and multiplicities of zeros of a are at most m, then .#
is normal.
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Normality Criteria of Meromorphic Functions 1333

Similarly, we also have analogs related to some conditions of f ( f (k))l for a pos-
itive integer /. For example, Zhang and Song [60] announced that if F € .Z(C) is
transcendental; a (3 0) a small function of F;/ > 2, then F (F (k))l — g has infinitely
many zeros. A simple proof was given by Alotaibi [1]. The normality criterion corre-
sponding to this result was obtained by Jiang and Gao [21] which is stated as follows:
Letl,k > 2, m > 0 be three integers such that m is divisible by / + 1 and suppose
that a (s 0) is a holomorphic function in D with zeros of multiplicity m. If .7 is the
family of o7 (D) (resp. . (D)) such that multiplicities of zeros of each f € .¥ are at
least k 4+ m (resp. max{k + m, 2m + 2}) and such that each pair (f, g) of .% satisfies
that f ( f ("))l and g (g (k))l share a IM, then .% is normal. For more results related to
this topic, see Hennekemper [19], Hu and Meng [20], Li [25,26], Schwick [39], Wang
and Fang [42], Yang et al. [49].

Finally, we consider general cases of n > 1 and k > 1. In 1994, Zhang and Li [61]
proved that if F € .#(C) is transcendental, then F"L[F] — a has infinitely many
zeros for n > 2 and a # 0, oo, where

LIF1=aF® +ap F&D 4. agF

in whicha; i =0, 1,2, - -- , k) are small functions of F. In 1999, Pang and Zalcman
[36] obtained a corresponding normality criterion as follows: If .%# is the family of
&/ (D) such that zeros of each f € .% have multiplicities at least k and such that each
f € .7 satisfies f" f©) £ q for a non-zero complex number a, then .% is normal. In
2005, Zhang [59] showed that when n > 2, this result is also true if a is replaced by
a non-vanishing holomorphic functions in D. For other related results, see Meng and
Hu [29], Qi [37], Wang [41], Xu [45], Yang and Hu [48], Yang and Yang [53].

Take three integers m > 0,k > 1, and n > 2. Let a (% 0) be a holomorphic
function in D such that multiplicities of zeros of a are at most m and divisible by
n + 1. In this paper, we obtain the following normality criteria:

Theorem 1.1 Let .7 be the family of . (D) such that multiplicities of zeros of each
f € F are at least k + m and such that multiplicities of poles of f are at least m + 1
whenever f have zeros and poles. If each pair (f, g) of F satisfies that f" f® and
g" g™ share a IM, then F is normal in D.

In special, if a has no zeros, which means m = 0, then Theorem 1.1 has the
following form:

Corollary 1.1 Let % be the family of ./ (D) such that multiplicities of zeros of each
f € .F are at least k. If each pair (f, g) of F satisfies that f" f® and g"g® share
a IM, then .F is normal in D.

It is easy to see that this result extends above normality criteria due to Pang and
Zalcman [36], and Zhang [59]. Furthermore, we can improve partially the normality
criterion due to Jiang [22] as follows:

Theorem 1.2 [f % is the family of .# (D) such that each f € % satisfies that
f"f' # a, then .7 is normal in D.
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1334 D.-W. Meng, P.-C. Hu

The condition a(z) # 0 in Theorem 1.1 and 1.2 is necessary. This fact can be
illustrated by the following example:

Example 1.1 Let D = {z € C| |z| < 1}. Leta(z) = 0 and
7={f=P|j=12.]

Obviously, f" f; ® and f i f ) Share a IM for distinct positive integers i and j (resp.
f”f # a), but the famﬂy is not normal at z = 1/2.

In Corollary 1.1, the condition that multiplicities of zeros of each f € .# are at
least k is sharp. For example, we consider the following family:

Example 1.2 Denote D as in Example 1.1. Let a(z) = e* and

1 k—1
{f/(Z)—](Z—Z) j:1,2,...].

Any f; € .F has only a zero of multiplicity k — 1 in D and for distinct positive integers
iandj, f'f; ® and f i f ® share a TM. However, the family .% is not normal at z = 0.

2 Preliminary Lemmas

In order to prove our results, we require the following Zalcman’s lemma (cf. [56]):

Lemma 2.1 Tuke a positive integer k. Let & be a family of meromorphic functions
in the unit disk A with the property that zeros of each f € F are of multiplicity at
least k. If F is not normal at a point 7y € A, then for 0 < a < k, there exist a
sequence {z,} C A of complex numbers with z,, — 7o, a sequence { f,} of % ; and a
sequence {p,} of positive numbers with p, — 0 such that g,(§) = p,;* fu(zn + Pr&)
locally uniformly (with respect to the spherical metric) to a non-constant meromorphic
function g(&) on C. Moreover, the zeros of g(€) are of multiplicity at least k, and the
function g(€) may be taken to satisfy the normalization g*(&) < g*(0) = 1 for any
& € C. In particular, g(&) has at most order 2.

This result is Pang’s generalization (cf. [33,35,47]) to the Main Lemma in [55]
(where « is taken to be 0), with improvements due to Schwick [39], Chen and Gu [7].
In Lemma 2.1, the order of g is defined using the Nevanlinna’s characteristic function
T(r,g):

ord(g) = lim sup M.
r—00 log r

Here, as usual, g1j denotes the spherical derivative

8" (6)]

1 = .
86 = T RER
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Lemma 2.2 Let p > 0,k > 1, and n > 2 be three integers, and let a be a non-zero
polynomial of degree p. If f is a non-constant rational function which has only zeros
of multiplicity at least k + p and has only poles of multiplicity at least p + 1, then
F"f% — a has at least one zero.

Proof If f is a polynomial, then f*) = 0 since f is non-constant and has only zeros

of multiplicity at least k + p which further means deg(f) > k+ p. Noting thatn > 2,
we immediately obtain that

deg (1" ) = ndeg(f) = nk + p) > p = deg(@).

Therefore, it follows that f” f®) — a is also a non-constant polynomial, and hence
£ f® — g has at least one zero. Next, we assume that f has poles. Set

_AG—a)" (@ —a)" (g o)™

J& = = g =Py =By

. 2.1

where A is a non-zero constant, o; distinct zeroes of f with s > 0, and 8; distinct
poles of f with ¢t > 1. For simplicity, we put

my+my+ - 4+mg=M=> (k+ p)s, (22)
ni4+ny+-+n=N=(p+ D 23)

From Eq. (2.1), we obtain

(z— o)™ Kz =)™ (2 — )™ Re(2)
(z — Btk (z — po)ymath ..o (z — Btk

P =

, 2.4)

where g is a polynomial of degree < k(s 4+t — 1). From Eqgs. (2.1) and (2.7), we get

ANz —aM(z —a)M2 - (2 — )M g(2)

(z= BNz = BN (2 = BN

@Y = : (2.5)

in which

Mi=(n+1)mi—k, i=1,2,"',S,
sz(n—i-l)nj—i—k, j=1,2,--- ¢

Differentiating Eq. (2.5) yields

_GmapM TP g —ap)M T (=) M P g (2)
B (z — NP+l (7 — BN+ t]

(2)

El

{fnf(k)}(pH)
(2.6)
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1336 D.-W. Meng, P.-C. Hu

where go(z) is a polynomial of degree < (p + k + 1)(s + ¢t — 1). We assume, to the
contrary, that f” f®) — g has no zero, then

C
n k) () —
@ fP@) =alx) + , 2.7
rer (2= BNz = PN (2 = BN
where C is a non-zero constant. Subsequently, Eq. (2.12) yields
(p+D 21(2)
n ¢(k) _
{f ! } @ = (z — BNiHpHL (7 — B)Nitp+1” (28)
where g1 (z) is a polynomial of degree < (p 4+ 1)(r — 1).
Comparing Eq. (2.6) with Eq. (2.8), we get
(p+ D@ —1)=deg(g1) = (n+ )M — ks — (p+ Ds,
and hence k41 41
m<? s+ P22 (2.9)
n+1 n+1
From Egs. (2.5) and (2.7), we have
m+1DN+kt+p=mn+1)M — ks + deg(g).
Since deg(g) < k(s + ¢ — 1), we find
m+1)N<m+1)M —ks+k(s+t—1)—kt — p,
and thus
N <M. (2.10)

By Egs. (2.9), (2.10) and noting that M > (k + p)s, N > (p + 1)t, we deduce that

p+k+1  p+1 ptk+1 !
M < s t <
n+1 n+1 m+Dk+p) n+1l

M. @2.11)

Note that n > 2 implies

pt+k+1 1 2(k+p+1
(n+Dk+p) n+1 (+Dk+p) ~

Hence it follows from Eq. (2.11) that M < M, which is a contradiction. Lemma 2.2
is proved. O

Lemma 2.3 Let p > 0,k > 1, and n > 2 be three integers, and let a be a non-zero
polynomial of degree p. If f is a non-constant rational function which has only zeros
of multiplicity at least k + p and has only poles of multiplicity at least p + 1, then
F" % — a has at least two distinct zeros.
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Proof Lemma 2.2 implies that f” f®) — 4 has at least one zero. Assume, to the
contrary, that f” £ — g has only one zero zg. If f is a polynomial, then we can write

F@fP@ —ak) = A'z - 20,
where A’ is a non-zero constant and d is a positive integer. Since f is a non-constant

polynomial which has only zeros of multiplicity at least k + p, we find f® = 0, and
hence

d = deg(f" f® —a) = deg(f") = n(k + p) = 2p +2.

By computing, we find
n o) P , d—p—1
{ff } (z)=A'dd—-1)...(d — p)(z—z0) ,

hence { r (k)}(p D has a unique zero zo. Take a zero &y of f, then it is a zero
of f" with multiplicity at least 2p + 2. It follows that & is a common zero of

{r"r (k)}(p ) and {r"r (k)}(p 1 Which further implies that £ = zo. Therefore, we

obtain {f”f(k)}(p) (z0) = 0.
On the other hand, we get

(p)
[r )" @=aP@+add-1...@d-p+DE-2"7",

which means

[rr®)" @) = aPco) # 0

since deg(a) = p. This is contradictory to {f”f(k)}(p) (z0) = 0.
If f has poles, we can express f by Eq. (2.1) again, and then find
C'(z — 20)'
(z— BN (z— PN (2= BN

@ fP@) =a@ + (2.12)

where C’ is a non-zero constant and / is a positive integer. We distinguish two cases
to deduce contradictions.

Case 1 p > [. Since p > [, the expression Eq. (2.5) together with Eq. (2.12) implies
that

m+1DON+kt+p=mn+ 1M — ks + deg(g).

Therefore, we can also conclude Eq. (2.10), thatis, N < M. Differentiating Eq. (2.12),
we obtain

}(p+1>( )= 82(2)
YT G BN = g

{rmr®
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1338 D.-W. Meng, P.-C. Hu

where g>(z) is a polynomial of degree at most (p + 1)t — (p — [ 4 1), and hence
(p+ Dt —(p—1+1) =deg(g2) = (n+ DM — ks — (p + s,

where the last estimate follows from Eq. (2.6). Then we have

s + 1—M < -1
n+1 n+1 n+1 m+Dk+p) n+1

p—1l p+k+1 p+1 p+k+1 1 ]
< M
(2.13)

since M > (k+ p)s, N > (p+ 1)t, M > N. It follows that

p+k+1 1
+ =1
n+Dk+p) n+l

since n > 2. Therefore, from Eq. (2.13), we conclude that p — [ < 0, a contradiction
with the assumption p > /.
Case 2./ > p. The expression Eq. (2.12) yields

_ I—p—1
{fnf(k)}(p+l) @) = (z — z0) 83(2) 2.14)

(2= BNIFPEL L (= g Nkl

where g3(z) is a polynomial with deg(g3) < (p + 1)¢. We claim that zg # «; for each
i. Otherwise, if zo = «; for some i, then Eq. (2.12) yields

a'?(z0) = {f”f(")}(p) (o) =0

because each «; is a zero of f" f® of multiplicity > n(k + p) > 2p + 2. This is
impossible since deg(a) = p. Hence (z — z9)!~P~! is a factor of the polynomial go
in Eq. (2.6). By Egs. (2.6) and (2.14), we conclude that

(p+ Dt = deg(g3) = n+ DM — ks — (p + Ds,

which is equivalent to

k+1 1
M§p+ + s+p+ t.
n+1 n—+1

If I #(m+ 1)N + kt + p, then Eq. (2.5) together with Eq. (2.12) implies

(2.15)

(n+ DN +kt + p < (n+ DM — ks + deg(g),

so we get N < M from deg(g) < k(s + t — 1). Therefore, using the facts M >
(k+ p)s, N > (p + Dt, Eq. (2.15) implies a contradiction
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<[ p+k+1 N 1 ]MgAL
nm+)k+p n+1

Hencel = (n + 1)N + kt + p.
Now we must have N > M, otherwise, when N < M, we can deduce the contra-
diction M < M from Eq. (2.15). Comparing Eq. (2.6) with Eq. (2.14), we find

(p+k+D(s+1—1)>deg(go) > —p—1
since (z — z0)! 7P ~!|go, and hence
m+DN+kt+p=I1<(p+k+Ds+(p+k+ Dr—k,

which further yields

k+1 1
PRt s+ Pt t.
n+1 n+1
Since M > (k + p)s and N > (p + 1)t, it follows from Eq. (2.15) that

N <

1 1
- p+k+ Y, N
(n+ Dk +p) n+1

Hence N > M yields

k+1 1
[ prET (2.16)

nm+)k+p) n+1
Since n > 2, we obtain consequently

p+k+1 1 <1
m+Dk+p) n+17~

Hence Eq. (2.16) yields N < N. This is a contradiction. Proof of Lemma 2.3 is
completed. O

Lemma 2.4 Let p > Qandn > 2 be two integers such that p is divisible by n + 1, and
let a be a non-zero polynomial of degree p. If f is a non-constant rational function,

then " f' — a has at least one zero.

Proof 1f f is a non-constant polynomial, then f” # 0. We consequently conclude that

deg (f"f') = (n+1)deg(f) =1 # p

since p is divisible by n+ 1. It follows that f” f’ —a is also a non-constant polynomial,
so that f™ f’ — a has at least one zero.
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1340 D.-W. Meng, P.-C. Hu

If f has poles, we can express f by Eq. (2.1) again, and then by differentiating
Eq. (2.1), we deduce that

2.17)

)

L G—a)™ N —a)m g —a)™ ()

S @) = B G = T (o = By

where h(z) is a polynomial of form

h(z) =M = N2+ 4o
From Egs. (2.1) and (2.17), we obtain

fnf/_£
_Q’

in which
P(x) =A"(z— Ol])(n+1)m1—1(z — az)(n+l)frl2—l o (z— dg)("+1)mrlh(z),
0@ =(z— ﬂ1)("+1)”1+1(z _ Igz)(n-i-l)nz-i-] N

. (Z _ ﬁt)(rH—l)nt-‘rI .
We suppose, to the contrary, that f” f/ — a has no zero. When M # N, we have
B P
fn f/ =a+ —==—,
o 0
where B is a non-zero constant. Therefore, we obtain

deg(P) = deg(Qa + B) = deg(Q) + p.

This implies that
m+DOM —s+(+t—1)=mn+1DN+1t+p,

or equivalently

1
M—N:ﬁ,
n+1

in which p is divisible by n + 1. This is impossible since M — N is an integer
If M = N, we can rewrite Eq. (2.1) as follows

B'z—y)z—y) (=)l
= A + ’
F@ @ = B)" G — B (2 — B

where B’ is a non-zero constant, y; are distinct with ; > 1, r > 0, and

M =1l +---+1I <N.
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Thus we find

_ (z— )/1)11—1(Z _ yz)lz—l N — )/r)l’_lh(z)
= (z — /31)’”+1(Z _ ’32)n2+l ce(z = ﬂt)n,+l

'@

s

where 7i(z) is a polynomial of form
h(z) =M — N 4.
Similarly, since deg(P) = deg(Q) + p, we have
aM4+M —r+@F+t—1)=m+D)N+t+p=mn+1DM+t+p,

that is,
M =M+ p+1.

This is impossible since M’ < N = M. Therefore, f" f' — a has at least one zero.
O

The following lemma is a direct consequence of a result from [61]:

Lemma 2.5 Let n, k be two positive integers with n > 2, and let a (£ 0) be a
polynomial. If f is a transcendental meromorphic function in C, then f" f® — a has
infinitely zeros.

3 Proof of Theorem 1.1

Without loss of generality, we may assume that D = {z € C | |z| < 1}. For any point
zo in D, either a(zg) = 0 or a(zp) # 0 holds. For simplicity, we assume zg = 0 and
distinguish two cases.

Case 1a(0) # 0. To the contrary, we suppose that .% is not normal at zg = 0. Then, by
Lemma 2.1, there exist a sequence {z;} of complex numbers withz; — 0 (j — 00);a
sequence { f;} of .#; and a sequence {p;} of positive numbers with p; — 0 (j — o0)
such that

__k_
8j&) =p; " fi(z;j + pj&)
converges uniformly to a non-constant meromorphic function g(¢) in C with respect
to the spherical metric. Moreover, g(£) is of order at most 2. By Hurwitz’s theorem,

the zeros of g(&) have at least multiplicity k + m.
On every compact subset of C which contains no poles of g, we have uniformly

£+ 0o fP 5 + pjE) —alzj + pjk)
= 2" @8N —alz + 06 = " ©V® —a®). Gl

If g"¢® = a(0), then g has no zeros and poles. Then there exist constants ¢; such
that (c1, ¢2) # (0, 0), and
g(g) — eCO+Cl$+C2§2
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1342 D.-W. Meng, P.-C. Hu

since g is a non-constant meromorphic function of order at most 2. Obviously, this is
contrary to the case g" g% = a(0). Hence we have g”g® # a(0).

By Lemmas 2.3 and 2.5, the function g"g®) — a(0) has two distinct zeros & and
&5 We choose a positive number § small enough such that D; N Dy = ¢ and such
that g”¢® — a(0) has no other zeros in D U D, except for & and &y, where

Di={eC|lE—&l<d, Dr={§eCll§—-§| <3}
By Eq. (3.1) and Hurwitz’s theorem, there exist points §; € Dy, E;‘ € D> such that
£+ 0 EN£0 @+ pigy) — alzj + pj) =0,
and
f1G+piENFP0 G+ piED —alz; + pjg) =0
for sufficiently large j.

By the assumption in Theorem 1.1, f}' fl(k) and f j" fj(k) share a IM for each j. It
follows

A+ 1 @ + 08 — azj + pjE) =0,
and
G+ oD Y@+ pig)) —atz + pig)) =0.
By letting j — oo and noting zj + pj§; — 0,z; 4+ p;j&7 — 0, we obtain
RO 70 —a@0 =0.
Since the zeros of f{'(§) fl(k) (£) — a(&) have no accumulation points, in fact we have
2j+pj€j =0, zj+pi§i =0,

or equivalently

This contradicts with the facts that §; € Dy, é;‘ € D>, D; N Dy = . Thus .% is
normal at zg = 0.

Case 2 a(0) = 0. We assume that zo = 0 is a zero of a of multiplicity p. Then we
have p < m by the assumption. Write a(z) = z”b(z), in which 6(0) = b, # 0. Since
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multiplicities of all zeros of a are divisible by n + 1, thend = p/(n + 1) is just a
positive integer. Thus we obtain a new family of . (D) as follows

o |12 ez
Z
We claim that .7# is normal at 0.
Otherwise, if 77 is not normal at 0, then by lemma 2.1, there exist a sequence {z;}

of complex numbers with z; — 0 (j — 00); a sequence {4} of 7#; and a sequence
{p;j} of positive numbers with p; — 0 (j — o0) such that

__k_
8i&)=p; " hi(zj +pj§) (3.2)

converges uniformly to a non-constant meromorphic function g(¢) in C with respect
to the spherical metric, where gj(é) <1, o0rd(g) < 2, and h; has the following form

We will deduce contradiction by distinguishing two cases.
Subcase 2.1 There exists a subsequence of z;/p;, for simplicity we still denote it as
zj/pj,suchthatz;/p; — cas j — oo, where c is a finite number. Thus we have

Filpie) Pz +pjE = L)

Fj¢) = = = &% —¢) = h(®),
T (0 (pj) 7T
and
: I10i6) 0 (&) — a(p;é)
F;@)F;k)@)—“(p f)z L) 22 S n©)h®E) — bye?.

Pj Pj

3.3)
Noting p < m, it follows from Lemmas 2.3 and 2.5 that 7" (£)hX) (§) — b,&P has
two distinct zeros at least. Additionally, with similar discussion to the proof of Case 1,
we can conclude that 2" (£)h®) () — bp&EP # 0. Let £ and & be two distinct zeros of
" (ERP (&) —b »&P. We choose a positive number y properly, such that D3N Dy = @
and such that A" (£)h© (&) — b p&P has no other zeros in D3 U D4 except for & and

&F, where

Dy={ecCllE-&l<y} Di={ecCllE-¢&<v}

By Eq. (3.3) and Hurwitz’s theorem, there exist points ¢; € D3, g']’.k € Dy such that
(9 N
fj (;Oj;j)fj (P/{/)_a(pjé’/)—oa
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and
ng ek o) ok ey
fj (pjgj)fj (P,/fj) a(P,/fj)—O

for sufficiently large j. By the similar arguments in Case 1, we obtain a contradiction.
Subcase 2.2 There exists a subsequence of z;/p;, for simplicity we still denote it as
zj/pj,suchthatz;/p; — oo as j — oo. Then

*
fj(k)(Zj +pj§) = {(Zj +pi6)hj(; +pf§)}
k
= (2 + 0, @+ pi&) + D aizy + p&) TR T (@ + pj8)
im1

k nk :
—niT (k i Tapr i (k—i
= (zj +pi&)p, TV @E) + D aite; + piE) T T g ),

i=1

inwhicha;(i =1,2,---, k) are all constants. Since z;/p; — 00, b(zj +p;&) — by
as j — 0o, it follows that

p az; + pjé) PP bz + pj6) (2 + pE)P
+ib @ + P8l )" &) ( pi )"
S b+ piE) )+ pE)P §

—b, = g"e"E) —b, (3.4)

b fi@i+ /)j%_)fj(k)(Zj +pjé) B (zj + pjé)pg;?(é)gﬁk)(é)

Zj + pj

on every compact subset of C which contains no poles of g. Since all zeros of f; € &
have at least multiplicity k 4 m, then multiplicities of zeros of g are at least k. Then
from Lemmas 2.3 and 2.5, the function g"(£)g®) (&) — b, has at least two distinct
zeros. With similar discussion to the proof of Case 1, we can get a contradiction.
Hence the claim is proved, that is, ## is normal at zg = 0. Therefore, for any
sequence {f;} C .# there exist A, = {z : |z| < r} and a subsequence {h; } of
{hi(z) = f;(z)/zd} C % such that h;, = I or oo in A,, where / is a meromorphic
function. Next, we distinguish two cases.
Case A Assume f;, (0) # 0 when k is sufficiently large. Then /(0) = oo, and hence
for arbitrary R > 0, there exists a positive number § with 0 < § < r such that
|1(z)| > R when z € As. Hence when k is sufficiently large, we have |, (z)| > R/2,
which means that 1/f;, is holomorphic in As. In fact, when |z] = 6/2,

2d+1
Réd "

1
ftk (2)

1
hy (2)2¢

<M=
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By applying maximum principle, we have

<M

ftk (Z)

for z € Agj. It follows from Motel’s normal criterion that there exists a convergent
subsequence of { f;, }, that is, .# is normal at 0.
Case B There exists a subsequence of f;,, for simplicity we still denote it as f,, such
that f;, (0) = 0. Then we get 7(0) = O since h;, (z) = f, (z)/z% = I(z), and hence
there exists a positive number p with 0 < p < r such that I (z) is holomorphic in A,
and has a unique zero z = 0 in A,. Therefore, we have f, (z) = Z1(z)in A o since
hy, converges spherically locally uniformly to a holomorphic function I in A,. Thus
% is normal at 0.

Similarly, we can prove that .% is normal at arbitrary zo € D, and hence .% is
normal in D.

4 Proof of Corollary 1.1

Using Lemmas 2.3 and 2.5, we find that if f is a non-constant meromorphic function
which has only zeros of multiplicity at least k, then £ f®) — g has at least two distinct
zeros for a non-zero complex number a. Therefore, noting that a has no zeroes, we can
verify that % is normal in D by utilizing the same method in the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Without loss of generality, we assume that D = {z € C | |z| < 1} and z¢9 = 0. Now
we distinguish two cases by either a(0) = 0 or a(0) # 0.

Case 1 a(0) # 0. To the contrary, we suppose that .% is not normal at 0. Using the
notations in the proof of Theorem 1.1, we also obtain

F1@j+ 0 fi(zj + pj€) —azj + pjk)
= g1(6)g)(&) — alz; + pj&) = g"(E)g (§) — a(0), (5.1)

where g"g® = a(0).

By Lemmas 2.4 and 2.5, the function g" g’ — a(0) has a zero &. By Eq. (5.1) and
Hurwitz’s theorem, there exist points n; — & (j — 00) such that for sufficiently
large j,z; + pjn; € D and
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i@+ pinp) iz +pini) —alzj+pjn;) =0,

which contradicts the assumption that f” f" # a.

Case 2 a(0) = 0. Using the notations in the proof of Theorem 1.1, we also get the
formulas Egs. (3.1)—(3.4). Therefore, with the similar method in Case 1, we can prove
that .% is normal at zo, and hence .% is normal in D.
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