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Abstract In this paper, we consider the solvability of a third-order three-point bound-
ary value problem on a half-line of the form:

x"(1) = f(t,x(0), X' @), x"(1)), 0<1 <400,
x(0) = ax(n), lim 0xP@) =0, i=1,2,

where o # 1 and 7 € (0, 400), while f : [0, +00) x R} — R is S>—Carathéodory
function. The existence and uniqueness of solutions for the boundary value prob-
lems are obtained by the Leray-Schauder continuation theorem. As an application, an
example is given to demonstrate our results.
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1 Introduction

In this paper we consider the existence and uniqueness of solutions for third-order
three-point boundary value problems on a half-line
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x"(1) = f(t,x@),x' @), x" (1)), 0<t<+o0, (1.1)
x(0) = ax(n), t_l)iriloox(i)(t) =0, i=1,2, (1.2)

where o # 1 and 1 € (0, 400).

The third-order differential equations arise in many areas, such as the deflection of
a curved beam having a constant or a varying cross-section, three layer beam, elec-
tromagnetic waves or gravity-driven flows [10]. Meanwhile, the third order boundary
value problems in an infinite interval has been widely used to describe the evolution of
physical phenomena, for example some draining or coating fluid-flow problems, see
[3,24,25]. We refer the reader to [2,4-9,11-16,20,21,23,26,27] for the study of the
finite interval problems of third-order differential equations, and to [1,3,17,22,24,25]
for the study of the infinite interval problems.

Motivated by the above works and [19], in this paper we discuss the solvability of
third-order three-point boundary value problems (1.1), (1.2). Based upon the Leray-
Schauder continuation theorem, the existence and uniqueness of solutions for BVP
(1.1), (1.2) were obtained.

The rest of this paper is organized as follows. In Sect. 2, as the preliminary we give
some lemmas which help us to simplify the proofs of our main results. In Sect. 3,
firstly we discuss the existence of solutions for BVP (1.1), (1.2) by Leray-Schauder
continuation theorem, and then investigate the uniqueness of solutions to BVP (1.1),
(1.2). Finally, as an application, we give an example to demonstrate our results.

2 Preliminary

In this section, we present some definitions and lemmas which are useful in the proof
of our main results.

Definition 2.1 The function f : [0, +00) X R3 — R s called an Sz—Carathéodory
function, if and only if

(i) for each (u, v, w) € R3¢t > f(t, u, v, w) is measurable on [0, +00);
(i) fora.e.t € [0, +00), (u, v, w) — f(¢,u, v, w) is continuous on R3;
(iii) for each r > 0, there exists ¢, (1) € L'[0, +o00) with ¢, (1) > 0 on (0, +00) and
1y (1), 2@, (1) € L'[0, +00), such that V u, v, w € [—r, r],
[f(t,u,v,w)| <@ (t), a.e.tel0,+00).

Lemma 2.1 For any h(t) € L'[0, +00) with th(t), t*h(t) € L'[0, +00), the BVP

2.1)

X"ty =h), 0<t < —+o0o,
x(0) = ax(m), limioex@(@) =0, i=1,2

has a unique solution
+o00
x(t) =/ G(t, s)h(s)ds,
0
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The Existence and Uniqueness of Solutions 911

where
2(11_a)S25 s < min {77’ t};
o 2 1.2 .
=S — 5" t+1s, r=s=mn
G, 5) = ( Ot>1 2 1.2
= (3n* = ns) + 352, n<s<t
0% (%nz — ns) — 2[ +ts, max{n,t} <s.

Proof Noticing that h(t), th(t), 12h(t) € L0, +00), integrate the differential equa-
tion in BVP (2.1) from ¢ to +00, we have

+00
—x"(t) = / h(s)ds.
t

Integrating this differential equation on [t, 400), and applying the Fubini theorem we
obtain that

+oo
x'(t) = / (s —t)h(s)ds.
t
Also integrating the above differential on [0, 7] one has

t +oo
x() =x(0) + l/ s2h(s)ds —I—/ (ts - lt2) h(s)ds. (2.2)
2 0 t 2

Since x(0) = ax(n), we have

1 /7 +oo 1
x(0) =« |:x(0) + —/ szh(s)ds +/ (ns — —772) h(s)ds] ,
2 Jo 0 2

and thus
a 1 /7 oo 1
x(0) = -/ s2h(s)ds +/ (ns — —nz) h(s)ds |.
1—a |2/ 7 2
Hence from (2.2) it follows that
o 1 2 +00
x(t) = —| = h(s)ds + ns — —n h(s)ds
_ 2 Jo )
1 2
+ 2/0 h(s)ds +/, (ts o )h(s)ds
Therefore, when 0 < ¢ < n,
1 t n +00 1
x(t) = ad — / +/ szh(s)ds +/ ns — —nz h(s)ds
1—a |2 \Uo ' 0 2
1 /! n oo 1
+ —/ szh(s)ds + (/ —l—/ ) (ts — —12) h(s)ds,
2 Jo : 7 2
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912 H. Shi et al.

when n <t < +o0,

o 1 n 5 t +0o0 1 5
x(t) = — s h(s)ds + + ns — =n~ ) h(s)ds
l —«a 2 0 n t 2
1 7 t +o0 1
+ = / +/ )szh(s)ds +/ (ts - —ﬂ) h(s)ds,
2 \Uo 0 ] 2

that is,
+o00
x(1) =/ G(t,s)h(s)ds, Vit el0,+00).
0

This completes the proof of the lemma. O

Lemma 2.2 Let the Green function G(t, s) be as in Lemma 2.1. Then G (t, s) has two
propetrties:

(1) Forallt,s € [0, +00),

%s2, a <0;
|G(t,5)| < z(ll_a)sz, O<a<l;
2
2(a“_l)s , oa>1.
2
1 2

a5 s <

lim G(t,5)=G(s) = 4" 1 1
1—>+00 D{"‘Tl (§n2 — ns) + isz, n<s.

Proof (1) It is easy to see that for each fixed s € [0, +00),
0 0
&G(t, s)>0,Vre[0,s] and &G(t’ s) =0, V¢ €l[s, +00),

it follows that

G@0,s) <G(t,s) <G(s,s), Vi, s e€]0,+00).

Since
2
G, s) = 21(1_01)5, s =n;
g (3m* —ns). n<s,
12
_ = s =
Gl) =120 2 12,2
o7 (an* = ns) + 387 n<s,
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The Existence and Uniqueness of Solutions 913

we have V (¢, s) € [0, +00) x [0, 1],

|
52 <G(t,s) < ——s>
20 —a

>
2(1 — @) )

and V (r, s) € [0, +00) X [, +00),

o 1, o 1, 1,
—n?—ns) <G, s) < —— | =n* — —s2.
oz—l(Zn ”s)— ( S>_a—1(2n "s)+2s

Now we have three cases to consider:
Case 1. o < 0. In this case, since o/(e — 1) > 0 and #%/2 — ns < O for s > 1, we
have

s2 for s > 1.

| =

o I, 1,
— — — <
a—1(2” ”S)+2s—

But from 1/(1 — ) < 1, it follows that

1 2

1,
—s < = f € [0, nl.
2(1_05)s < 2s or s € [0,n]

Therefore |
G(t,s) < 5s2, Vi, s e [0, +00). (2.3)

Also Vs € [0, +00),

o I, o 5 o ( )2>0
—n"—ns)— = —s ,
a—1 27 ") T 00’ T 21" =

then

G(I,S) > ﬁsz, Vt,S € [O, +OO)

This together with (2.3) implies that

1
s2 < G(t,s) < Esz’ Vi, s €[0,+00).

o
2(1 — )
Hence from the fact 0 < o/(o — 1) < 1, it follows that

1
|G(t,5)] < Esz, Vi,s €[0,400).
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914 H. Shi et al.

Case 2.0 < o < 1. In this case, obviously G (¢, s) > 0 on [0, +00) x [0, +00). Since
Vs e |0, +00),

o I, +12 1 2 o ( )2<0
a—1\2" TP)T T’ T2 Y =Y

it follows that

1
G(t,s) < —s%, Vt,sel0, )
( s)_2(1_a)s s € [0, +00)
Hence
0<G(,s) < ! 2 Vi,s€[0,400)
y$) =S ———8, , S ) oQ),
= 2(1 — @)
which implies that
Gt )| < 2. Vise[0.+00)
) < , ,s € [0, +00).
s 3 _a)s s

Case 3. « > 1. In this case, obviously s2/2(1 —a)) < 0 fors € [0, +00). On the
other hand,

1
¢ (—nz—ns)<0 for s >n,

a—11\2
and thus
cxoil (%nz—ns)—i—%sz < %sz for s >n.
Therefore {
G(t,s) < §s2, Vi, s e [0, +00). (2.4)
Also since

« o _* (Lo Y (s—m?<0, Vsel0,400)
55— " =ns)=———(s — , Vs , ,
2—a) a—1\2" 77 N

it follows from (2.4) that

1
52 <G(t,s) < Esz, Vit,s €l0,400).

o
2(1 — )
This together with the fact /(1 — @) < —1 implies that

IG(t, ) < ﬁsz, V1,5 € [0, +00).
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The Existence and Uniqueness of Solutions 915

(2) From the definition of G (¢, s), it follows that

12 .
—5 s<n=t
G, 5) = " a)l 2 1.2
55 (G —ns) +35%, n<s<t,
and thus
12
. IEREE s=1
[hm G(t,s) = a)l 5 -
>
e a1 (Gn* —ns) + 357 n<s
This completes the proof of the lemma. O

Consider the space
C210, +00) = [x € C?[0, +00) : Jim x@D (1) exists, i =0, 1,2]
——+00

with the norm ||x|| := [[x[lec + 1%/ llcc + [1x”llcc, ¥ x € CZ[0, +00). Then by the
standard arguments, we can prove that (C <%Q[O, 400), || - ||) is a Banach space. Now,
we introduce the subspace X of C%O[O, +00) as follows:

X = Ix € C2,[0, 4+00) : x(0) = ax(n), Jim D=0, i =1, 2} .
—1+0Q

Then it is clear that X is closed in Cgo [0, +00), and hence is itself a Banach space.

Lemma 2.3 [1] Let M C C = {x € C[0, +00) : lim;_, y o x () exists}. Then M is
relatively compact if the following conditions hold:

(1) all functions from M are uniformly bounded,
(i) all functions from M are equicontinuous on any compact interval of [0, +00);
(iii) all functions from M are equiconvergent at infinity, that is, for any given & > 0,
there exists a T(e) > 0, such that |f(t) — f(+00)| < ¢ forallt > T and
feM.

Let us denote the operator T as

Fo0
(Tx)(t) :/ G(t,8)f (s, x(s),x'(s),x"(s))ds, 0 <1< +o0.
0

It is easy to check from Lemma 2.1, 2.2 and Lebesgue’s dominated convergence
theorem that if f satisfies the S>—Carathéodory condition, then 7 : X — X is well
defined.

Lemma 2.4 Let f : [0, +00) x R? — R be an S>—Carathéodory function, then
T : X — X is compact.
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916 H. Shi et al.

Proof First we show that T is continuous. To do this, let x,,, xo € X(n = 1,2, - - )
and x,, — xo(n — 400). Then there exists ro > 0, such that

Ixell <70, n=0,1,2,---.
Since f is an S?—Carathéodory function, then for the above ry > 0, there exists a
y

positive function ¢, € L0, +o00) with tg,, (1), t2<pr0 (1) € L0, +00) such that for
eachn=20,1,2,---,

| (£, xn(0), X (0), %) (D) | < @1, (1), ace. t € [0, +00).
Thus
oo
/O G ) (f (.20 (5), 2, (8), 2/ () = f (5. %0(5), x0(5), G (5))) | ds
+oo
< 2/ |G(5)| @ry(s)ds < +o0, n=1,2,---.
0
Consequently from the Lebesgue’s dominated convergence theorem, it follows that
|(Tx) (1) — (Tx0) ()]
400
< /0 G, )| (5 20(5). x,(5) 219)) — f (5. 30(5). x)(8). x{/(5)) ] ds

1 1+ |of +oo 2 / 1%
55(1+ |l—a|)/0 w75, 560, 50

—f (5, x0(8), x0(5), x( () | ds
=0 on|0, +00) (n »> 400),
[(Txn) (t) = (Tx0) (1]

+00
5/ (s = 1) | f (5, xn(5), x5, (), x,/ () — £ (s, x0(8), x0(5), X (5)) | ds
‘
+00
5/0 s | (s, xn(8), 2, (), xp () — f (s, x0(s), x0(8), X0 ()| ds
=0 on]0,4+00) (n - 4+00)

and

[(Txn)" (t) = (Tx0)"(1)]

+00
—/ (f (5. x0(8), x7,(5), X7 (8)) — f (5. X0(5), X0(). X0 (5))) ds
t

+o00
5/0 | (5. %0 (), x7,(5), x5/ (5)) — f (s, x0(s), x((s), x5 ()| ds
=0 on[0, +00) (n > 400).
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The Existence and Uniqueness of Solutions 917

Therefore, T : X — X is continuous.
Next we show that 7 maps bounded sets into relatively compact set. Let B C X be
a bounded set. Then there exists r; > 0, such that V x € B,

1l = llxlloo + 11X lloo + X" lloo < 71

Since f is an S>—Carathéodory function, there exists a positive function ¢Yr €
L'[0, +00) with tg,, (1), t>¢,, (t) € L'[0, +00), such that V x € B,

|f (6. x@). x'@0), X" )| < ¢ (1), ae.te]0,+00).

Therefore V x € B, we have

+00
[(Tx)(1)] S/O 1G(#,9)] | f (s, x(s), x(5), x"(s)) | ds

1 1 0
< -1+ + lo| / s2<prl (s)ds < +o00, te€]0,400),
2 1—al/ Jo

+00
(T2 ()] < / 5| (5. 26). /(). x"(9)) ] ds
t

+oo
< / s@r (s)ds < 400, € [0, +00) 2.5)
0
and

+00
[(Tx)" (1)l S/ £ (5. x(), x"(s), x"(s)) | ds
t

+o0
< / @r, (s)ds < +o00, t € [0, +00). (2.6)
0

Thus {(Tx)(t) : x € B}, {(Tx)'(t) : x € B} and {(Tx)"(¢) : x € B} are uni-
formly bounded. Also, from (2.5) and (2.6) it follows that, {(Tx)(¢) : x € B} and
{(Tx)’ (t):x € B} are equi-continuous on any compact interval of [0, +00). Mean-
while, V 11, t; € [0, +00) and V x € B, we have
5]
/ @r, (s)ds
a1

and so by the absolute continuity of Lebesgue integral, {(Tx)’ "t):x € B} is equicon-
tinuous on any compact interval of [0, +00).

On the other hand, from Lebesgue’s dominated convergence theorem, it follows
that

<

[(Tx)"(t2) — (Tx)"(11)| = <

3

t
/2 f (s, x(5), x"(5), x"(5)) ds
I
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918 H. Shi et al.

+00 _
(Tx)(t) — (Tx)(+00)| < /O |G(t.5) — G()||f (s, x(s), x'(s), x"(5)) | ds

+00 o
< /O 1G(t. 5) — G(5)| @, (5)ds
-0 (t—> +0), VxeB,

+0o0

|(Tx)' () — (Tx) (+00)| 5/ (s =) | f (5. x(5), x'(s), x"(5)) | ds
t
+o00
5/ S@r (s)ds
t

-0 (t > +4), VxeB

and

+00 +oo
(T (1) — (Tx) (+00)| < / | (5. (), 2 (s), 2" (5)) ] ds < / o, (5)ds
t t

—-0 (t > 4+00), Vxe€B,

we have that {(Tx)(t) : x € B}, {(Tx)’(t) 1x € B} and {(Tx)’(t) 1x € B} are
equiconvergent at infinity. Hence from Lemma 2.4, T' B is relatively compact in X.
In summary, 7 : X — X is compact. This completes the proof of the lemma. O

Lemma 2.5 [18] (Leray-Schauder continuation theorem) Let X be a real Banach
space and let Q be a bounded open neighborhood of 0 in X. Let T : Q — X be a
completely continuous operator such that for all ». € (0, 1) and x € 02, x # ATx.
Then the operator equation

has a solution x € Q.

3 Main Results

Now we apply the Leray-Schauder continuation theorem to establish the existence
theorems for BVP (1.1), (1.2).

Theorem 3.1 Assume that f : [0, +00) x R? — R is §>— Carathéodory function.
Suppqse also ;hat thgre existlnonnegativefunctions p),q@),r(),e() € L0, +00)
witht' p(t), ' q (1), t'r(t), t'e(t) € L'[0, +00)(i = 1,2), such that forall (u, v, w) €
R3,

[f(@ u, v, w)| < p()lul +g@O)|v] +r@)|w| +e@), ae.t €0, +00).
Then BVP (1.1), (1.2) has at least one solution, provided

max {P, Q, R} < 1,
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The Existence and Uniqueness of Solutions 919

where

VP0+P1+%P2, a < 0; oo

P={P+ Pt gk 0sa<ti R= [ spes =012
0

‘P0+P1+ﬁf’2, oa>1,

Qo+ Q1+ 30, o <0 oo

Q=100+ 01+ 57502 O<a<l; Q,:/ s'q(s)ds, i =0, 1,2,
Q0+ Q1 + 55 02, > 1, 0

VR0+R1+%R2, a < 0; too

R = R0+R1+ﬁR2, 0<a<l; Riz/ s'r(s)ds, i =0,1,2.
|Ro+ R+ y Ras o> 1, ‘

Proof By Lemma 2.1, it is easy to see that x € X is a solution of BVP (1.1), (1.2)
if and only if x is a fixed point of 7. Now, we apply Leray-Schauder continuation
theorem, to prove that T has a fixed point in X. To do this, it is sufficient to show that
operator equations

x=ATx, 2€(,1) 3.D

has a priori bound M independently of X, that is we need only to show that boundary
value problems

3.2)

x"(t) = Af (t,x(t),x’(t),x”(t)) , 0<t <400, L€(0, 1),
x(0) = ax(n), lim;i0x’(t) =0, lim;i00x"(t)=0

has a priori bound M independently of A € (0, 1).
Suppose that x = x(¢) is a possible solution of (3.2), and let

+00 +00 +00
Eo =/ e(s)ds, E; =/ se(s)ds, Ep =/ sze(s)ds.
0 0 0

We will now divide the proof into three cases.
Case 1. @ < 0. In this case, by Lemma 2.2 we have

1
|G(t,5)] < Esz, Vi,s €[0,400).

@ Springer



920 H. Shi et al.

From (3.2) and Lemma 2.1 it follows that
+00
lx ()] = ‘?»/ G(t,8)f (s, x(s),x'(5), x"(s)) ds
0

+00
5/0 G, 9 |£ (5 x(), (5, x(5)) | ds

IA

2
<3 (Pallxlloo + Q2 | x| + R2 |x"| o + E2) . V1 €0, +00),

+oo 1
/0 =57 (p®Ix ()] + g (s) |X' ()| +r(s) [x"(5)] + e(s)) ds

+00
X' (1) = ‘K/ (s —0) f (s5,x(s), x'(s), x"(5)) ds
t
+00
< / s |f (s,x(s),x/(s),x”(s))’ds
0

+00
= /0 s (PO + () [ @] +r) [x"(6)] + e(s)) ds

< Pillxlleo + Q1 |¥| o + R [¥"] o + E1, V1 €0, +00)
and
+o00
lx" ()] = ‘—A/ f (s, x(s), x'(s), x"(s)) ds
t
+00
5/0 |f (5, x(5), x'(5), x"(8)) | ds

+00
< /0 (PO)Ix(®)] + g (s) [x' ()] +r(s) [x" ()] + e(s)) ds
< Pollxlleo + Qo x| o + Ro [x"] o + Eo, V1 € [0, +00).
Thus

1
Illoo < 5 (Pallxlloo + Q2 x| o + Ra "] o + E2) .

1X'loe < Pillxlloo + O1 ||, + Ry [x”| o, + En.
Ix" oo < Pollxlloo + Qo ||%']| o, + Ro <" ||, + Eo-

Consequently

1
Il = Plixlioo + Q '] + R |x" ][ + Eo + Ev + S E2

1
=max{P, @, R} |lx|| + Eo + E1 + EEZ'
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The Existence and Uniqueness of Solutions 921

Therefore

E0+E1+%E2 M
—max(P,Q,R} "

<
Ixll = 5

Case 2.0 < o < 1. In this case, by Lemma 2.2 we have

1
IG(t,5)| < 2(1—s2, Vi, €[0,400).
—

)

From (3.2) and Lemma 2.1 it follows that

+o00
x(0)| s/o G |1 (5 505, (5), x7(5)) | ds
+00
< /0 —2(1 l_a)s2 (p(s)lx(s)l + q(s) ‘x’(s)‘ + 7 (s) ‘x//(s)| + e(s)) ds

< (Pt Q2|+ R+ Ea). Vi€ 0. +00).
—2(1 —w) o0 00

+00
|x'()| = 'A/ (s =) f (5. x(s), x'(s), x"(s)) ds
t

< Pilxlloc + Q1 |¥'|| o + R | X", + E1. Vi €0, +00)

and
+o00
Ix" ()| = ‘—A/ I (s, x(s), x'(s), x"(s)) ds
t

< Pollxlleo + Qo || o + Ro [x"] o + Eo, V1 € [0, +00).
Thus

x|l < max{P, Q, R} |Ix|| + Eo + E1 + - En,

2(1 — @)

and hence

E0+E1+ﬁE2 _

lx]l < =: M>.
1 —max{P, Q, R}

Case 3. @ > 1. In this case, by Lemma 2.2 we have

Gt s)| < ﬁsz, V1,5 € [0, +00).
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922 H. Shi et al.

From (3.2) and Lemma 2.1 it follows that

+00
lx(0)] 5/0 G, )| | f (s, x(5), x"(5), x"(s)) | ds

+oo (o4 2 / ”
5/0 @D’ (P@Ix ()| + g (s) [x' ()| 4+ r(s) [x"(s)| + e(s)) ds

< X (Palixlloo + 02 |¥]| o, + R[], + E2). Vi €0, +00),
“ 2(a—1) o0 o0

~+00
X' ()| = ’A/ s—0f (s, x(s), x'(s), x”(s)) ds
t

< Pillxllec + Q1 || o + R [x"] o + E1, V1 €0, +00)

and
+00
Ix" ()] = ‘—)\/ f (s, x(s), x'(5), x"(s)) ds
t
< Pollxlloo + Qo [|x"| o, + Ro | "], + Eo. V1 € [0, +00).
Thus
o
x| <max{P, Q, R} x| + Eo + E1 + ——E>,
2 — 1)
and hence
Eo+ E1 + s E2
x|l < 20D 2y,

1 —max {P, O, R}

In summary, the operator equations (3.1) has a priori bound M := M1 + M, + M3
which is independent of A € (0, 1). Hence by Lemma 2.5 (Leray-Schauder continua-
tion theorem), BVP (1.1), (1.2) has at least one solution. This completes the proof of
the theorem. O

Next, we give a result on the uniqueness of solutions for BVP (1.1), (1.2).

Theorem 3.2 Assume that f : [0, +00) x R? — R is §>— Carathéodory function.
S'uppose‘also thqt there exist nonnegative functions p(t), q(t),r(t) € L0, +00) with
tip(t),tq(), t'r(t) € L'[0, +00)(i = 1,2), such that

[f(t ur, vi, wy) — f(t, uz, v2, w2)| < p(®)|uy —uz|+q () |vr —v2| +7 (1) |[wy — w2
3.3)
fora.e. t € [0, +00) and all (u;, v;, w;) € R?,i =1,2.
Then BVP (1.1), (1.2) has a unique solution, provided
max {P, O, R} < 1,

where P, Q, R as in Theorem 3.1.
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Proof We note that assumption (3.3) implies

[f(t u, v, w)| < p(O)]ul +q@)|v] +r@)|w| +[f(2,0,0,0)]
for a.e. x € [0, +00) and all (u, v, w) € R3. Accordingly from Theorem 3.1, BVP
(1.1), (1.2) has at least one solution.

Now, suppose that x1(¢), x2(¢) are two solutions of BVP (1.1), (1.2). Let y(¢) =
x1(t) — x2(¢). Then y(¢) satisfies the boundary condition (1.2) and

y'(t) = f (t,xl(t),x; (t),xi/(t)) —f (t,xg(t),xé(t),xé/(t)), 0<t < +oo.

Hence from Lemma 2.1 we have

y(t) = /0 +°O G(t,5) [ f (s, x1(5), x{ (), x7(8)) — f (£, x2(5), x)(5), x5 (5)) ] ds.
Similar to the proof of Theorem 3.1, we can show easily that
Iyl = max {P, Q, R} |Iyll,
that is
(I —max {P, Q, R} [lyll =0.

Since max {P, Q, R} < 1, it follows that ||y|| = 0, and hence y(¢) = 0 on [0, +00),
i.e., x1 () = x2(¢) on [0, +00). This completes the proof of the theorem. O
Finally, as an application, we give an example to demonstrate our results.

Example 3.1 Consider the third-order boundary value problem

1 1 1
X = 2 min {1, t_4} + = min {r, t_5} (7 + 1+ 3¢ x"|.(34)

14+x2 3

_ 1 . / _ . 4 _
x(0) = Zx(. lim x'(1) =0, lim x"(t) =0, (3.5)

where 0 < n < +00.

Let
ft,u,v,w) = lmin{l t_4} ! —{—lmin {t t_S} v2+1+le_2’|w|
b 9 b 4 9 1+u2 3 b 2 b
1 1 1
p(t) = ; min {1, r“}, q(1) = 3 min {z, z—5}, () = ze7.

Then it is easy to check that f : [0, +00) x R} — Ris an S?— Carathéodory function,
and

| f(@, ur, vi, w)— f(t, uz, v2, w2)| < p()lur—uz| + g@®) vy — v2| +r () |wr—w2|
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fqr all ¢ € [0, +00) and all (u;, v;, w;) € R3,i = 1, 2. Meanwhile, obviously tip(t),
tiq(t), t'r(t) € L'[0, +00),i =0, 1, 2.
It is easy to compute that

Po=x, Pi=t p=l
0_37 1_45 2_39
Q—1 Q 2 Q l
0—47 1_93 2—47
R ! R—1 R :
0—4’ 1—8’ 2—8-

It follows that

max {P, Q, R} = max {Py + P + P2, Qo+ Q1 + Q2. Ro + Ri + R2}

11 13 1 11
=max|—, —, - =-—=<
1218 2 12

In summary, all conditions of Theorem 3.2 are satisfied for BVP (3.4), (3.5), and hence
BVP (3.4), (3.5) has a unique solution x = x (7).
Noticing that the Green’s function corresponding to BVP (3.4), (3.5) satisfy

%s2>0, s <

G(t,s) > G(0,s) =
(t,5) = G(O, ) [ns—%ﬂ2>0» s>,

and
f@,u,v,w) >0, V(¢ u,v w)el0,+00) x R3.
It follows that
+00
x() = / G(t,s)f (s, x(s), x'(s), x”(s)) ds
0
+00
> / G(0,5) f (5. x(s), x'(s), x"(s)) ds > 0, 1 € [0, +00).
0
Also since
+00
x'(t) =/ s—0f (s,x(s), x’(s),x”(s)) ds >0, tel0,+400),
t
+00
X"t = —/ f (s,x(s),x/(s),x"(s)) ds <0, tel0,+00),
t

we have that the unique solution x = x(¢) is strictly monotone increasing convex
positive on [0, +00), that is, BVP (3.4), (3.5) has a unique solution which is strictly
monotone increasing, convex and positive on [0, +00).
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