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Abstract This work obtains the soliton solutions of the generalized Davey–
Stewartson equation with the complex coefficients. First, the extended Weierstrass
transformationmethod is used to carry out the solutions of this equation, and some new
solutions, knownasWeierstrass elliptic function solutions, are obtainedby thismethod.
Then, the trial equation method is used to obtain the soliton solutions of this equation.

Keywords Weierstrass transformation method · Trial equation method · Soliton
solutions

1 Introduction

The investigation of exact solutions of nonlinear evolution equations (NLEEs) plays an
important role in the analysis of some physical phenomena. The types of solutions of
NLEEs, that are integrated using various mathematical techniques, are very important
and appear in various areas of physics, applied mathematics and engineering. In this
paper, the Davey–Stewartson equation (DSE) that arises in the study of fluid dynamics
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1224 Y. Gurefe et al.

will be studied. In fact, this equation particularly studies the long-wave–short-wave
resonances and other patterns of propagatingwaves [1,2]. Also, this equation describes
the evolution of a 3-dimensional wave packet on water of finite depth. Some solutions
for this equation can be found in [3–6].

There are a lot of analytical methods of solving these NLEEs that have also been

developed in the past few decades. Some of thesemethods are
(
G ′
G

)
-expansionmethod

[7–9], exp-function method [10,11], the tanh method [12], homogeneous balance
method [13] and many more. In this paper the extended Weierstrass transformation
method [14–17] will be applied to obtain Weierstrass function solutions to the DSE.
Also, the trial equation method [17,18,18–26] will be applied to obtain the soliton
solutions to this equation. Finally, we can say that the obtained solutions satisfy the
equation.

2 Extended Weierstrass Transformation Method

In this section, the extended Weierstrass transformation method will be first described
and then subsequently applied to solve the DSE.

2.1 Description of the Method

In this section, a brief description of the extended Weierstrass transformation method
is represented. Consider the NLEEs, say in variables xi , i = 1, 2, 3 and t as follows:

φ(u, ut , uxi , uxi xi , utt , uxi t , ...) = 0, (2.1)

where φ is, in general, a polynomial in u(xi , t) and its various partial derivatives.
Seeking for travelling wave solution of (2.1), taking u(xi , t) = U (ξ) and ξ = ∑

i ki xi+ ct leads to an ordinary differential equation as

φ(U, cU ′, kiU ′, c2U ′′, ckiU ′′, k2i U ′′, ...) = 0. (2.2)

In the next step, we suppose that the solution of (2.1) can be expressed in the general
form

U (ξ) =
N∑

j=−N

a j w
j (ξ), (2.3)

where a j are constants to be determined later, N is fixed by balancing the linear term
of the highest order derivative with the highest nonlinear term in (2.2), while w(ξ)

satisfying the general elliptic equation [27]

w′(ξ) = d

dξ
w(ξ) =

√
b0 + b1w(ξ) + b2w2(ξ) + b3w3(ξ) + b4w4(ξ). (2.4)
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New Exact Solutions of the Davey–Stewartson Equation 1225

Substituting (2.3) into (2.2) along with (2.4), equating the coefficients of all powers of
w j (ξ) ( j = 0, 1, ...) to zero get a system of algebraic equations. Solving the system
of nonlinear algebraic equations byMathematica, we have explicit expressions for a j ,
k j and c. The success of algebraic methods depends on the solubility of the nonlinear
algebraic system since trivial solutions only lead us to useless solutions. Further, the
crucial step is to solve (2.1) in general, which is indeed, a difficult task. Whereby
the solutions of (2.4) belong to solution classes of (2.1), some special cases of (2.1)
depending on bi -values are given in [14,16,17] and represented here as follows:

For b1 = b3 = 0:
The solutions of (2.4) in this case are

w1(ξ) =
√
3ψ(ξ ; g2, g3) − b2

3b4
, (2.5)

and

w2(ξ) =
√

3b0
ψ(ξ ; g2, g3) − b2

, (2.6)

where the invariants of the Weierstrass function ψ(ξ ; g2, g3) are expressed by

g2 = 4

3

(
b22 − 3b0b4

)
, g3 = 4b22

27

(
9b4 − 2b2

)
. (2.7)

Another type of solutions admits

w3(ξ) =
√
2b0[6ψ(ξ ; g2, g3) + 2b2 + D±]

12ψ(ξ ; g2, g3) + D±
, (2.8)

where the quantity D is given by

D± =
−5b2 ±

√
9b22 − 36b0b4

2
, (2.9)

and the Weierstrass function invariants are

g2 = − b2
12

(5D± + 4b2 + 33b0b4), (2.10)

and

g3 = 1

216
[b22(21D± + 20b2) − 3b0b4(21D± + 9b2)]. (2.11)
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Also, there are two different solutions, which are found to be

w4(ξ) =
√
b0
3

6ψ(ξ ; g2, g3) + b2
ψ ′(ξ ; g2, g3) (2.12)

and

w5(ξ) = 3√
b4

ψ ′(ξ ; g2, g3)
6ψ(ξ ; g2, g3) + b2

, (2.13)

where ψ ′(ξ ; g2, g3) = dψ(ξ ;g2,g3)
dξ

and the invariants of the Weierstrass function are

g2 = b22 − b0b4
12

, g3 = 36b0b4 − b22
216

. (2.14)

2.2 Application to the DSE in (1 + 2) Dimensions

The dimensionless formof theDSE in (1+2) dimensions,with power-lawnonlinearity,
that is going to be studied in this paper is given by [1,28]

iqt + a(qxx + qyy) + b|q|2nq = αqr, (2.15)

rxx + ryy + β(|q|2n)xx = 0. (2.16)

Here, in (2.15) and (2.16), q and r are the dependent variables, while x , y and t are
the independent variables. The first two of the independent variables are the spatial
variables, while t represents time. The exponent n is the power-law parameter. It is
necessary to have n > 0. In (2.15) and (2.16), q is a complex-valued function, while r
is a real-valued function. Also, a, b, α and β are all constant coefficients. For solving
the Eqs. (2.15) and (2.16) with theWeierstrass transformation method, using the wave
variables

q = eiθu(ξ), r = v(ξ), (2.17)

θ = θ1x + θ2y + θ3t, ξ = ξ1x + ξ2y + ξ3t, (2.18)

where θ1, θ2, θ3, ξ1, ξ2 and ξ3 are real constants, converts (2.15) and (2.16) to the
system of ODEs

(ξ3 + 2aθ1ξ1 + 2aθ2ξ2)u(ξ) = 0, (2.19)

−(θ3 + aθ1
2 + aθ2

2)u(ξ) + a(ξ1
2 + ξ2

2)u′′(ξ) + bu2n+1(ξ) − αu(ξ)v(ξ) = 0,

(2.20)

(ξ1
2 + ξ2

2)v′′(ξ) + βξ1
2(u2n)′′(ξ) = 0 (2.21)

where primes denote the derivatives with respect to ξ . Eq. (2.21) is then integrated
term by term two times where integration constants are considered zero. This converts
it into
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v(ξ) = −βξ1
2

ξ12 + ξ22
u2n(ξ). (2.22)

Substituting (2.22) into (2.20) gives

−(θ3 + aθ1
2 + aθ2

2)u(ξ) + a(ξ1
2 + ξ2

2)u′′(ξ)

+
(
b + αβ

ξ1
2

ξ12 + ξ22

)
u2n+1(ξ) = 0. (2.23)

Balancing u′′ with u2n+1 gives N = 1
n . In order to obtain closed form solutions,

we use the transformation

u(ξ) = V
1
n (ξ) (2.24)

that will reduce (2.23) into

−(θ3 + aθ1
2 + aθ2

2)n2V 2 + a(ξ1
2 + ξ2

2)(1 − n)V ′2

+ a(ξ1
2 + ξ2

2)nV V ′′ +
(
b + αβ

ξ1
2

ξ12 + ξ22

)
n2V 4 = 0. (2.25)

Balancing VV ′′ with V 4 gives N = 1. Therefore, we can write the solution of Eq.
(2.25) in the form of

V (ξ) = a−1w
−1(ξ) + a0 + a1w(ξ) (2.26)

where a−1, a0 and a1 are constants to be determined later and w(ξ) satisfies Eq. (2.4).
Substituting Eq. (2.26) along with Eq. (2.4) into Eq. (2.25) and collecting all terms
with the same order ofw j (ξ) together, the left-hand side of Eq. (2.25) is converted into
a polynomial in w j (ξ). Equating each coefficient of this polynomial to zero yields a
set of algebraic equations for the constants a−1, a0, a1, b0, b1, b2, b3, b4 and θ3 which
can determine by usingMathematica. Thus, the solution functions ui (x, y, t) = Vi (ξ)

where (i = 1, 2, . . . , 5) can be given as follows. The nontrivial solutions of the
algebraic system are obtained.

For b1 = b3 = 0 :
Case 1

a−1 = a0 = b0 = 0, θ3 = a
(
b2(ξ21 + ξ22 ) − n2(θ21 + θ22 )

)

n2
,

a1 = ∓ξ21 + ξ22

n

√
−a(n + 1)b4

(b + αβ)ξ21 + bξ22
, (2.27)

where ξ3 = −2a(θ1ξ1 + θ2ξ2) and b2, b4 are the free parameters. The Weierstrass
function solution is given by (2.5)
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w1,1(ξ) =
√
3ψ(ξ ; g2, g3) − b2

3b4
. (2.28)

where the invariants of the first Weierstrass function are given by g2 = 4b22
3 and

g3 = 4b22
27 (9b4 − 2b2).

Also, the solution (2.13) can be written as

w1,5(ξ) = 3√
b4

ψ ′(ξ ; g2, g3)
6ψ(ξ ; g2, g3) + b2

, (2.29)

where the invariants of the fifth Weierstrass function are given by g2 = b22
12 and g3 =

−b22
216 .
Using these results and (2.24), (2.26) we can write the solutions of the DSE as

q1,i = ei(θ1x+θ2 y+θ3t)

(
∓ξ21 + ξ22

n

√
−a(n + 1)b4

(b + αβ)ξ21 + bξ22
w1,i(ξ)

) 1
n

, i = 1, 5,

(2.30)

r1,i = aβξ21 (n + 1)(ξ21 + ξ22 )b4
n2

(
(b + αβ)ξ21 + bξ22

) w2
1,i (ξ), i = 1, 5. (2.31)

Case 2

a0 = 0, ξ3 = −2a(θ1ξ1 + θ2ξ2), b0 = b22
4b4

,

θ3 = −a

(
n2(θ21 + θ22 ) + 2b2(ξ21 + ξ22 )

n2

)
, (2.32)

a−1 = ∓b2(ξ21 + ξ22 )

2n

√
−a(n + 1)(

(b + αβ)ξ21 + bξ22
)
b4

,

a1 = ∓ξ21 + ξ22

n

√
−a(n + 1)b4

(b + αβ)ξ21 + bξ22
, (2.33)

where b2 and b4 are the free parameters. The Weierstrass function solutions (2.5) and
(2.6) can be reduced to the solutions

w2,1(ξ) =
√
3ψ(ξ ; g2, g3) − b2

3b4
and w2,2(ξ) = b2

2

√
3

b4(ψ(ξ ; g2, g3) − b2)
,

(2.34)
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Fig. 1 The complex envelope q(x, t) of the high-frequency wave [The imaginary part of equation (2.30)]
where θ1 = θ2 = θ3 = ξ1 = ξ2 = b4 = a = b = α = β = 1, b2 = 2

where the invariants of the first and secondWeierstrass functions are given by g2 = b22
3

and g3 = 4b22
27 (9b4 − 2b2). Another type of solution admits

w2,3(ξ) = b2

√
12ψ(ξ ; g2, g3) − b2

2b4(24ψ(ξ ; g2, g3) − 5b2)
, (2.35)

where D = − 5b2
2 and the invariants of the third Weierstrass function are g2 =

−b22
48 (33b22 − 34) and g3 = b32

1728 . The fourth and fifth Weierstrass function solutions
are obtained as follows:

w2,4(ξ)= b2(6ψ(ξ ; g2, g3) + b2)

6
√
b4ψ ′(ξ ; g2, g3) , w2,5(ξ)= 3√

b4

ψ ′(ξ ; g2, g3)
6ψ(ξ ; g2, g3) + b2

, (2.36)

where the invariants of these Weierstrass functions are g2 = b22
16 and g3 = b22

27 . Finally,
the Weierstrass function solutions to the DSE are given by

q2,i = ei(θ1x+θ2 y+θ3t)

[
∓ξ21 +ξ22

2n
√
b4

√
−a(n+1)(

(b+αβ)ξ21 +bξ22
)

(
b2w

−1
2,i (ξ)+2b4w2,i (ξ)

)] 1
n

,

i = 1, ..., 5, (2.37)

r2,i = aβξ1
2(n + 1)(ξ12 + ξ2

2)

4n2
(
(b + αβ)ξ21 + bξ22

)
b4

(
b2w

−1
2,i (ξ) + 2b4w2,i (ξ)

)2
, i = 1, ..., 5.

(2.38)

The solutions q(x, t) (complex envelope of the high-frequency wave) (the real part
and the imaginary part of the solution (2.30)) and r(x, t) (the solution (2.31)) are
displayed in Figs. 1, 2 and 3, respectively, with values of parameters listed in their
captions.

Remark 2.1 All the solutions obtained by using Weierstrass transformation method
for Eqs. (2.15) and (2.16) have been checked by Mathematica. To our knowledge,
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1230 Y. Gurefe et al.

Fig. 2 The complex envelope q(x, t) of the high-frequency wave [The real part of equation (2.30)] where
θ1 = θ2 = θ3 = ξ1 = ξ2 = b4 = a = b = α = β = 1, b2 = 2

Fig. 3 The solution (2.31) is shown at θ1 = θ2 = θ3 = ξ1 = ξ2 = b4 = a = b = α = β = 1, b2 = 2

the Weierstrass elliptic function solutions we found here to this nonlinear physical
problem are not shown in the previous literature. These results are new exact solutions
of Eqs. (2.15) and (2.16).

3 Trial Equation Method and its Applications

In this section, the trial equation method will be first described and then subsequently
applied to solve the DSE equation. Take trial equation

(u′)2 = F(u) =
s∑

i=0

aiu
i , (3.1)

where s and ai are constants to be determined. Substituting Eq. (3.1) and other deriv-
ative terms such as u′′ or u′′′ and so on into Eq. (2.2) yields a polynomial G(u) of
u. According to the balance principle we can determine the value of s. Setting the
coefficients of G(u) to zeros, we get an ordinary differential equations system. Solv-
ing the nonlinear ordinary differential equation, we will determine c and values of
a0, a1, ...as . Rewrite the Eq. (3.1) by integral form

± (ξ − ξ0) =
∫

1√
F(u)

du. (3.2)
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According to the complete discrimination system of polynomial, we classify the roots
of F(u), and solve the integral (3.2). Thus we obtain the exact solutions to Eq. (2.1).
We refer the reader to [22] for details concerning the trial equation method.

Reformulating Eq. (2.25), we obtain the following nonlinear ordinary differential
equation

MVV ′′ + N (V ′)2 −
[
θ3 + aθ1

2 + aθ2
2
]
PV 2 + RV 4 = 0, (3.3)

where M = an
(
ξ1

2 + ξ2
2
)2
, N = a(1 − n)

(
ξ1

2 + ξ2
2
)2
, P = n2

(
ξ1

2 + ξ2
2
)
and

R = n2
[
b(ξ12 + ξ2

2) + αβξ21

]
.

Substituting trial equation (3.1) into Eq. (3.3) and using the balance principle we
get s = 4. Using the solution procedure of trial equation method, we obtain the system
of algebraic equations as follows:

2a0N = 0,

a1M + 2a1N = 0,

a2M + a2N − aθ1
2P − aθ2

2P − θ3P = 0,

3a3M + 2a3N = 0,

2a4M + a4N + R = 0.

Solving the above system of algebraic equations, we obtain the following results:

a0 = 0, a1 = 0, a2 = a2, a3 = 0, a4 = R

2M + N
,

θ3 = −a
(
θ1

2 + θ2
2
)

+ a2(M + N ) (3.4)

where a2 and a4 are free parameters. Substituting these results into Eq. (3.1) and (3.2),
we have

± (ξ − ξ0) =
∫

1√
a2V 2 − R

2M+N V 4
dV . (3.5)

Integrating Eq. (3.5), we obtain the exact solutions of Eq. (3.3) as follows:

V (ξ) = 4
√
a2

[
exp

(√
a2(ξ − ξ0)

) − 4a4 exp
(−√

a2(ξ − ξ0)
)]−1 (3.6)

and

V (ξ) = 4
√
a2

[
exp

(−√
a2(ξ + ξ0)

) − 4a4 exp
(√

a2(ξ + ξ0)
)]−1

. (3.7)

123



1232 Y. Gurefe et al.

Using the properties

exp(ξ) − exp(−ξ) = 2 sinh(ξ), exp(ξ) + exp(−ξ) = 2 cosh(ξ), (3.8)

when a4 = ± 1
4 and u = V

1
n , it is easy to see that the solutions (3.6) and (3.7) can

reduce to soliton solutions

u(ξ) = A

cosh
1
n [B(ξ1x + ξ2y + ξ3t ± ξ0)]

, (3.9)

u(ξ) = A

(∓ sinh [B(ξ1x + ξ2y + ξ3t ± ξ0)])
1
n

, (3.10)

where ξ3 = −2a(θ1ξ1 + θ2ξ2), A = (2
√
a2)

1
n and B = √

a2. Substituting (3.9)
and (3.10) into (2.17) and (2.22), we have the travelling wave solution of the DSE,
respectively,

q = ei(θ1x+θ2 y+θ3t) A

cosh
1
n [B(ξ1x + ξ2y + ξ3t ± ξ0)]

, (3.11)

r = C

cosh2 [B(ξ1x + ξ2y + ξ3t ± ξ0)]
, (3.12)

and

q = ei(θ1x+θ2 y+θ3t) A

(∓ sinh [B(ξ1x + ξ2y + ξ3t ± ξ0)])
1
n

, (3.13)

r = C

sinh2 [B(ξ1x + ξ2y + ξ3t ± ξ0)]
, (3.14)

where ξ3 = −2a(θ1ξ1 + θ2ξ2), θ3 = −a(a2(ξ21 + ξ22 )2 − θ21 − θ22 ), C = −4βξ1
2a2

ξ12+ξ22
.

From (2.18), ξ1 and ξ2 are the widths of the solitons in the x− and y− directions,
respectively, while ξ3 is the velocity of the soliton. From the phase component given
by θ , θ1 and θ2 are the phase frequencies in the x- and y-directions, respectively,
while θ3 is the wave number of the soliton. Also, Eqs. (3.13) and (3.14) represent
singular soliton solutions for Eqs. (2.15) and (2.16). In (3.11)–(3.14), A and C are the
amplitudes of the solitons.

The solutions q(x, t) (the imaginary part of the solutions (3.11) and (3.13)) and
r(x, t) (the bright 1-soliton solution (3.12) and the singular soliton solution (3.14))
are displayed in Figs. 4 and 5, respectively, with values of parameters listed in their
captions.

Remark 3.1 If we let the corresponding values for some parameters, solutions (3.11)
and (3.12) are, respectively, in full agreement with the solutions (2.21) and (2.24) and
the solutions (3.11) and (3.12) mentioned in Refs. [3,4].
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Fig. 4 The complex envelope q(x, t) of the high-frequency wave (The imaginary part of equation (3.11))
and the bright 1-soliton solution (3.12) where θ1 = θ2 = θ3 = ξ1 = ξ2 = ξ3 = a2 = a = β = n = 1

Fig. 5 The complex envelope q(x, t) of the high-frequency wave (The imaginary part of equation (3.13))
and the singular soliton solution (3.14) where θ1 = θ2 = θ3 = ξ1 = ξ2 = ξ3 = a2 = a = β = n = 1,with
imaginary

4 Conclusion

In this paper, the extended Weierstrass transformation method and trial equation
method are used to carry out the integration of the DSE. Some new soliton solu-
tions are obtained using these methods. The obtained solutions are very useful in the
field of nonlinear science. These methods can be also applied to solve other types of
the generalized NLEEs with complex coefficients.
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