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Abstract This paper presents a reliable approach for solving linear systems of ordi-
nary and fractional differential equations. First, the FDEs or ODEs of a system with
initial conditions to be solved are transformed toVolterra integral equations. Then Tay-
lor expansion for the unknown function and integrationmethod are employed to reduce
the resulting integral equations to a new system of linear equations for the unknown
and its derivatives. The fractional derivatives are considered in the Riemann–Liouville
sense. Some numerical illustrations are given to demonstrate the effectiveness of the
proposed method in this paper.

Keywords System of ordinary differential equations · System of fractional
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1 Introduction

Fractional differential equations have gained considerable importance due to their
varied applications as well as many problems in Physics, Chemistry, Biology, Applied
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Sciences and Engineering are modelled mathematically by systems of ordinary and
fractional differential equations, e.g. series circuits, mechanical systems with several
springs attached in series lead to a system of differential equations. On the other
hand, motion of an elastic column fixed at one end and loaded at the other can be
formulated in terms of a system of fractional differential equations [1,2,4,8,10,11,
16–22,24–26,29]. Most realistic systems of fractional differential equations do not
have exact analytic solutions, so approximation and numerical techniques must be
used. Recently, Atanackovic and Stankovic [1] introduced the system of fractional
differential equations into the analysis of lateral motion of an elastic column fixed at
one end and loaded at the other. Daftardar-Gejji and Babakhani [5] studied the system
of linear fractional differential equations with constant coefficients using methods
of linear algebra and proved existence and uniqueness theorems for the initial value
problem. Furthermore, a large amount of literatures were developed concerning the
application of fractional systems of differential equations in nonlinear dynamics [7,9,
13,14].

Xian-Fang Li [12] has proposed an approximate method for solving linear ordinary
differential equations which can also be considered for linear fractional differential
equations in view of Riemann–Liouville fractional derivatives. In this paper, based on
the proposed method in [12], we propose a novel approach for solving a system of
ordinary and fractional differential equations. In this method, the FDEs or ODEs of a
system are transformed toVolterra integral equations and then Taylor expansion for the
unknown function and integrationmethod are employed to reduce the resulting integral
equations to a new system of linear equations for the unknown and its derivatives.
In this method, the accuracy of approximate solutions depends on the order of the
Taylor expansion. Clearly, for small orders of Taylor expansion, high accuracy is not
expected for approximate solutions and conversely, when taking a larger order of
Taylor expansion, more accuracy is expected for the approximate results.

This paper is arranged as follows. In Sect. 2, we first recall some necessary defini-
tions andmathematical preliminaries of the fractional calculus theory used throughout
the paper. This is particularly important with fractional derivatives because there are
several definitions available and they have some fundamental differences. Section 3
deals with the analysis of system of linear ordinary differential equations. In Sect. 4,
we analyse system of linear fractional differential equations. In Sect. 5, we discuss
convergence of the method. In Sect. 6, we investigate several numerical examples,
which demonstrate the effectiveness of our new approach. In Sect. 7, we summarize
our findings.

2 Preliminaries and Basic Definitions

We give some basic definitions and properties of the fractional calculus theory, which
are used further in this paper.

Definition 2.1 A real function f (x), x > 0, is said to be in the space Cμ, μ ∈ R
if there exists a real number p(> μ), such that f (x) = x p f1(x), where f1(x) ∈
C[0,∞), and it is said to be in the space Cm

μ iff f (m) ∈ Cμ, m ∈ N .
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Definition 2.2 The Riemann–Liouville fractional integral operator of order α ≥ 0, of
a function f ∈ Cμ, μ ≥ −1, is defined as

Jα f (x) = 1
�(α)

∫ x
0 (x − t)α−1 f (t)dt, α > 0, x > 0, (1)

J 0 f (x) = f (x). (2)

Properties of the operator Jα can be found in [15,22,23], we mention only the fol-
lowing:

For f ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ > −1:

Jα Jβ f (x) = Jα+β f (x), (3)

Jα Jβ f (x) = Jβ Jα f (x), (4)

Jαxγ = �(γ + 1)

�(α + γ + 1)
xα+γ . (5)

Definition 2.3 The fractional derivative of f (x) in the Caputo sense is defined as

Dα∗ f (x) = Jm−α

(
dm

dxm
f (x)

)

= 1

�(m − α)

∫ x

0
(x − t)m−α−1 f (m)(t)dt, (6)

for m − 1 < α ≤ m, m ∈ N , x > 0, f ∈ Cm−1.

Definition 2.4 The fractional derivative of f (x) in the Riemann–Liouville sense is
defined as

Dα f (x) = dm

dxm
(
Jm−α f (x)

)
, (7)

for m − 1 < α ≤ m, m ∈ N , x > 0, f ∈ Cm−1.

3 System of Linear Ordinary Differential Equations

Consider the following system of ordinary differential equations:

y′
i (x) +

n∑

j=1

bi j (x)y j (x) = fi (x), yi (0) = ci , i = 1, . . . , n, (8)

where bi j (x) and fi (x) are known functions, satisfying bi j (x), fi (x) ∈ C(I ), I is
the interval of interest. We focus our attention to first-order linear ODEs, and for
higher-order linear ODEs, the method is completely similar and omitted here.
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Integrating both side of Eq. (8) from 0 to x and using the initial conditions, we
obtain

yi (x) +
∫ x

0

n∑

j=1

bi j (t)y j (t)dt = ci +
∫ x

0
fi (t)dt, i = 1, . . . , n. (9)

Hence, we transformed system of ODEs (8) under initial conditions to a system of
Volterra integral equationswith continuous kernels. To approximately solve the system
of Volterra integral equations, we reduce the resulting Volterra integral equations to a
new system of linear equations in the unknown function and its derivatives.

To achieve this end, we employ the Taylor expansion for the unknown function
y j (t) at x

y j (t) = y j (x) + y′
j (x)(t − x) + · · · + 1

m! y
(m)
j (x)(t − x)m + R j,m(t, x), (10)

where R j,m(t, x) denotes the Lagrange remainder

R j,m(t, x) = y(m+1)
j (δ j )

(m + 1)! (t − x)m+1, (11)

for some point δ j between x and t . In general, the Lagrange remainder R j,m(t, x)
becomes sufficiently small whenm is large enough. In particular, if the desired solution
y j (t) is a polynomial of the degree equal to or less than m, then R j,m(t, x) = 0. In
other words, the obtained approximate solution of Eq. (9) is just the desired exact
solution.

Substituting (10) for y j (t) in the integrand into (9) leads to

yi (x) +
n∑

j=1

m∑

k=0

(−1)k

k! y(k)
j (x)

∫ x

0
bi j (t)(x − t)kdt = gi (x), i = 1, . . . , n. (12)

where

gi (x) = ci +
∫ x

0
fi (t)dt, (13)

and in the above derivation, the Lagrange remainder has been dropped due to a suf-
ficiently small truncated error. Moreover, the notation y(0)

j = y j (x) is adopted. In

Eq. (12) y(k)
j (x), for k = 0, . . . ,m are unknown functions. In order to obtain these

unknown functions, we understand the above equation as a linear equation for y j (x)
and its derivatives up to m. Consequently, other m independent linear equations for
y j (x) and its derivatives up to m are needed. These equations can be obtained by
integration of both sides of Eq. (9) m times as follows:
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∫ x

0

(x − t)l−1

(l − 1)! yi (t)dt +
n∑

j=1

∫ x

0

(x − t)l

l! bi j (t)y j (t)dt = g(l)
i (x), l = 1, . . . ,m,

(14)

where

g(l)
i (x) =

∫ x

0

(x − t)l−1

(l − 1)! cidt +
∫ x

0

(x − t)l

l! fi (t)dt. (15)

Substituting (10) for y j (t) in the integrand into (14), we have

m∑

k=0

(−1)k

k! y(k)
i (x)

∫ x

0

(x − t)k+l−1

(l − 1)! dt

+
n∑

j=1

m∑

k=0

(−1)k

k! y(k)
j (x)

∫ x

0

(x − t)k+l

l! bi j (t)dt = g(l)
i (x), (16)

for l = 1, . . . ,m.

Hence, Eqs. (12) and (16) form a system of linear equations for the unknowns y j (x)
and its derivatives up to m. The above system composed of Eqs. (12) and (16) can be
written in compact form as

C(x)Y (x) = G(x), (17)

where

C(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1010(x) · · · c10n0(x) · · · c101k (x) · · · c10nk(x) · · · c101m(x) · · · c10nm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

cn010(x) · · · cn0n0(x) · · · cn01k (x) · · · cn0nk (x) · · · cn01m(x) · · · cn0nm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

c1l10(x) · · · c1ln0(x) · · · c1l1k(x) · · · c1lnk(x) · · · c1l1m(x) · · · c1lnm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

c1m10 (x) · · · c1mn0 (x) · · · c1m1k (x) · · · c1mnk (x) · · · c1m1m (x) · · · c1mnm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

cnm10 (x) · · · cnmn0 (x) · · · cnm1k (x) · · · cnmnk (x) · · · cnm1m (x) · · · cnmnm (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (18)

G(x) =
[
g1(x), . . . , gn(x), . . . , g

(l)
1 (x), . . . , g(l)

n (x), . . . , g(m)
1 (x), . . . , g(m)

n (x)
]T

,

(19)

Y (x) =
[
y1(x), . . . , yn(x), . . . , y

(k)
1 (x), . . . , y(k)

n (x), . . . , y(m)
1 (x), . . . , y(m)

n (x)
]T

,

(20)
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where in (18), the first n rows refer to coefficients of y(k)
j (x) in Eq. (12) for j =

1, . . . , n, k = 0, . . . ,m and the other rows refer to coefficients of y(k)
j (x) in Eq. (16)

for j = 1, . . . , n, k = 0, . . . ,m. Application of Cramer’s rule to the resulting new
system yields an approximate solution of Eq. (8). We note that not only y j (x) but also

y(k)
j (x), for j = 1, . . . , n, k = 0, . . . ,m, are determined by solving the resulting new

system but in effect, it is y j (x) that we want to look for.

4 System of Fractional Differential Equations

Consider the following system of fractional differential equations:

y(αi )
i (x) +

n∑

j=1

bi j (x)y j (x) = fi (x), yi (0) = ci , i = 1, . . . , n, (21)

where bi j (x) and fi (x) are known functions, satisfying bi j (x), fi (x) ∈ C(I ), and I is

the interval of interest. In Eq. (21), y(αi )
i (x) = Dαi yi (x) denotes Riemann–Liouville

fractional derivative of order αi and here we assume 0 < αi ≤ 1, i = 1, . . . , n.
Based on definition (2.4), Eq. (21) can be rewritten as

d

dx

(
J 1−αi yi (x)

)
+

n∑

j=1

bi j (x)y j (x) = fi (x), i = 1, . . . , n, (22)

or equivalently using definition (2.2), we have

d

dx

(
1

�(1 − αi )

∫ x

0
(x − t)−αi yi (t)dt

)

+
n∑

j=1

bi j (x)y j (x) = fi (x), i = 1, . . . , n.

(23)

By integrating both sides of Eq. (23) from 0 to x , we obtain

1

�(1−αi )

∫ x

0
(x − t)−αi yi (t)dt+

∫ x

0

n∑

j=1

bi j (t)y j (t)dt=
∫ x

0
fi (t)dt, i =1, . . . , n.

(24)

To solve the above equation similar proposed method in Sect. 3, substituting (10) for
yi (t) in the integrand into (24) leads to

1

�(1 − αi )

m∑

k=0

(−1)k

k! y(k)
i (x)

∫ x

0
(x − t)k−αi dt

+
n∑

j=1

m∑

k=0

(−1)k

k! y(k)
j (x)

∫ x

0
bi j (t)(x − t)kdt = g(i)(x), (25)
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where

g(i)(x) =
∫ x

0
fi (t)dt, (26)

for i = 1, . . . , n.
In Eq. (25), y(k)

i (x), for k = 0, . . . ,m are unknown functions. In order to obtain
these unknown functions, we understand the above equation as a linear equation for
yi (x) and its derivatives up to m. Consequently, other m independent linear equations
for yi (x) and its derivatives up to m are needed.

To achieve this end, we continue to integrate both sides of Eq. (24) m times from
0 to x , and get

1

�(1 − αi )

∫ x

0

∫ x

t

(x − s)l−1

(l − 1)!
yi (t)

(s − t)αi
dsdt

+
n∑

j=1

∫ x

0

(x − t)l

(l)! bi j (t)y j (t)dt = g(l)
(i)(x), (27)

where

g(l)
(i)(x) =

∫ x

0

(x − t)l

(l)! fi (t)dt, (28)

for i = 1, . . . , n, l = 1, . . . ,m.
Substituting (10) for yi (t) in the integrand into (27), we obtain

1

�(1 − αi )

m∑

k=0

(−1)k

k! y(k)
i (x)

∫ x

0

∫ x

t

(x − s)l−1

(l − 1)! (x − t)k(s − t)−αi dsdt

+
n∑

j=1

m∑

k=0

(−1)k

k! y(k)
i (x)

∫ x

0

(x − t)k+l

(l)! bi j (t)dt = g(l)
(i)(x), (29)

for i = 1, . . . , n, l = 1, . . . ,m.
Hence, Eqs. (25) and (29) form a system of linear equations for the unknowns yi (x)

and its derivatives up to m. The above system composed of Eqs. (25) and (29) can be
written in compact form as

C(x)Y (x) = G(x), (30)

where
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C(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1010(x) · · · c10n0(x) · · · c101k (x) · · · c10nk(x) · · · c101m(x) · · · c10nm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

cn010(x) · · · cn0n0(x) · · · cn01k (x) · · · cn0nk (x) · · · cn01m(x) · · · cn0nm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

c1l10(x) · · · c1ln0(x) · · · c1l1k(x) · · · c1lnk(x) · · · c1l1m(x) · · · c1lnm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

c1m10 (x) · · · c1mn0 (x) · · · c1m1k (x) · · · c1mnk (x) · · · c1m1m (x) · · · c1mnm(x)
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

cnm10 (x) · · · cnmn0 (x) · · · cnm1k (x) · · · cnmnk (x) · · · cnm1m (x) · · · cnmnm (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (31)

G(x) =
[
g1(x), . . . , gn(x), . . . , g

(l)
1 (x), . . . , g(l)

n (x), . . . , g(m)
1 (x), . . . , g(m)

n (x)
]T

,

(32)

Y (x) =
[
y1(x), . . . , yn(x), . . . , y

(k)
1 (x), . . . , y(k)

n (x), . . . , y(m)
1 (x), . . . , y(m)

n (x)
]T

,

(33)

where in (31), thefirstn rows refer to coefficients of y(k)
i (x) inEq. (25) for i = 1, . . . , n,

k = 0, . . . ,m and the other rows refer to coefficients of y(k)
i (x) in Eq. (29) for

i = 1, . . . , n, k = 0, . . . ,m. Application of Cramer’s rule to the resulting new system
under the solvability condition of this system yields an approximate solution of Eq.
(21). We note that not only yi (x) but also y(k)

i (x), for i = 1, . . . , n, k = 0, . . . ,m, are
determined by solving the resulting new system but in effect, it is yi (x) that we want
to look for.

5 Error Analysis

Since in our proposed method in this paper for solving systems of both linear ordinary
and fractional differential equations, finally we achieve integral equations, hence the
error analysis of the convergence of approximate solutions derived from the integra-
tion method here is completely similar and applicable with the proposed error analysis
in [27].

6 Numerical Examples

Several authors in their papers such as Daftardar-Gejji and Babakhani [5], Bonilla
et al. [3], Duan et al. [6] and Wang et al. [28] have investigated various approaches
for solving systems of linear fractional differential equations and mentioned some
of their applications which show the importance of these kinds of problems. Also,
the differential equations involving the Riemann-Liouville differential operators of
fractional order 0 < α < 1 appear to be more important in modelling several physical
phenomena [28]. Therefore, in this work, we studied a method for solving systems
of linear ordinary and fractional differential equations of order 0 < α < 1. Since
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our purpose is to demonstrate the effectiveness of the proposed method in this paper
for both systems of ODEs and FDEs, in this section, we have chosen three specific
examples of order 0 < α < 1 where the exact solution is known for α = 1. All
calculations were performed using the MATHEMATICA software package.

Example 1 Consider the following linear fractional system

{
y(α1)
1 (x) + y2(x) = 1, 0 < α1 ≤ 1

y(α2)
2 (x) − y1(x) = 4, 0 < α2 ≤ 1

(34)

subject to the initial conditions

y1(0) = 1, y2(0) = −3. (35)

The exact solution, when α1 = α2 = 1, is

y1(x) = 5 cos x + 4 sin x − 4, (36)

y2(x) = −4 cos x + 5 sin x + 1. (37)

The values of α1 = α2 = 1 are the only case for which we know the exact solution,
and using our proposed method in Sect. 3, we can evaluate the approximate solutions
of y1(x) and y2(x) when α1 = α2 = 1. Figures 1, 2 and 3 show the approximate
solutions of y1(x) and y2(x) when α1 = α2 = 1 for m = 1, 2 and 3, respectively, in
Taylor expansion in comparison with the exact solutions. Our approximate solutions
are in good agreement with the exact values. Of course, the accuracy can be improved
as m is raised in Taylor expansion.

Also, we calculated the approximate solutions form = 4 and 5 in Taylor expansion
which due to the graphs of the approximate solutions, which coincide with the graph of
the exact solution, we cannot use the graphs for comparing the approximate solutions

y1 x

y2 x

0.5 1.0 1.5 2.0 2.5 3.0

5

5

Fig. 1 The exact solutions (solid) versus the approximate solutions (dashed) for m = 1
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y1 x

y2 x

0.5 1.0 1.5 2.0 2.5 3.0

5

5

Fig. 2 The exact solutions (solid) versus the approximate solutions (dashed) for m = 2

y1 x

y2 x

0.5 1.0 1.5 2.0 2.5 3.0

5

5

Fig. 3 The exact solutions (solid) versus the approximate solutions (dashed) for m = 3

with the exact solution. Consequently, we have to employ tables for comparing errors
when m is increased. The absolute errors at thirty equidistant points in the interval [0,
3] are shown in Tables 1 and 2, taking m = 4, 5, respectively. In Tables 1 and 2, E1
and E2 show the absolute errors of y1 and y2, respectively.

A considerable point is that the accuracy of the approximate solutions is improved
remarkably when we take larger values of m as well as the runtime computations are
mutually increased. In this test case the calculation times for m = 1, . . . , 5 measured
in seconds are 1, 4, 14, 32 and 48, respectively in a computer with hardware config-
uration: Intel Core i5 CPU 1.33 GHz, 4 GB of RAM and 64-bit Operating System
(Windows 7).

Setting α1 = α2 = 1
2 and applying our proposed method in Sect. 4, we can evaluate

the solutions of y1(x) and y2(x). Figure 4 shows the solutions of y1(x) and y2(x)when
α1 = α2 = 1

2 for m = 2 in Taylor expansion.
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Table 1 Absolute errors of Example 1 for m = 4

x E1 E2 x E1 E2

0.1 0 4.44089 × 10−16 1.6 6.69330 × 10−7 1.27620 × 10−6

0.2 8.88178 × 10−16 0 1.7 9.54027 × 10−7 2.43977 × 10−6

0.3 7.70495 × 10−14 2.77556 × 10−14 1.8 1.19279 × 10−6 4.44008 × 10−6

0.4 1.42286 × 10−12 3.39506 × 10−13 1.9 1.18477 × 10−6 7.72855 × 10−6

0.5 1.34839 × 10−11 1.68315 × 10−12 2.0 5.39587 × 10−7 1.29153 × 10−5

0.6 8.38871 × 10−11 1.18205 × 10−12 2.1 1.42860 × 10−6 2.07823 × 10−5

0.7 3.88818 × 10−10 3.74567 × 10−11 2.2 5.84137 × 10−6 3.22743 × 10−5

0.8 1.44775 × 10−9 3.02793 × 10−10 2.3 1.44328 × 10−5 4.84527 × 10−5

0.9 4.54473 × 10−9 1.48755 × 10−9 2.4 2.97615 × 10−5 7.03937 × 10−5

1.0 1.24250 × 10−8 5.64554 × 10−9 2.5 5.54504 × 10−5 9.90113 × 10−5

1.1 3.02570 × 10−8 1.79996 × 10−8 2.6 9.64431 × 10−5 1.34782 × 10−4

1.2 6.66679 × 10−8 5.03498 × 10−8 2.7 1.59251 × 10−4 1.77345 × 10−4

1.3 1.34333 × 10−7 1.26924 × 10−7 2.8 2.52167 × 10−4 2.24965 × 10−4

1.4 2.49104 × 10−7 2.93635 × 10−7 2.9 3.85390 × 10−4 2.73824 × 10−4

1.5 4.25972 × 10−7 6.31692 × 10−7 3.0 5.71029 × 10−4 3.17161 × 10−4

Table 2 Absolute errors of Example 1 for m = 5

x E1 E2 x E1 E2

0.1 2.22045 × 10−16 0 1.6 3.76992 × 10−9 6.72710 × 10−9

0.2 0 0 1.7 6.20581 × 10−9 1.45840 × 10−8

0.3 2.22045 × 10−16 0 1.8 9.04579 × 10−9 2.98965 × 10−8

0.4 4.44089 × 10−16 1.11022 × 10−16 1.9 1.09234 × 10−8 5.82736 × 10−8

0.5 7.54952 × 10−15 6.38378 × 10−16 2.0 8.34533 × 10−9 1.08486 × 10−7

0.6 6.17284 × 10−14 1.77636 × 10−15 2.1 6.15175 × 10−9 1.93590 × 10−7

0.7 3.94795 × 10−13 3.33067 × 10−14 2.2 4.69063 × 10−8 3.32077 × 10−7

0.8 1.92557 × 10−12 3.75255 × 10−13 2.3 1.39479 × 10−7 5.48772 × 10−7

0.9 7.67075 × 10−12 2.38032 × 10−12 2.4 3.26858 × 10−7 8.75038 × 10−7

1.0 2.59850 × 10−11 1.12723 × 10−11 2.5 6.77922 × 10−7 1.34759 × 10−6

1.1 7.69005 × 10−11 4.37987 × 10−11 2.6 1.29851 × 10−6 2.00495 × 10−6

1.2 2.02722 × 10−10 1.46617 × 10−10 2.7 2.34523 × 10−6 2.88022 × 10−6

1.3 4.82560 × 10−10 4.35868 × 10−10 2.8 4.04190 × 10−6 3.98855 × 10−6

1.4 1.04651 × 10−9 1.17473 × 10−9 2.9 6.69799 × 10−6 5.30720 × 10−6

1.5 2.07697 × 10−9 2.91376 × 10−9 3.0 1.07279 × 10−5 6.74599 × 10−6
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Fig. 4 α1 = α2 = 0.5
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Fig. 5 The exact solutions (solid) versus the approximate solutions (dashed) for m = 3

Example 2 Consider the following linear fractional system

{
y(α1)
1 (x) − y1(x) − 3y2(x) = 1, 0 < α1 ≤ 1

y(α2)
2 (x) − 3y1(x) − y2(x) = 4, 0 < α2 ≤ 1

(38)

subject to the initial conditions

y1(0) = 1, y2(0) = −3. (39)
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Fig. 6 The exact solutions (solid) versus the approximate solutions (dashed) for m = 4
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Fig. 7 Variations of the errors between several approximations of y1(x) and the corresponding exact values

The exact solution, when α1 = α2 = 1, is

y1(x) = 1

8
e−2x (22 − 11e2x − 3e6x ), (40)

y2(x) = 1

8
e−2x (−22 + e2x − 3e6x ). (41)

Using our proposedmethod in Sect. 3, we can evaluate the approximate solutions of
y1(x) and y2(x) when α1 = α2 = 1. Figures 5 and 6 show the approximate solutions
of y1(x) and y2(x) when α1 = α2 = 1 for m = 3 and m = 4, respectively, in Taylor
expansion in comparison with the exact solutions. Our approximate solutions are in
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Fig. 8 Variations of the errors between several approximations of y2(x) and the corresponding exact values
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Fig. 9 α1 = α2 = 0.5

good agreement with the exact values. Of course it is clear that the accuracy can be
improved as m is raised in Taylor expansion and in this test case for m = 4, . . . the
graphs of the approximate solutions coincide with the graphs of the exact solutions
and there is no deviation to exact solution.

In order to show the variation of the accuracy of approximations, the errors, between
several approximate solutions and the exact values are plotted in Figs. 7 and 8 for y1(x)
and y2(x), respectively.

Setting α1 = α2 = 1
2 and applying our proposed method in Sect. 4, we can evaluate

the solutions of y1(x) and y2(x). Figure 9 shows the solutions of y1(x) and y2(x)when
α1 = α2 = 1

2 for m = 3 in Taylor expansion.
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Fig. 10 The exact solutions (solid) versus the approximate solutions (dashed) for m = 3
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Fig. 11 The exact solutions (solid) versus the approximate solutions (dashed) for m = 4

Example 3 Consider the following linear fractional system

⎧
⎪⎨

⎪⎩

y(α1)
1 (x) + 2y1(x) = 3

2
, 0 < α1 ≤ 1

y(α2)
2 (x) − 4y2(x) = 5

2
, 0 < α2 ≤ 1

(42)

subject to the initial conditions

y1(0) = −2, y2(0) = −1. (43)
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Fig. 12 Variations of the errors between several approximations of y1(x) and the corresponding exact
values
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Fig. 13 Variations of the errors between several approximations of y2(x) and the corresponding exact
values

The exact solution, when α1 = α2 = 1, is

y1(x) = 1

4
e−2x (−11 + 3e2x ), (44)

y2(x) = 1

8
(−5 − 3e4x ). (45)

Using our proposed method in Sect. 3, we can evaluate the approximate solutions
of y1(x) and y2(x) when α1 = α2 = 1. Figures 10 and 11 show the approximate
solutions of y1(x) and y2(x) when α1 = α2 = 1 for m = 3 and m = 4, respectively,
in Taylor expansion in comparisonwith the exact solutions. Our approximate solutions
are in good agreement with the exact values. Of course the accuracy can be improved
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Fig. 14 α1 = α2 = 0.5

as m is raised in Taylor expansion which in this example for m = 4, . . . the graphs of
the approximate solutions coincide with the graphs of the exact solutions.

In order to show the variation of the accuracy of approximations, the errors, between
several approximate solutions and the exact values are plotted in Figs. 12 and 13 for
y1(x) and y2(x), respectively.

Setting α1 = α2 = 1
2 and applying our proposed method in Sect. 4, we can evaluate

the solutions of y1(x) and y2(x). Figure 14 shows the solutions of y1(x) and y2(x)
when α1 = α2 = 1

2 for m = 3 in Taylor expansion.

7 Conclusion

In this paper, we have proposed an approximate method suitable for both systems of
linear ordinary and fractional differential equations. In the method, first, the FDEs or
ODEs of a system with initial conditions to be solved have transformed to Volterra
integral equations. Then Taylor expansion for the unknown function and integration
method have employed to reduce the resulting integral equations to a new system of
linear equations for the unknown and its derivatives. Application of Cramer’s rule the
resulting new system has been solved. We must emphasize that the method can only
be used to solve linear systems of ODEs or FDEs.
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