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Abstract In this paper, utilizing the notion of the common limit range property, we
prove some new integral type common fixed point theorems for weakly compatible
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1 Introduction and Preliminaries

The celebrated Banach contraction mapping principle, also known as Banach fixed
point theorem [9], plays an important role for solving existence problems in many
branches of nonlinear analysis. For instance, it has been used to show the existence of
solutions of nonlinear Volterra integral equations, nonlinear integro-differential equa-
tions in Banach spaces and to show the convergence of algorithms in computational
mathematics. This famous theorem states that every contraction in a complete metric
space has a unique fixed point and that point can be obtained as a limit of repeated
iteration of the mapping at any point of X . It is evident that each contraction is a
continuous function.

In 1997, Alber and Guerre-Delabriere [1] proposed the notion of weak contraction
for single-valued mappings in Hilbert space. A self mapping T on a complete metric
space (X, d) is aϕ-weak contraction if there exists a functionϕ : [0,+∞) → [0,+∞)

such that ϕ is positive on (0,+∞), ϕ(0) = 0, and

d(T x, T y) ≤ d(x, y) − ϕ(d(x, y)) (1.1)

for all x, y ∈ X . Subsequently, Rhoades [57] showed that the result which Alber and
Guerre-Delabriere proved in [1] is also valid in the setting of complete metric spaces.

Theorem 1 [57, Theorem 2] Let (X, d) be a non-empty complete metric space and let
T : X → X be a ϕ-weak contraction on X. If ϕ is a continuous and non-decreasing
function with ϕ(t) > 0 for all t > 0 and ϕ(0) = 0, then T has a unique fixed point.

It is noticed that Alber and Guerre-Delabriere [1] assumed an additional condition
on ϕ which is limt→+∞ ϕ(t) = +∞; but Rhoades [57] obtained the result noted in
Theorem 1 without using this particular assumption. If one takes ϕ(t) = (1 − k)t ,
where k ∈ (0, 1), then (1.1) reduces to contraction, that is, every contraction is a
ϕ-weak contraction. Following this trend, Karapınar in [40] proved the existence and
uniqueness of a fixed point for cyclic mappings (see also, [42]) and in [41] obtained a
fixed point for a ϕ-weak contraction. In fact, weak contractions are closely related to
themappings ofBoyd andWong’s type [16], andReich’s type [55]. Ifϕ is a lower semi-
continuous function from the right, then ψ(t) = t −ϕ(t) is an upper semi-continuous
function from the right, and moreover, (1.1) turns into d(T x, T y) ≤ ψ(d(x, y)).
Therefore, the ϕ-weak contraction becomes a Boyd and Wong’s type one. Similarly,
if we define α(t) = 1−ϕ(t)

t for t > 0 and α(0) = 0, then (1.1) is replaced by
d(T x, T y) ≤ α(d(x, y))d(x, y). Thus, the ϕ-weak contraction becomes a Reich’s
type one. Following this direction of research, many authors have proved common
fixed point theorems in metric spaces satisfying different contractive conditions, see
[3,7,10,12,15,18–24,26,30,34,37,46–49,51–53,56,60,62–65,67,68,72–75,77].

In 2002, Branciari [17] proved a fixed point result for a single mapping satisfying
an analog of Banach’s contraction principle for an integral type inequality. The authors
[5,25,45,58,59,70,71,78] proved several fixed point results involving more general
integral type contractive conditions. Moreover, in [76], Suzuki showed that a Meir–
Keeler contraction of integral type is still a Meir–Keeler contraction.
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Fixed Points of Weakly Compatible Mappings 1087

In 2009, Zhang and Song [79] proved a fixed point theorem for two mappings
satisfying a generalized ϕ-weak contractive condition in a complete metric space.
Later on, Razani and Yazdi [54] proved a common fixed point theorem for any even
number of self mappings in a complete metric space and generalized the results of
Zhang and Song [79].

In this paper, we prove an integral type common fixed point theorem for four
mappings applying the common limit range property. As an application, we present
fixed point theorems for six mappings and four finite families of mappings in metric
spaces using the notion of the pairwise commuting mappings which is studied by Ali
and Imdad [4].We conclude with an example that supports the useability of our results
and an application to some functional equations arising in dynamic programming.

The following definitions and results will be needed in the sequel.

Definition 1 Let A, S : X → X be two self mappings of a metric space (X, d). The
mappings A and S are said to be:

(1) commuting if ASx = SAx , for all x ∈ X ;
(2) weakly commuting if d(ASx, SAx) ≤ d(Ax, Sx), for all x ∈ X , see [61];
(3) compatible if limn→+∞ d(ASxn, SAxn) = 0 for each sequence {xn} in X such

that limn→+∞ Axn = limn→+∞ Sxn , see [38];
(4) non-compatible if there exists a sequence {xn} in X such that limn→+∞ Axn =

limn→+∞ Sxn but limn→+∞ d(ASxn, SAxn) is either nonzero or nonexistent,
see [48];

(5) weakly compatible if they commute at their coincidence points, that is, ASu =
SAu whenever Au = Su, for some u ∈ X , see [39].

Definition 2 [2] A pair (A, S) of self mappings of a metric space (X, d) is said to
satisfy the property (E.A) if there exists a sequence {xn} in X , for some z ∈ X such
that

lim
n→+∞ Axn = lim

n→+∞ Sxn = z. (1.2)

It can be noticed that any pair of non-compatible self mappings of a metric space
(X, d) satisfies the property (E.A) but twomappings satisfying the property (E.A) need
not be non-compatible (see [29, Example1]). On the other hand, the notions of weak
compatibility and property (E.A) are independent to each other (see [50, Examples
2.1–2.2]). For more reading on the property (E.A), consider [27,28] and the references
therein.

Definition 3 [44] Two pairs (A, S) and (B, T ) of self mappings of a metric space
(X, d) are said to satisfy the common property (E.A), if there exist two sequences
{xn} and {yn} in X , and some z ∈ X such that

lim
n→+∞ Axn = lim

n→+∞ Sxn = lim
n→+∞ Byn = lim

n→+∞ T yn = z. (1.3)

It is observed that the fixed point results always require the closedness of the under-
lying subspaces for the existence of common fixed points under the property (E.A)
and common property (E.A). In 2011, Sintunavarat and Kumam [69] coined the idea
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of “common limit range property”. Recently, Imdad et al. [33] extended the notion of
common limit range property to two pairs of self mappings which relaxes the require-
ment on closedness of the subspaces. Since then, a number of fixed point theorems
have been established by several researchers in different settings under common limit
range property. For detail description, we refer the reader to [8,32,35,36,43,66].

Definition 4 [69] A pair (A, S) of self mappings of a metric space (X, d) is said to
satisfy the common limit range of S property, (CLRS) property for short, if there
exists a sequence {xn} in X such that

lim
n→+∞ Axn = lim

n→+∞ Sxn = z,

where z ∈ S(X).

Hence, it is assured that a pair (A, S) satisfying the property (E.A) along with
closedness of the subspace S(X) always enjoys the (CLRS) property (see [33, Exam-
ples 2.16–2.17]).

Definition 5 Two pairs (A, S) and (B, T ) of self mappings of a metric space (X, d)

are said to satisfy the common limit range of S and T property, (CLRST ) property
for short, if there exist two sequences {xn} and {yn} in X such that

lim
n→+∞ Axn = lim

n→+∞ Sxn = lim
n→+∞ Byn = lim

n→+∞ T yn = z,

where z ∈ S(X) ∩ T (X).

Definition 6 [4] Two families of self mappings {Ai }mi=1 and {Sk}nk=1 are said to be
pairwise commuting if

(1) Ai A j = A j Ai for all i, j ∈ {1, 2, . . . ,m},
(2) Sk Sl = Sl Sk for all k, l ∈ {1, 2, . . . , n},
(3) Ai Sk = Sk Ai for all i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.

2 Main Results

Let � denote the set of all non-decreasing functions ϕ : [0,+∞) → [0,+∞) that
satisfy the following conditions:

(1) ϕ is lower semi-continuous on [0,+∞),
(2) ϕ(0) = 0,
(3) ϕ(s) > 0 for each s > 0.

We start with the following Lemma.

Lemma 1 Let A, B, S, and T be self mappings of a metric space (X, d). Suppose
that the following hypotheses hold:

(1) the pair (A, S) satisfies the (CLRS) property
(
or the pair (B, T ) satisfies the

(CLRT ) property
)
,
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(2) A(X) ⊂ T (X)
(
or B(X) ⊂ S(X)

)
,

(3) T (X)
(
or S(X)

)
is a closed subset of X,

(4) {Byn} converges for every sequence {yn} in X whenever {T yn} converges
(
or

{Axn} converges for every sequence {xn} in X whenever {Sxn} converges
)
,

(5) there exists ϕ ∈ � such that

∫ d(Ax,By)

0
φ(t)dt ≤ M(x, y) − ϕ(M(x, y)), (2.1)

for all x, y ∈ X, where

M(x, y) =
∫ max{d(Ax,Sx),d(By,T y),d(Sx,T y),[d(Ax,T y)+d(By,Sx)]/2}

0
φ(t)dt

and φ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is sum-
mable and such that ∫ ε

0
φ(t)dt > 0, (2.2)

for all ε > 0.

Then the pairs (A, S) and (B, T ) share the (CLRST ) property.

Proof Since the pair (A, S) satisfies the (CLRS) property, there exists a sequence
{xn} in X such that

lim
n→+∞ Axn = lim

n→+∞ Sxn = z,

where z ∈ S(X). By (2), A(X) ⊂ T (X) (wherein T (X) is a closed subset of X ), and
for each {xn} ⊂ X , there corresponds a sequence {yn} ⊂ X such that Axn = T yn .
Therefore,

lim
n→+∞ T yn = lim

n→+∞ Axn = z,

where z ∈ S(X) ∩ T (X). Thus, we have Axn → z, Sxn → z and T yn → z as
n → +∞. By (4), the sequence {Byn} converges and in all we need to show that
Byn → z as n → +∞. Putting x = xn and y = yn in condition (2.1), we get

∫ d(Axn ,Byn)

0
φ(t)dt ≤ M(xn, yn) − ϕ(M(xn, yn)), (2.3)

where

M(xn, yn) =
∫ max{d(Axn ,Sxn),d(Byn ,T yn),d(Sxn ,T yn),[d(Axn ,T yn)+d(Byn ,Sxn)]/2}

0
φ(t)dt.

Let Byn → l ( �= z) for t > 0 as n → +∞. Then taking limit as n → +∞ (lower
limit) in inequality (2.3), we have

∫ d(z,l)

0
φ(t)dt ≤ lim

n→+∞ M(xn, yn) − ϕ

(
lim

n→+∞ M(xn, yn)

)
, (2.4)
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where

lim
n→+∞ M(xn, yn) =

∫ max{d(z,z),d(l,z),d(z,z),[d(z,z)+d(l,z)]/2}

0
φ(t)dt

=
∫ d(z,l)

0
φ(t)dt.

Hence, inequality (2.4) implies

∫ d(z,l)

0
φ(t)dt ≤

∫ d(z,l)

0
φ(t)dt − ϕ

(∫ d(z,l)

0
φ(t)dt

)
,

that is,ϕ
(∫ d(z,l)

0 φ(t)dt
)

≤ 0. Thus,ϕ
(∫ d(z,l)

0 φ(t)dt
)

= 0 and by the property of the

functionϕ, we have d(z, l) = 0 or equivalently z = l, which contradicts the hypothesis
l �= z. Hence, both the pairs (A, S) and (B, T ) share the (CLRST ) property. 	


In general, the converse of Lemma 1 is not true (see [33, Example 3.5]). Now, we
are ready to state and prove the following theorem.

Theorem 2 Let A, B, S, and T be self mappings of a metric space (X, d) satisfying
the hypothesis (5) of Lemma 1. If the pairs (A, S) and (B, T ) share the (CLRST )

property, then (A, S) and (B, T ) have a coincidence point each. Moreover, A, B, S,
and T have a unique common fixed point provided both the pairs (A, S) and (B, T )

are weakly compatible.

Proof If the pairs (A, S) and (B, T ) share the (CLRST ) property, then there exist two
sequences {xn} and {yn} in X such that

lim
n→+∞ Axn = lim

n→+∞ Sxn = lim
n→+∞ T yn = lim

n→+∞ Byn = z,

where z ∈ S(X)∩T (X). Since z ∈ S(X), there exists a point u ∈ X such that Su = z.
Putting x = u and y = yn in condition (2.1), we get

∫ d(Au,Byn)

0
φ(t)dt ≤ M(u, yn) − ϕ(M(u, yn)), (2.5)

where

M(u, yn) =
∫ max{d(Au,Su),d(Byn ,T yn),d(Su,T yn),[d(Au,T yn)+d(Byn ,Su)]/2}

0
φ(t)dt.

Letting n → +∞ (taking the lower limit) in condition (2.5), we have

∫ d(Au,z)

0
φ(t)dt ≤ lim

n→+∞ M(u, yn) − ϕ

(
lim

n→+∞ M(u, yn)

)
, (2.6)
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where

lim
n→+∞ M(u, yn) =

∫ max{d(Au,z),d(z,z),d(z,z),[d(Au,z)+d(z,z)]/2}

0
φ(t)dt

=
∫ max{d(Au,z),d(Au,z)/2}

0
φ(t)dt

=
∫ d(Au,z)

0
φ(t)dt.

From (2.6), we obtain

∫ d(Au,z)

0
φ(t)dt ≤

∫ d(Au,z)

0
φ(t)dt − ϕ

(∫ d(Au,z)

0
φ(t)dt

)

and it follows easily that Au = z. Therefore, Au = Su = z which shows that u is a
coincidence point of the pair (A, S).

As z ∈ T (X), there exists a point v ∈ X such that T v = z. Putting x = xn and
y = v in condition (2.1), we have

∫ d(Axn ,Bv)

0
φ(t)dt ≤ M(xn, v) − ϕ(M(xn, v)), (2.7)

where

M(xn, v) =
∫ max{d(Axn ,Sxn),d(Bv,T v),d(Sxn ,T v),[d(Axn ,T v)+d(Bv,Sxn)]/2}

0
φ(t)dt.

Letting n → +∞ (taking the lower limit) in condition (2.7), we get

∫ d(z,Bv)

0
φ(t)dt ≤ lim

n→∞ M(xn, v) − ϕ
(
lim
n→∞ M(xn, v)

)
, (2.8)

where

lim
n→∞ M(xn, v) =

∫ max{d(z,z),d(Bv,z),d(z,z),[d(z,z)+d(Bv,z)]/2}

0
φ(t)dt

=
∫ max{d(Bv,z),d(Bv,z)/2}

0
φ(t)dt

=
∫ d(z,Bv)

0
φ(t)dt.

Hence, inequality (2.8) implies

∫ d(z,Bv)

0
φ(t)dt ≤

∫ d(z,Bv)

0
φ(t)dt − ϕ

(∫ d(z,Bv)

0
φ(t)dt

)
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and so z = Bv. Thus, Bv = T v = z which shows that v is a coincidence point of the
pair (B, T ).

Since the pairs (A, S) and (B, T ) are weakly compatible, Au = Su and Bv = T v,
therefore Az = ASu = SAu = Sz and Bz = BT v = T Bv = T z. Putting x = z and
y = v in condition (2.1), we have

∫ d(Az,z)

0
φ(t)dt =

∫ d(Az,Bv)

0
φ(t)dt ≤ M(z, v) − ϕ(M(z, v)), (2.9)

where

M(z, v) =
∫ max{d(Az,Sz),d(Bv,T v),d(Sz,T v),[d(Az,T v)+d(Bv,Sz)]/2}

0
φ(t)dt

=
∫ max{d(Az,Az),d(z,z),d(Az,z),[d(Az,z)+d(z,Az)]/2}

0
φ(t)dt

=
∫ d(Az,z)

0
φ(t)dt.

From (2.9), we get

∫ d(Az,z)

0
φ(t)dt ≤

∫ d(Az,z)

0
φ(t)dt − ϕ

(∫ d(Az,z)

0
φ(t)dt

)
.

It follows that z = Az = Sz, and therefore z is a common fixed point of the pair
(A, S). Putting x = u and y = z in condition (2.1), we have

∫ d(z,Bz)

0
φ(t)dt =

∫ d(Au,Bz)

0
φ(t)dt ≤ M(u, z) − ϕ(M(u, z)), (2.10)

where

M(u, z) =
∫ max{d(Au,Su),d(Bz,T z),d(Su,T z),[d(Au,T z)+d(Bz,Su)]/2}

0
φ(t)dt

=
∫ max{d(z,z),d(Bz,Bz),d(z,Bz),[d(z,Bz)+d(Bz,z)]/2}

0
φ(t)dt

=
∫ d(z,Bz)

0
φ(t)dt.

From (2.10), we obtain

∫ d(z,Bz)

0
φ(t)dt ≤

∫ d(z,Bz)

0
φ(t)dt − ϕ

(∫ d(z,Bz)

0
φ(t)dt

)
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and then z = Bz. Therefore, Bz = T z = z and we can conclude that z is a common
fixed point of A, B, S and T . The uniqueness of the common fixed point is an easy
consequence of condition (2.1) and so, to avoid repetition, we omit the details. 	

Theorem 3 Let A, B, S, and T be self mappings of a metric space (X, d) satisfying
all the hypotheses of Lemma 1. Then A, B, S, and T have a unique common fixed
point provided both the pairs (A, S) and (B, T ) are weakly compatible.

Proof By Lemma 1, it is assured that the pairs (A, S) and (B, T ) share the (CLRST )

property, then there exist two sequences {xn} and {yn} in X such that

lim
n→+∞ Axn = lim

n→+∞ Sxn = lim
n→+∞ T yn = lim

n→+∞ Byn = z,

where z ∈ S(X) ∩ T (X). The rest of the proof runs on the lines of the proof of
Theorem 2, therefore the details are avoided. 	


By choosing A, B, S, and T suitably, we can deduce some corollaries for a pair as
well as for a triode of self mappings. Here, as a sample, we give the following natural
result for a pair of self mappings.

Corollary 1 Let A and S be self mappings of a metric space (X, d). Suppose that

(1) the pair (A, S) satisfies the (CLRS) property,
(2) there exists ϕ ∈ � such that

∫ d(Ax,Ay)

0
φ(t)dt ≤ M(x, y) − ϕ(M(x, y)), (2.11)

for all x, y ∈ X, where

M(x, y) =
∫ max{d(Ax,Sx),d(Ay,Sy),d(Sx,Sy),[d(Ax,Sy)+d(Ay,Sx)]/2}

0
φ(t)dt,

and φ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is sum-
mable and such that (2.2) holds.

Then the pair (A, S) has a coincidence point. Moreover, if (A, S) is weakly compatible
then it has a unique common fixed point in X.

Remark 1 Corollary 1 generalizes the results of Zhang and Song [79, Theorem 2.1]
without any requirement on completeness of the space.

Now, we utilize Definition 6 to prove a common fixed point theorem for six map-
pings in a metric space.

Theorem 4 Let A, B, H, R, S, and T be self mappings of a metric space (X, d).
Suppose that

(1) the pairs (A, SR) and (B, T H) share the (CLR(SR)(T H)) property
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(2) there exists ϕ ∈ � such that

∫ d(Ax,By)

0
φ(t)dt ≤ M(x, y) − ϕ(M(x, y)), (2.12)

for all x, y ∈ X, where

M(x, y) =
∫ max{d(Ax,SRx),d(By,T Hy),d(SRx,T Hy),[d(Ax,T Hy)+d(By,SRx)]/2}

0
φ(t)dt,

and φ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is sum-
mable and such that (2.2) holds.

Then (A, SR) and (B, T H) have a coincidence point each. Moreover, A, B, H, R, S,
and T have a unique commonfixed point provided both the pairs (A, SR) and (B, T H)

commute pairwise, that is, AS = SA, AR = RA, SR = RS, BT = T B, BH = HB,
and T H = HT .

Proof Since the pairs (A, SR) and (B, T H) are commuting pairwise, obviously both
the pairs are weakly compatible. By Theorem 2, A, B, SR, and T H have a unique
common fixed point z in X . Now, we show that z is the unique common fixed point
of the self mappings A, B, H, R, S, and T . Putting x = Rz and y = z in condition
(2.12), we get

∫ d(Rz,z)

0
φ(t)dt =

∫ d(A(Rz),Bz)

0
φ(t)dt ≤ M(x, y) − ϕ(M(Rz, z)), (2.13)

where

M(Rz, z)

=
∫ max{d(A(Rz),SR(Rz)),d(Bz,T Hz),d(SR(Rz),T Hz),[d(A(Rz),T Hz)+d(Bz,SR(Rz))]/2}

0
φ(t)dt

=
∫ max{d(Rz,Rz),d(z,z),d(Rz,z),[d(Rz,z)+d(z,Rz)]/2}

0
φ(t)dt

=
∫ d(Rz,z)

0
φ(t)dt.

From (2.13), we obtain

∫ d(Rz,z)

0
φ(t)dt ≤

∫ d(Rz,z)

0
φ(t)dt − ϕ

(∫ d(Rz,z)

0
φ(t)dt

)

and then we have Rz = z, which implies S(Rz) = Sz = z. Similarly, one can prove
that z = Hz, that is, T (Hz) = T z = z. Hence z = Az = Bz = Sz = Rz = T z =
Hz, and z is the unique common fixed point of A, B, H, R, S and T . 	
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Remark 2 Theorem 4 generalizes the results of Ćirić et al. [23, Theorems 5–6] in the
framework of integral settings as one never requires any condition on completeness
(or closedness) of the underlying space (or subspaces), containment of ranges amongst
involved mappings, and continuity of one or more mappings.

Corollary 2 Let {Ai }mi=1, {Br }nr=1, {Sk}pk=1, and {Th}qh=1 be four finite families of
self mappings of a metric space (X, d) with A = A1A2 . . . Am, B = B1B2 · · · Bn,
S = S1S2 . . . Sp, and T = T1T2 · · · Tq satisfying hypothesis (5) of Lemma 1 such that
the pairs (A, S) and (B, T ) satisfy the (CLRST ) property, then (A, S) and (B, T )

have a point of coincidence each.
Moreover, {Ai }mi=1, {Br }nr=1, {Sk}pk=1, and {Th}qh=1 have a unique common fixed

point if the pairs of families ({Ai }, {Sk}) and ({Br }, {Th}) commute pairwise wherein
i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , p}, r ∈ {1, 2, . . . , n}, and h ∈ {1, 2, . . . , q}.
Corollary 3 Let A, B, S, and T be self mappings of a metric space (X, d). Suppose
that

(1) the pairs (Am, S p) and (Bn, T q) share the (CLRSpT q ) property,
(2) there exists ϕ ∈ � such that

∫ d(Amx,Bn y)

0
φ(t)dt ≤ M(x, y) − ϕ(M(x, y)), (2.14)

for all x, y ∈ X and

M(x, y) =
∫ max{d(Amx,S px),d(Bn y,T q y),d(S px,T q y),[d(Amx,T q y)+d(Bn y,S px)]/2}
0

φ(t)dt,

where m, n, p, q are fixed positive integers and φ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable and such that (2.2) holds.

Then A, B, S, and T have a unique common fixed point provided AS = SA and
BT = T B.

Remark 3 Corollaries 2 and 3 improve the results of Razani and Yazdi [54, Theo-
rems 2.5–2.7] for any finite number of mappings.

The conclusions of Lemma 1, Theorems 2–4, and Corollaries 1–3 remain true for
φ(t) = 1. In this case, the listing of possible corollaries are not presented here but, for
a sample, we state the following theorem:

Theorem 5 Let A, B, S and T be self mappings of a metric space (X, d). Suppose
that

(1) the pairs (A, S) and (B, T ) share the (CLRST ) property,
(2) there exists ϕ ∈ � such that

d(Ax, By) ≤ M(x, y) − ϕ(M(x, y)), (2.15)
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for all x, y ∈ X, where

M(x, y)=max {d(Ax, Sx), d(By,T y),d(Sx, T y), [d(Ax, T y)+d(By, Sx)] /2} .

Then (A, S) and (B, T ) have a coincidence point each. Moreover, if the pairs (A, S)

and (B, T ) are weakly compatible then A, B, S, and T have a unique common fixed
point in X.

Remark 4 Results similar to Theorem 3, Corollaries 2 and 3 can be outlined in view
of Theorem 5. Once again to avoid repetition, the details of possible corollaries are
not included here.

Remark 5 Theorem 5 improves the results of Zhang and Song [79] and Razani and
Yazdi [54].

We note that the main theorem of Altun et al. [6] is a consequence of Theorem 2
by taking ψ(t) = t − ϕ(t).

Corollary 4 [6]Let A, B, S, and T be selfmappings of ametric space (X, d). Suppose
that the following hypotheses hold:

(1) A(X) ⊂ T (X), B(X) ⊂ S(X),
(2) there exists a right continuous function ψ : [0,∞) → [0,∞) withψ(0) = 0 and

ψ(s) < s for all s > 0 such that

∫ d(Ax,By)

0
φ(t)dt ≤ ψ

(∫ M(x,y)

0
φ(t)dt

)
, (2.16)

for all x, y ∈ X, where

M(x, y) =
∫ max{d(Ax,Sx),d(By,T y),d(Sx,T y),[d(Ax,T y)+d(By,Sx)]/2}

0
φ(t)dt

and φ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is sum-
mable and such that (2.2) holds.

If one of A(X), B(X), S(X) or T (X) is a complete subspace of X, then

(a) A and S have a coincidence point, or
(b) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then

(c) A, B, S, and T have a unique common fixed point.

Remark 6 Corollary 4 is a generalization of the main theorem of [17], Theorem 2 of
[58], and Theorem 2 of [78].
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3 Example and Application

3.1 Illustrative Example

Here we support our result by the following example.

Example 1 Let X = {0, 1, 2, . . .} and d : X × X → X be given by

d(x, y) =
{
0 if x = y;
x + y if x �= y.

Also, define the mappings A, B, S, T : X → X by

Ax =
{
0 if x = 0;
x + 1 if x �= 0; Bx =

{
0 if x = 0;
x + 2 if x �= 0;

Sx =
{
0 if x = 0;
2x + 2 if x �= 0; T x =

{
0 if x = 0;
2x + 1 if x �= 0.

Consider two functions φ, ϕ : [0,+∞) → [0,+∞) given by φ(t) = 2t and
ϕ(t) = √

t . We will show that all the hypotheses of Theorem 2 are satisfied.

Proof The following facts are clear:

(1) (X, d) is a metric space;
(2) ϕ ∈ �;
(3) φ is a Lebesgue-integrable mapping which is summable and non-negative such

that (2.2) holds;
(4) the pairs (A, S) and (B, T ) share the (CLRST ) property.

Consequently, we have only to show that condition (2.1) holds. Then let x, y ∈ X
with y ≤ x and divide the proof into the following cases:

Case 1 Assume y = x = 0. In this case, condition (2.1) holds trivially since Ax =
By = Sx = T y = 0.

Case 2 Assume y = 0 and x > 0. Then we have Ax = x + 1, By = 0, Sx = 2x + 2,
and T y = 0. Consequently, we obtain

d(Ax, By) = d(x + 1, 0) = x + 1

and

max{d(Ax, Sx), d(By, T y), d(Sx, T y), [d(Ax, T y) + d(By, Sx)]/2}
= max{d(x + 1, 2x + 2), d(B0, T 0), d(2x + 2, 0),

[d(x + 1, 0) + d(0, 2x + 2)]/2}
= max{3x + 3, 0, 2x + 2, [3x + 3]/2}
= 3x + 3.
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It follows that

∫ d(Ax,By)

0
2tdt =

∫ x+1

0
2tdt = (x + 1)2, M(x, y) =

∫ 3x+3

0
2tdt = (3x + 3)2,

and ϕ(M(x, y)) = 3x + 3.
Since (x + 1)2 ≤ (3x + 3)2 − (3x + 3), then condition (2.1) holds.

Case 3 Assume x > y > 0. We need to consider two subcases:

Subcase 1. If x = y + 1, or equivalently y = x − 1, then we have

d(Ax, By) = d(Ax, B(x − 1)) = d(x + 1, x + 1) = 0.

Therefore, condition (2.1) holds trivially again.
Subcase 2. If x > y + 1, then we have Ax = x + 1, By = y + 2, Sx = 2x + 2, and

T y = 2y + 1.
Now, if x = 2y, then

d(Ax, By) = d(A(2y), By) = d(2y + 1, y + 2) = 3y + 3

and

max{d(A(2y), S(2y)), d(By, T y), d(S(2y), T y),

[d(A(2y), T y) + d(By, S(2y))]/2}
= max{d(2y + 1, 4y + 2), d(y + 2, 2y + 1), d(4y + 2, 2y + 1),

[d(2y + 1, 2y + 1) + d(y + 2, 4y + 2)]/2}
= max{6y + 3, 3y + 3, [9y + 6]/2}
= 6y + 3.

Therefore, we get

∫ d(Ax,By)

0
2tdt=

∫ 3y+3

0
2tdt=(3y+3)2, M(x, y)=

∫ 6y+3

0
2tdt = (6y + 3)2

and ϕ(M(x, y)) = 6y + 3.
Since (3y + 3)2 ≤ (6y + 3)2 − (6y + 3), then condition (2.1) holds.
On the other hand, if x < 2y then

d(Ax, By) = d(x + 1, y + 2) = x + y + 3
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and

max{d(Ax, Sx), d(By, T y), d(Sx, T y), [d(Ax, T y) + d(By, Sx)]/2}
= max{d(x + 1, 2x + 2), d(y + 2, 2y + 1), d(2x + 2, 2y + 1),

[d(x + 1, 2y + 1) + d(y + 2, 2x + 2)]/2}
= max{3x + 3, 3y + 3, 2x + 2y + 3, [3x + 3y + 6]/2}
= 2x + 2y + 3.

It follows that

∫ d(Ax,By)

0
2tdt =

∫ x+y+3

0
2tdt = (x + y + 3)2,

M(x, y) =
∫ 2x+2y+3

0
2tdt = (2x + 2y + 3)2

and ϕ(M(x, y)) = 2x + 2y + 3.
Since (x + y + 3)2 ≤ (2x + 2y + 3)2 − (2x + 2y + 3), then condition
(2.1) holds.
Finally, if x > 2y, then

d(Ax, By) = d(x + 1, y + 2) = x + y + 3

and

max{d(Ax, Sx), d(By, T y), d(Sx, T y), [d(Ax, T y) + d(By, Sx)]/2}
= max{d(x + 1, 2x + 2), d(y + 2, 2y + 1), d(2x + 2, 2y + 1),

[d(x + 1, 2y + 1) + d(y + 2, 2x + 2)]/2}
= max{3x + 3, 3y + 3, 2x + 2y + 3, [3x + 3y + 6]/2}
= 3x + 3.

Therefore, we have

∫ d(Ax,By)

0
2tdt =

∫ x+y+3

0
2tdt = (x + y + 3)2,

M(x, y) =
∫ 3x+3

0
2tdt = (3x + 3)2,

and ϕ(M(x, y)) = 3x + 3.
Since y < x − 1, then (x + y + 3)2 ≤ (2x + 2)2 ≤ (3x + 3)2 − (3x + 3)
and therefore condition (2.1) holds.
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Case 4 Assume x = y > 0. Consequently, we get

d(Ax, Bx) = d(x + 1, x + 2) = 2x + 3

and

max{d(Ax, Sx), d(Bx, T x), d(Sx, T x), [d(Ax, T x) + d(Bx, Sx)]/2}
= max{d(x + 1, 2x + 2), d(x + 2, 2x + 1), d(2x + 2, 2x + 1),

[d(x + 1, 2x + 1) + d(x + 2, 2x + 2)]/2}
= max{3x + 3, 4x + 3, [6x + 6]/2}
= 4x + 3.

Therefore, we have

∫ d(Ax,Bx)

0
2tdt=

∫ 2x+3

0
2tdt=(2x + 3)2, M(x, x) =

∫ 4x+3

0
2tdt = (4x + 3)2

and ϕ(M(x, x)) = 4x + 3.
Since (2x + 3)2 ≤ (4x + 3)2 − (4x + 3), then condition (2.1) holds.

Thus, the mappings A, B, S, and T satisfy all the hypotheses of Theorem 2. Here 0 is
the common fixed point of A, B, S, and T . 	


3.2 Application to Functional Equation

Let U and V be Banach spaces, W ⊆ U be a state space and D ⊆ V be a decision
space. Now, using the fixed point theorems obtained in the previous Section, we study
the solvability of the following functional equation arising in dynamic programming
(see [11,13,14]):

Q(x) = sup
y∈D

{ f (x, y) + K (x, y, Q(τ (x, y)))}, x ∈ W, (3.1)

where τ : W × D → W, f : W × D → R, K : W × D × R → R.
Let B(W ) denote the space of all bounded real-valued functions onW . Clearly, this

space endowed with the metric given by

d(h, k) = sup
x∈W

|h(x) − k(x)|, for all h, k ∈ B(W )

is a complete metric space.
We will prove the following theorem.
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Theorem 6 Let K : W ×D×R → R and f : W ×D → R be two bounded functions
and let A : B(W ) → B(W ) be defined by

Ah(x) = sup
y∈D

{ f (x, y) + K (x, y, h(τ (x, y)))}, (3.2)

for all h ∈ B(W ) and x ∈ W. Assume that the following condition holds:

∫ |K (x,y,h(x))−K (x,y,k(x))|

0
φ(t)dt ≤ ρM(Ah, Ak), (3.3)

where

M(Ah, Ak) =
∫ max{d(Ah(x),h(x)),d(Ak(x)k(x)),d(h(x),k(x)),[d(Ah(x),k(x))+d(Ak(x),h(x))]/2}

0
φ(t)dt,

h, k ∈ B(W ), x ∈ W, y ∈ D, ρ ∈ (0, 1), and φ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable and such that (2.2) holds. Then the functional
equation (3.1) has a unique bounded solution.

Proof Since f and K are bounded, there exists a positive number 
 such that

sup{| f (x, y)|, |K (x, y, z)| : (x, y, z) ∈ W × D × R} ≤ 
.

Now, by using a property of the integration theory ([31], Theorem 12.34) and the
properties of φ, we conclude that for each positive number ε, there exists a positive
number δ(ε) such that

∫




φ(t)dt ≤ ε, for all 
 ⊆ [0, 2
] with m(
) ≤ δ(ε), (3.4)

where m(
) is the Lebesgue measure of 
.
Let x ∈ W and h1, h2 ∈ B(W ), then there exist y1, y2 ∈ D such that

Ah1(x) < f (x, y1) + K (x, y1, h1(τ (x, y1))) + δ(ε), (3.5)

Ah2(x) < f (x, y2) + K (x, y2, h2(τ (x, y2))) + δ(ε), (3.6)

Ah1(x) ≥ f (x, y2) + K (x, y2, h1(τ (x, y2))), (3.7)

Ah2(x) ≥ f (x, y1) + K (x, y1, h2(τ (x, y1))). (3.8)

Then from (3.5) and (3.8), it follows easily that

Ah1(x) − Ah2(x) < K (x, y1, h1(τ (x, y1))) − K (x, y1, h2(τ (x, y1))) + δ(ε)

≤ |K (x, y1, h1(τ (x, y1))) − K (x, y1, h2(τ (x, y1)))| + δ(ε).
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Hence, we get

Ah1(x) − Ah2(x) < |K (x, y1, h1(τ (x, y1))) − K (x, y1, h2(τ (x, y1)))| + δ(ε).

(3.9)
Similarly, from (3.6) and (3.7) we obtain

Ah2(x) − Ah1(x) < |K (x, y2, h1(τ (x, y2))) − K (x, y2, h2(τ (x, y2)))| + δ(ε).

(3.10)
Therefore, from (3.9) and (3.10) we have

|Ah1(x) − Ah2(x)| < sup
y∈D

|K (x, y, h1(τ (x, y))) − K (x, y, h2(τ (x, y)))| + δ(ε).

(3.11)
In view of (3.3), (3.4), and (3.11), it follows easily that

∫ d(Ah1(x),Ah2(x))

0
φ(t)dt ≤ ρM(Ah1, Ah2) + ε.

Since the above inequality is true for any x ∈ W and ε > 0 is taken arbitrary, then we
conclude immediately that

∫ d(Ah1(x),Ah2(x))

0
φ(t)dt ≤ ρM(Ah1, Ah2).

Thus, all the hypotheses of the Corollary 1 are satisfied with S = IB(W ), the identity
mapping on B(W ) and ϕ : [0,+∞) → [0,+∞) given by ϕ(t) = (1 − ρ)t for all
t ≥ 0. Therefore, there is a unique bounded solution of the functional equation (3.1).
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36. Jain, M., Taş, K., Kumar, S., Gupta, N.: Coupled fixed point theorems for a pair of weakly compatible
maps along with (CLRg) property in fuzzy metric spaces. J. Appl. Math. 2012, Art. ID 961210, 13
(2012)

37. Jungck, G.: Commuting mappings and fixed point. Am. Math. Mon. 83, 261–263 (1976)
38. Jungck, G.: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9(4), 771–779

(1986). MR0870534 (87m:54122)
39. Jungck, G., Rhoades, B.E.: Fixed points for set valued functions without continuity. Indian J. Pure

Appl. Math. 29(3), 227–238 (1998). MR1617919
40. Karapınar, E.: Fixed point theory for cyclic weak φ-contraction. Appl. Math. Lett. 24(6), 822–825

(2011)
41. Karapınar, E.: Weak φ-contraction on partial contraction. J. Comput. Anal. Appl. 14(2), 206–210

(2012)
42. Karapınar, E., Yuce, I.S.: Fixed point theory for cyclic generalizedweak φ-contraction on partial metric

spaces. Abstr. Appl. Anal., Art. ID 491542 (2012)
43. Kumar, M., Kumar, P., Kumar, S.: Some common fixed point theorems using (CLRg) property in cone

metric spaces. Adv. Fixed Point Theory 2(3), 340–356 (2012)
44. Liu, Y., Wu, J., Li, Z.: Common fixed points of single-valued and multivalued maps. Int. J. Math. Math.

Sci. 19, 3045–3055 (2005). MR2206083
45. Liu, Z., Li, X., Kang, S.M., Cho, S.Y.: Fixed point theorems for mappings satisfying contractive

conditions of integral type and applications. Fixed Point Theory Appl. 64, 18 (2011)
46. Murthy, P.P.: Important tools and possible applications of metric fixed point theory, proceedings of the

third world congress of nonlinear analysts, part 5 (Catania, 2000). Nonlinear Anal. 47(5), 3479–3490
(2001)

47. Nashine, H.K., Karapınar, E.: Fixed point results for orbitally continuous map in orbitally complete
partial metric spaces. Bull. Malays. Math. Sci. Soc. 36(4), 1185–1193 (2013)

48. Pant, R.P.: Noncompatiblemappings and common fixed points. Soochow J.Math. 26(1), 29–35 (2000).
MR1755133 (2000m:54048)

49. Pant, R.P.: Discontinuity and fixed points. J. Math. Anal. Appl. 240, 280–283 (1999)
50. Pathak, H.K., López, R.R., Verma, R.K.: A common fixed point theorem using implicit relation and

property (E.A) in metric spaces. Filomat 21(2), 211–234 (2007)
51. Popa, V., Imdad, M., Ali, J.: Using implicit relations to prove unified fixed point theorems in metric

and 2-metric spaces. Bull. Malays. Math. Sci. Soc. (2) 33(1), 105–120 (2010)
52. Popescu, O.: Fixed points for (ψ, φ)-weak contractions. Appl. Math. Lett. 24, 1–4 (2011)
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