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Abstract This paper investigates the existence and multiplicity of solutions for
superlinear p(x)-Laplacian equations with Dirichlet boundary conditions. Under no
Ambrosetti–Rabinowitz’s superquadraticity conditions, we obtain the existence and
multiplicity of solutions using a variant Fountain theorem without Palais-Smale type
assumptions.
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1 Introduction

We consider the following superlinear elliptic problem

{−�p(x)u = f (x, u) +g(x, u), in �

u = 0, on ∂�
(P)

and obtain infinitely many solutions, where � is a bounded smooth domain of R
N

(N ≥ 3) and p ∈ C(�) with 1 < p(x) < N for all x ∈ �.
Generally, in order to search the existence of solutions for Dirichlet problemswhich

is superlinear, it is essential to assume the following superquadraticity condition,which
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is known as Ambrosetti–Rabinowitz type condition [2]:

(AR)∃M > 0, τ > p+ such that 0 < τ F(x, s) ≤ f (x, s)s, |s| ≥ M, x ∈ �,

where f is nonlinear term such that F(x, t) = ∫ t
0 f (x, s)ds.

There are many papers dealing with superlinear Dirichlet problems involving p(x)-
Laplace operator �p(x)u := div(|∇u|p(x)−2∇u), in which (AR) is the main assump-
tion to get the existence and multiplicity of solutions [8,9]. However, as far as we
are concerned, there are many functions which are superlinear but not satisfy (AR)

[3,17].
It is well known that the main aim of using (AR) is to ensure the boundedness

of the Palais-Smale type sequences of the corresponding functional. In the present
paper, we do not use (AR). Instead, we use a variant Fountain theorem not including
Palais-Smale type assumptions (see Theorem 2.1).

The study of differential equations and variational problems involving p(x)-growth
conditions has attracted a special interest in recent years and a lot of researchers have
devoted their work to this area [11,13,15,16] since there are some physical phenomena
which can be modeled by such kind of equations. In particular, we may mention
some applications related to the study of elastic mechanics and electrorheological
fluids [1,4,10,14,19]. The appearance of such physical models was facilitated by the
development of variable exponent Lebesgue L p(x) and Sobolev spaces W 1,p(x).

2 Preliminaries

At first, we shall mention some definitions and basic properties of generalized
Lebesgue–Sobolev spaces L p(x)(�), W 1,p(x)(�), and W 1,p(x)

0 �. We refer the reader
to [5–7,12] for the fundamental properties of these spaces.

Set
C+(�) = {

p; p ∈ C(�), inf p(X) > 1, ∀x ∈ �
}
.

Let p ∈ C+(�) and denote

p− := inf
x∈�

p(x) ≤ p(x) ≤ p+ := sup
x∈�

p(x) < ∞.

For any p ∈ C+(�), we define the variable exponent Lebesgue space by

L p(x)(�) =
⎧⎨
⎩u | u : � → R is measurable,

∫
�

|u(x)|p(x)dx < ∞
⎫⎬
⎭ ,

then L p(x)(�) endowed with the norm

|u|p(x) = inf

⎧⎨
⎩μ > 0 :

∫
�

∣∣∣∣u(x)

μ

∣∣∣∣
p(x)

dx ≤ 1

⎫⎬
⎭ ,
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Existence of Solutions for p(x) Laplacian Equations 1025

becomes a Banach space.
The modular of the L p(x)(�) space, which is the mapping ρ : L p(x)(�) → R

defined by

ρ(u) =
∫
�

|u(x)| p(x) dx, ∀u ∈ L p(x)(�). (2.1)

Proposition 2.1 [6,12] If u, un ∈ L p(x)(�) (n = 1, 2, ...), we have

(i) |u|p(x) < 1 (= 1;> 1) ⇔ ρ (u) < 1 (= 1;> 1) ;
(ii) |u|p(x) > 1 �⇒ |u|p−

p(x) ≤ ρ (u) ≤ |u|p+
p(x);

(iii) |u|p(x) < 1 �⇒ |u|p+
p(x) ≤ ρ (u) ≤ |u|p−

p(x);

Proposition 2.2 [6,12] If u, un ∈ L p(x)(�) (n = 1, 2, ...), then the following state-
ments are equivalent:

(i) lim
n→∞ |un − u|p(x) = 0;

(ii) lim
n→∞ ρ(un − u) = 0;

(iii) un → u in measure in � and lim
n→∞ ρ(un) = ρ (u).

The variable exponent Sobolev space W 1,p(x) (�) is defined by

W 1,p(x)(�) = {u ∈ L p(x)(�) : |∇u| ∈ L p(x)(�)},

with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x), ∀u ∈ W 1,p(x)(�).

Then (W 1,p(x)(�), ‖ · ‖1,p(x)) becomes a Banach space. The space W 1,p(x)
0 (�) is

defined as the closure of C∞
0 (�) in W 1,p(x)(�) with respect to the norm ‖ · ‖1,p(x).

For u ∈ W 1,p(x)
0 (�), we can define an equivalent norm

‖u‖ = |∇u|p(x),

since Poincaré inequality

|u|p(x) ≤ C |∇u|p(x), ∀u ∈ W 1,p(x)
0 (�)

holds, where C is a positive constant [8].

Proposition 2.3 [6,12] If 1 < p− and p+ < ∞, then the spaces L p(x)(�),
W 1,p(x)(�), and W 1,p(x)

0 (�) are separable and reflexive Banach spaces.

Proposition 2.4 [6,12] Assume that � is bounded, the boundary of � possesses the
cone property and p ∈ C+(�) . If q ∈ C+(�) and q (x) < p∗ (x) := Np(x)

N−p(x) for all

x ∈ � , then the embedding W 1,p(x) (�) ↪→ Lq(x) (�) is compact and continuous.
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1026 Z. Yucedag

From [18], let X be a reflexive and separable Banach space, then there are e j ⊂ X
and e∗

j ⊂ X∗ such that

X = span
{
e j | j = 1, 2, ...

}
, X∗ = span

{
e∗
j | j = 1, 2, ...

}
,

and 〈
e∗
i , e j

〉 =
{
1 i = j,
0 i �= j,

where 〈., .〉 denotes the duality product between X and X∗. For convenience, we write

X j = span
{
e j

}
, Yk = ⊕k

j=1X j , Zk = ⊕∞
j=k X j .

And let

Bk = {u ∈ Yk : ‖u‖ ≤ ρk} , Nk = {u ∈ Zk : ‖u‖ = rk} , for ρk > rk > 0.

Let consider the C1-functional Iλ : X → R defined by

Iλ (u) := A(u) − λB(u), λ ∈ [1, 2] .

Nowwegive the following variant Fountain theorem (see [20], Theorem2.2), which
we use in the proof of the main results of the present paper:

Theorem 2.1 (Variant Fountain Theorem) Assume the functional Iλ satisfies the fol-
lowings:

(T1) Iλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2].
Moreover, Iλ(−u) = Iλ(u) for all (λ, u) ∈ [1, 2] × X.

(T2) B(u) ≥ 0; B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of X.
(T3) There exists ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Iλ(u) ≥ 0 > bk(λ) := max
u∈Yk ,‖u‖=rk

Iλ(u),

for all λ ∈ [1, 2] and

dk(λ) := inf
u∈Zk ,‖u‖≤ρk

Iλ(u) → 0 as k → ∞ uni f ormly f or λ ∈ [1, 2] .

Then there exists λn → 1, u(λn) ∈ Yn such that

I ′
λn

∣∣Yn (u(λn)) = 0, Iλn (u(λn)) → ck ∈ [dk(2), bk(1)] as n → ∞.

Particularly, if {u(λn)} has a convergent subsequence for every k, then I1 has infinitely
many nontrivial critical points {uk} ∈ X\ {0} satisfying I1 (uk) → 0− as k → ∞.
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Existence of Solutions for p(x) Laplacian Equations 1027

3 Main Results

For problem (P), we make the following assumptions
(P1) f (x,−t) = − f (x, t) and g (x,−t) = −g (x, t) for any x ∈ �, t ∈ R.
(P2) Assume that f : � × R → R is a Carathéodory function and there exist

1 < σ ≤ δ < p− and c1 > 0, c2 > 0, c3 > 0 such that

c1 |t |σ ≤ f (x, t) t ≤ c2 |t |δ + c3 |t |σ , for a.e.x ∈ � and t ∈ R.

(P3) Assume that g : � × R → R is a Carathéodory function and p, q ∈ C+
(
�

)
with p(x) ≤ p+ < q− ≤ q(x) < p∗(x) such that

|g(x, t)| ≤ c
(
1 + |t |q(x)−1

)
, for a.e.x ∈ � and t ∈ R,

and g(x, t)t ≥ 0, for a.e. x ∈ � and t ∈ R. Moreover, lim
t→0

g(x,t)
t p−−1

= 0 uniformly for

x ∈ �.
(P4) Assume one of the following conditions holds

(1) lim|t |→∞
g(x, t)

t p−−1
= 0 uniformly for x ∈ �.

(2) lim|t |→∞
g(x, t)

t p−−1
= −∞uniformly for x ∈ �.

Moreover, f (x,t)
t p−−1

and g(x,t)
t p−−1

are decreasing in t ∈ R for t large enough.

(3) lim inf|t |→∞
g (x, t) t − εG (x, t)

|t |α ≥ c > 0 uniformly for x ∈ �,

where α > δ and ε > 0. Moreover, lim|t |→∞
g(x,t)
t p−−1

= ∞ uniformly for x ∈ �; g(x,t)
t p−−1

is

increasing in t ∈ R for t large enough.

Theorem 3.1 Assume that (P1)−(P4) hold, then problem (P) has infinitely many
solutions {uk} satisfying

(uk) :=
∫
�

1

p(x)
|∇uk |p(x) dx−

∫
�

G(x, uk)dx−
∫
�

F(x, uk)dx → 0− as k→∞,

where  : W 1,p(x)
0 (�) → R is the functional corresponding to problem (P) and

G(x, t) = ∫ t
0 g(x, s)ds, F(x, t) = ∫ t

0 f (x, s)ds.

Remark 3.1 The conditions (P2) and (P3) imply the functional  is well defined and
of class C1. It is well known that the critical points of  are weak solutions of (P).
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1028 Z. Yucedag

Moreover, the derivative of  is given by

〈′(u), υ〉 =
∫
�

|∇u|p(x)−2 ∇u∇υdx −
∫
�

g(x, u)υdx −
∫
�

f (x, u)υdx,

for any u, υ ∈ W 1,p(x)
0 (�).

Let us consider C1-functional λ : W 1,p(x)
0 (�) → R defined by

λ(u) =
∫
�

1

p(x)
|∇u|p(x) dx −

∫
�

G(x, u)dx − λ

∫
�

F(x, u)dx

:= A(u) − K (u) − λB(u),

where λ ∈ [1, 2]. Then B(u) ≥ 0 and B(u) → ∞ as ‖u‖ → ∞ on any finite
dimensional subspace, where n > k > 2. To get the proof of Theorem 3.1, we will
apply Theorem 2.1. Therefore, it is enough to obtain the results of Lemma 3.1 and
Lemma 3.2.

Lemma 3.1 Under the assumptions of Theorem 3.1, there exist λn → 1, un(λ) ∈ Yn
such that

′
λn

|Yn (un(λ)) = 0, λn (un(λ)) → ck ∈ [dk(2), bk (1)] as n → ∞.

Proof First, we prove that for some rk ∈ (0, ρk) such that

bk(λ) := max
u∈Yk,‖u‖=rk

λ(u) < 0,

for λ ∈ [1, 2], u ∈ Yk . The norms |·|σ and ‖·‖ are equivalent on the finite dimensional
subspace Yk . Therefore, there is a constant c > 0 such that

|u|σ ≥ c ‖u‖ , ∀u ∈ Yk .

Moreover, by (P3), for any ε > 0 there exists Cε > 0 such that |G(x, u)| ≤
ε |u|p− + Cε |u|q(x). Then, by (P2) and Proposition 2.1, we have

λ(u) ≤ 1

p− ‖u‖p− − K (u) − λB(u)

≤ 1

p− ‖u‖p− − ε

∫
�

|u|p−
dx − Cε

∫
�

|u|q(x) dx − λc1

∫
�

|u|σ dx

≤ 1

p− ‖u‖p− − εcp
− ‖u‖p− − Cε ‖u‖q+ − cσ

4 ‖u‖σ .

Since σ < p− < q+, for ‖u‖ small enough we get bk(λ) := max
u∈Yk,‖u‖=rk

λ(u) < 0

for all u ∈ Yk . ��
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Existence of Solutions for p(x) Laplacian Equations 1029

Second, we shall show that for some 0 < rk < ρk such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

λ(u) ≥ 0

for λ ∈ [1, 2], and u ∈ Zk .
Let

βk (q(x)) : = sup
u∈Zk ,‖u‖=1

|u|q(x) , βk(p
−) := sup

u∈Zk ,‖u‖=1
|u|p− ,

βk (δ) : = sup
u∈Zk ,‖u‖=1

|u|δ , βk(σ ) := sup
u∈Zk ,‖u‖=1

|u|σ .

Then βk(q(x)) → 0, βk(p−) → 0, βk(δ) → 0 and βk(σ ) → 0 as k → ∞ see, [9].
Therefore, by (P2) and Proposition 2.1, we have

λ(u) = A(u) − K (u) − λB(u) ≥ 1

p+ ‖u‖p+ − K (u) − λB(u)

≥ 1

p+ ‖u‖p+ − ε

∫
�

|u|p−
dx − Cε

∫
�

|u|q(x) dx − λc2

∫
�

|u|δ dx

− λc3

∫
�

|u|σ dx

≥ 1

p+ ‖u‖p+ − c |u|p−
p− − c |u|q−

q(x) − c |u|δδ − c |u|σσ

≥ 1

p+ ‖u‖p+ − cβ p−
k (p−) ‖u‖p− − cβq−

k (q(x)) ‖u‖q− − cβδ
k (δ) ‖u‖δ

− cβσ
k (σ ) ‖u‖σ

where c = max {ε,Cε, 2c2, 2c3}. Let ϕ ∈ Zk , ‖ϕ‖ = 1 and 0 < t < 1, then it follows

λ(tϕ) ≥ 1

p+ t p
+ − cβ p−

k (p−)t p
− − cβq−

k (q(x))tq
− − cβδ

k (δ)t
δ − cβσ

k (σ )tσ

≥ 1

p+ tq
− − cβq−

k (q(x))tq
− −

(
cβ p−

k (p−) + cβδ
k (δ) + cβσ

k (σ )
)
tσ ,

since σ < δ < p− < p+ < q− for sufficiently large k, by choosing cβq−
k (q(x)) <

1
2p+ , we get

λ(tϕ)≥ 1

2p+ tq
− − (cβ p−

k (p−) + cβδ
k (δ) + cβσ

k (σ ))tσ . (3.1)
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1030 Z. Yucedag

Put ρk :=
(
2cp+β

p−
k (p−) + 2cp+βδ

k (δ) + 2cp+βσ
k (σ )

) 1
q−−σ , then, for sufficiently

large k, ρk < 1. When t = ρk , ϕ ∈ Zk with ‖ϕ‖ = 1, we have λ(tϕ) ≥ 0. So, for
sufficiently large k, we obtain ak(λ) := inf

u∈Zk,‖u‖=ρk
λ(u) ≥ 0.

Finally, we prove
dk(λ) := inf

u∈Zk,‖u‖≤ρk
λ(u) → 0

as k → ∞ uniformly. Indeed, since Yk ∩ Zk �= ∅ and rk < ρk , we have

dk(λ) := inf
u∈Zk,‖u‖≤ρk

λ(u) ≤ bk(λ) := max
u∈Yk,‖u‖=rk

λ(u) < 0.

By (3.1), for ϕ ∈ Zk , ‖ϕ‖ = 1, 0 ≤ t ≤ ρk and u = tϕ it follows that

λ(u) = λ(tϕ) ≥ 1

2p+ tq
− −

(
cβ p−

k (p−) + cβδ
k (δ) + cβσ

k (σ )
)
tσ

≥ −
(
cβ p−

k (p−) + cβδ
k (δ) + cβσ

k (σ )
)
tσ

≥ −
(
cβ p−

k (p−) + cβδ
k (δ) + cβσ

k (σ )
)

ρσ
k

≥ −
(
cβ p−

k (p−) + cβδ
k (δ) + cβσ

k (σ )
)

,

therefore, dk(λ) → 0 as k → ∞. Hence, by Theorem 2.1, we can find λn → 1 and
un(λ) ∈ Yn desired as the claim. The proof is completed. ��
Lemma 3.2 {un(λ)}∞n=1 is bounded in W 1,p(x)

0 (�).

Proof Since ′
λn

|Yn (u (λn)) = 0, then we have

′
λ (u (λn)) = A′ (u (λn)) − K ′ (u (λn)) − λn B

′ (u (λn)) = o(1) ‖u (λn)‖ ,

or, by Proposition 2.1,

1 − o (1) = λn

∫
�

f (x, u (λn))u (λn)

ρ (u (λn))
dx +

∫
�

g(x, u (λn))u (λn)

ρ (u (λn))
dx

≤ λn

∫
�

f (x, u (λn))u (λn)

‖u (λn)‖p− dx +
∫
�

g(x, u (λn))u (λn)

‖u (λn)‖p− dx

where ρ (u(λn)) is defined as in (2.1). Passing to a subsequence, if necessary,
‖u(λn)‖ → ∞ as n → ∞, and using (P2) it follows

1 − o(1) ≤
∫
�

g(x, u(λn))u(λn)

‖u (λn)‖p− dx,

where o(1) → 0 as n → ∞. This is a contradiction providing that (P4) (1) holds. ��
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Existence of Solutions for p(x) Laplacian Equations 1031

Let {ωn} ⊂ W 1,p(x)
0 (�) and put ωn := u(λn)‖u(λn)‖ . Since ‖ωn‖ = 1, up to subse-

quences, from Proposition 2.4 we get

ωn ⇀ ω in W 1,p(x)
0 (�),

ωn → ω in Lγ (x)(�), p(x) ≤ γ (x) < p∗(x),
ωn(x) → ω(x) a.e. x ∈ �.

Then the main concern is that either {ωn} ⊂ W 1,p(x)
0 (�) vanish or it does not vanish.

We shall prove that none of these alternatives can occur and this contradiction will
prove that {ωn} ⊂ W 1,p(x)

0 (�) is bounded.
If ω �= 0, from Proposition 2.1, Fatou’s Lemma, (P2) , (P3) and for n large enough,

we have

′
λ (u (λn)) = A′ (u (λn)) − K ′ (u (λn)) − λn B

′ (u (λn)) = o (1) ‖u (λn)‖ ,

or

−1 + o(1) = λn

∫
�

− f (x, u(λn))u(λn)

ρ(u(λn))
dx +

∫
�

−g(x, u(λn))u(λn)

ρ(u(λn))
dx

≥ λn

∫
�

− f (x, u(λn))u(λn)

‖u(λn)‖p− dx +
∫
�

−g(x, u(λn))u(λn)

‖u(λn)‖p− dx .

Using lim|u|→∞
g(x,u)

|u|p−−1
= −∞ in (P4) (2), we get

−1 + o(1) ≥
∫
�

−g(x, u(λn))u(λn)

‖u(λn)‖p− dx =
∫
�

−g(x, u(λn))u(λn)

|u(λn)|p− |ωn|p−
dx

≥ c +
∫

{ω �=0}∩{|u(λn)|≥c}

−g(x, u(λn))u(λn)

|u(λn)|p− |ωn|p−
dx → ∞,

which is a contradiction. Moreover, we can get the similar result if lim|u|→∞
g(x,u)

|u|p−−1
= ∞

in (P4)(3).
If ω ≡ 0, we can define a sequence tn ⊂ R as in see, [17] such that

λn (tnu(λn)) := max
t∈[0,1] λn (tu(λn)).
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1032 Z. Yucedag

Let ωn := (2p+c)
1
p− ωn with c > 0. Then for n large enough, we have

λn (tnun) ≥ λn (ωn)

≥ A

(
(2p+c)

1
p− ωn

)
− K

(
(2p+c)

1
p− ωn

)
− λn B

(
(2p+c)

1
p− ωn

)

≥ 1

p+ (2p+c)A(ωn) − K (ωn) − λn B(ωn) ≥ 2c − K (ωn) − λn B(ωn)

≥ c,

which implies that lim
n→∞ λn (tnun) → ∞ by the fact c > 0 can be large arbitrarily.

Noting that λn (0) = 0 and λn (un) → c, so 0 < tn < 1 when n large enough.
Hence we have 〈′

λn
(tnu(λn)), tnu(λn)〉 = 0. Thus, it follows

lim
n→∞

[
λn (tnu(λn)) − 1

ptn
〈′

λn
(tnu(λn)), tnu(λn)t〉

]
→ ∞,

where ptn = A′(tnu(λn))
A(tnu(λn))

. Therefore,

lim
n→∞

[
(A(tnu(λn)) − K (tnu(λn)) − λn B(tnu(λn))

− 1

ptn
(A′(tnu(λn)) + 1

ptn
K ′(tnu(λn)) + λn

1

ptn
B ′(tnu(λn))

]
→ ∞,

that is,

lim
n→∞

[
λn

1

ptn
B ′(tnu(λn)) − λn B(tnu(λn)) + 1

ptn
K ′(tnu(λn)) − K (tnu(λn))

]
→ ∞.

Moreover, if (P4)(2) holds, we have

1

ptn
f (x, su) su − F (x, su) + 1

ptn
g (x, su) su − G (x, su) ≤ c,

for all s > 0 and u ∈ R, so we get a contradiction.
If (P4) (3) holds, by (P2), we get

∞ ≤ c2
pn

∫
�

|u(λn)|δdx + 1

pn
K ′(u(λn)) − K (u(λn)).

Thus,
1

pn
K ′(u(λn)) − K (u(λn)) → ∞. (3.2)
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Existence of Solutions for p(x) Laplacian Equations 1033

Furthermore, using the property of u (λn) (see Lemma 3.1), it follows that

bk (1) ≥ λn

(
1

pn
B ′(u(λn)) − B(u(λn))

)
+ 1

pn
K ′(u(λn)) − K (u(λn))

≥ 1

pn

(
1

pn
K ′(u(λn)) − K (u(λn))

)
− c2

pn

∫
�

|u(λn)|δdx

≥ c
1

pn
K ′(u(λn)) − K (u(λn)) − c,

which contradicts (3.2). Therefore, (λn) is bounded. The proof is completed.
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12. Kováčik, O., Rákosník, J.: On spaces L p(x) andWk,p(x). Czechoslovak Math. 41(4), 592–618 (1991)
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