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Abstract In this paper, the local and global existence of mild solutions are studied
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dition in a Hilbert space. The results are obtained by employing fixed-point technique
and solution operator. In many existence results for stochastic fractional differential
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to illustrate the obtained theoretical results.
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868 P. Balasubramaniam et al.

1 Introduction

Fractional differential equations (FDEs) are viewed an excellent tool for describing
real-life phenomena, which have memory and hereditary properties. The efficiency of
describing the real-life phenomena by FDE is more accurate than the classical differ-
ential equations. Nowadays, it is the most attracted area of research. The existence
of mild solution and other qualitative and quantitative properties of such FDE mod-
els of real-life phenomena have been studied by many researchers; as a part of it,
several authors have established the existence of mild solutions for differential equa-
tions with fractional order see [3,6,8,10,15,16,20,25,31–34]. FDE are considered
as an alternative model to nonlinear differential equations and can be found many
applications in the areas of turbulence and fluid dynamics, stochastic dynamical sys-
tems, plasma physics and controlled thermonuclear fusion, nonlinear control theory,
image processing, nonlinear biological systems, astrophysics, etc. (for more details,
see [12,19,24]).

Stochastic differential equations play a vital role in mathematical modeling of
real-life phenomena when noises are non-negligible. Besides, noise or stochastic per-
turbation is unavoidable and omnipresent in nature as well as in man-made systems
[18]. Therefore, it is of great significance to import the stochastic effects into the
investigation of fractional differential systems [2,23].

An ordinary differential equation coupled with impulsive effects is considered as
impulsive differential equations, and it was introduced by Milman and Myshkis in
the year 1960. The perturbations such as earthquake, harvesting, shock, etc. can be
well-approximated as instantaneous change of state or impulses, and they can be
modeled by impulsive differential equations. The dynamics of process in which sud-
den discontinuous jumps occurs in the real-world problems can be described by the
impulsive differential equations. Such processes are naturally seen in biology, physics,
engineering, etc. Moreover, a simple impulsive differential equation may exhibit sev-
eral new phenomena such as rhythmical beating, merging of solution, and noncon-
tinuability of solutions; hence, it has developed tremendously for more details see
[4,5,11,13,14,17,21,22].

In [21], Ouahab studied the local and global existence and uniqueness results for
first-order impulsive functional differential equations with multiple delay by means
of the fixed-point theorems due to Schaefer and a nonlinear alternative of Leray–
Schauder. The local and global existence of mild solution for a class of impulsive
fractional semilinear integro-differential equations has been studied by Rashid and
Al-Omari [25]. Very recently Chauhan and Dabas [5] discussed the local and global
existence of mild solution for an impulsive fractional functional integro-differential
equations with nonlocal condition. To the best of authors knowledge, there is no work
still reported on the local and global existence of mild solution for impulsive fractional
semilinear stochastic differential equation with nonlocal condition. Hence, the main
objective of this manuscript is to fill this gap. Further, the existence results obtained
in many works are valid only for 1

2 < α ≤ 1; the aim of this manuscript is to provide
the result, which is valid for all values of α ∈ (0, 1).
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Local and Global Existence of Mild Solution 869

In this paper, we study the local and global existence of mild solution for the follow-
ing impulsive fractional semilinear stochastic differential equation (1) with nonlocal
condition in a Hilbert space using fixed-point technique and solution operator:
⎧
⎪⎨

⎪⎩

c Dαt x(t) = −Ax(t)+ f (t, xt )+ ∫ t
0 σ (t, s, xs) dw(s), t ∈ J := [0, b], t �= tk ,

�x (tk) = Ik

(
x
(

t−k
))
, k = 1, 2, . . . ,m,

h(x) = φ0 on [−r, 0],
,

(1)

where c Dα
t x(t), 0 < α < 1 is the Caputo fractional derivative, −A is sectorial

operator, here x(·) takes the values in a Hilbert space H with inner product 〈·, ·〉
and norm ‖ · ‖. Let K be another separable Hilbert space with inner product 〈·, ·〉K

and norm ‖ · ‖K . Suppose w(t) is K-valued Brownian motion or Wiener process
with a finite trace nuclear covariance operator Q ≥ 0. We employ the same notation
‖ · ‖ for the norm of L(K , H), where L(K , H) denotes the space of all bounded
linear operators from K into H. Let the nonlinear maps f : J × PC0 → H and
σ : J × J × PC0 → L(K , H) be continuous, where PC0 = PC([−r, 0], H) and
for any x ∈ PCb = PC([−r, b], H), t ∈ J, we define the element xt of PC0 by
xt (θ) = x(t + θ), θ ∈ [−r, 0]. The function φ0 ∈ PCb and the map h is defined from
PCb into PCb.

This paper is organized as follows: In Sect. 2, we give some preliminaries, basic
definitions and results, which will be used throughout this paper. In Sect. 3, the proof
for the local existence of mild solution is provided . In Sect. 4, we prove the global
existence of mild solution. Section 5 illustrates our theoretical results by an example.

2 Preliminaries

In this section, some basic definitions, notations, and lemmas are provided that will
be used in the sequel. Let (Ω, F , P) be a complete probability space furnished with
a complete family of right continuous increasing sub-σ -algebras {Ft : t ∈ J } satis-
fying Ft ⊂ F . Let x(t) : Ω → H be a continuous Ft -adapted, H-valued stochastic
process. Let {ζn}∞n=1 be a complete orthonormal basis of K. Suppose thatw(t), t ≥ 0,
is a cylindrical K-valued Wiener process with finite trace nuclear covariance oper-
ator Q ≥ 0, denote Tr(Q) = ∑∞

n=1 λn < ∞, which satisfies that Qζn = λnζn .

Indeedw(t) = ∑∞
n=1

√
λnwn(t)ζn,where {wn(t)}∞n=1 are mutually independent one-

dimensional standard Wiener processes. Let ϕ ∈ L(K , H), and define

‖ϕ‖2
Q = Tr(ϕQϕ∗) =

∞∑

n=1

∥
∥
∥
√
λnϕζn

∥
∥
∥

2
.

If ‖ϕ‖Q < ∞, then ϕ is called Q-Hilbert–Schmidt operator. Let L Q(K , H) denote
the space of all Q-Hilbert–Schmidt operators from ϕ : K → H. The completion
L Q(K , H) of L(K , H) with respect to the topology induced by the norm ‖ · ‖Q,

where ‖ϕ‖2
Q = 〈ϕ, ϕ〉 is a Hilbert space with the above norm topology. For more

details of this section, the reader can refer [1,9,18,24].
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870 P. Balasubramaniam et al.

Definition 2.1 [24] The Riemann–Liouville fractional integral of order α > 0 for a
function f : R+ → R and f ∈ L1(R+, X) is defined as

Jαt f (t) = 1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ )dτ, α > 0, t > 0,

where Γ (·) is the Euler gamma function.

Definition 2.2 [24] The Caputo derivative of fractional order α of a function f :
[0, ∞) → R is defined as

c Dα
t f (t) = 1

Γ (n − α)

∫ t

0

f n(τ )

(t − τ)α−n+1 dτ = I n−α f (n)(t),

for n − 1 ≤ α < n, n ∈ N .

Definition 2.3 [24] The two parameter function of the Mittag–Leffler type is defined
as

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
= 1

2π i

∫

C

μα−βeμ

μα − z
dμ, α, β > 0, z ∈ C,

where C is a contour which starts and ends at −∞ and encircles the disk |μ| ≤ |z| 1
2

counter clockwise.
The Laplace transform of the Mittag–Leffler function is given by

∫ ∞

0
e−λt tαk+β−1 E (k)α,β

(±atα
)

dt = k!λα−β

(λα ∓ a)k+1 , Re(λ) > |a| 1
α .

Definition 2.4 [9] A closed and linear operator A is said to be sectorial if there are
constants ω ∈ R, θ ∈ [π2 , π ], M > 0 such that the following conditions are satisfied

(i) ρ(A) ⊂ ∑
(θ,ω) = {λ ∈ C : λ �= ω, | arg(λ− ω)| < θ},

(ii) ‖R(λ, A)‖ ≤ M
|λ−ω| , λ ∈ ∑

(θ,ω) .

Definition 2.5 [31] Let A be a closed and linear operator with the domain D(A)
defined in a Banach space X. Let ρ(A) be the resolvent set of A. We say that A is the
generator of an α-resolvent family if there exists ω ≥ 0 and a strongly continuous
function Sα : R+ → L(X), where L(X) is a Banach space of all bounded linear
operator from X into X and the corresponding norm is denoted by ‖ · ‖ such that
{λα : Re(λ) > ω} ⊂ ρ(A) and

(
λα I − A

)−1
x =

∫ ∞

0
e−λt Sα(t)xdt, Re(λ) > ω, x ∈ X,

where Sα(t) is called the α-resolvent family generated by A.

123



Local and Global Existence of Mild Solution 871

Definition 2.6 [7] Let A be a closed linear operator with the domain D(A) defined in
a Banach space X and α > 0. We say that A is the generator of a solution operator if
there exists ω ≥ 0 and a strongly continuous function Tα : R+ → L(X) such that
{λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λα I − A
)−1

x =
∫ ∞

0
e−λt Tα(t)xdt, Re(λ) > ω, x ∈ X,

where Tα(t) is called the solution operator generated by A.

Definition 2.7 An Ft adapted stochastic process x : [−r, b] → H is called a mild
solution of (1) if x(t) = ψ(t) on [−r, 0], where ψ ∈ PCb such that h(ψ) = φ0 on
[−r, 0] and satisfies the following conditions:

(i) x(t) is PCb valued and the restrictions of x(·) to (tk, tk+1], k = 1, 2, . . . ,m is
continuous.

(ii) For each t ∈ J, x(t) satisfies the integral equation

x(t)

=

⎧
⎪⎪⎨

⎪⎪⎩

Tα(t)ψ(0)+ ∫ t
0 Sα(t − s)

[
f (s, xs)+ ∫ s

0 σ (s, τ, xτ ) dw(τ)
]

ds, t ∈ [0, t1] ,

Tα(t)ψ(0)+ ∑m
i=1 Tα (t − ti ) Ii

(
x
(
t−i
))
,

+ ∫ t
0 Sα(t − s)

[
f (s, xs)+ ∫ s

0 σ (s, τ, xτ ) dw(τ)
]

ds, t ∈ (tk , tk+1], k = 1, 2, . . . ,m,

where

Tα(t) = Eα,1
(−Atα

) = 1

2π i

∫

B̂r

eλt λα−1

λα I + A
dλ,

Sα(t) = tα−1 Eα,α
(−Atα

) = 1

2π i

∫

B̂r

eλt 1

λα I + A
dλ,

where B̂r denotes the Bromwich path, Sα(t) is called α-resolvent family, and Tα(t) is
the solution operator, both are generated by A.

The following assumptions are assumed to establish the main results:

(A1) The function f : J × H → H is continuous, and there exists a constant N1
such that E‖ f (t, x)− f (t, y)‖2 ≤ N1 E‖x − y‖2 for all x, y ∈ H.

(A2) The function g : D × H → L(K , H) is continuous, and there exists a constant
N2 such that

∫ t
0 E‖σ(t, s, x)− σ(t, s, y)‖2ds ≤ N2 E‖x − y‖2 for all x, y ∈

H, where D = J × J = {(t, s), t, s ∈ J }.
(A3) The nonlinear map h : PCb → PCb is such that for any x1 and x2 in PCb with

x1 = x2 on [−r, 0], h(x1) = h(x2) on [−r, 0].
(A4) The functions Ik : H → H are continuous, and there exists a constant μ > 0

such that E‖Ik(x)− Ik(y)‖2 ≤ μE‖x − y‖2 for all x, y ∈ H, k = 1, 2, . . . ,m.
(A5) The functions Ik : H → H are continuous, and there exists a constant ρ > 0

such that E‖Ik(x)‖2 ≤ ρE‖x‖2 for all x ∈ H, k = 1, 2, . . . ,m.
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872 P. Balasubramaniam et al.

(A6) The functions f : J × PC0 → H, σ : D × PC0 → L(K , H), and Ik : H →
H, k = 1, 2, . . . ,m are completely continuous.

(A7) The operator family {Tα(t)}t≥0 and {Sα(t)}t≥0 are compact, where Sα(t) =
t1−αSα(t). If A ∈ Aα(θ0, ω0) then ‖Tα(t)‖L(X) ≤ Meωt and ‖Sα(t)‖L(X) ≤
Ceωt (1 + tα−1). Let MT = sup0≤t≤b ‖Tα(t)‖L(X), MS = sup0≤t≤b Ceωt (1 +
t1−α), where L(X) is the Banach space of bounded linear operators from X
into X. So we have ‖Tα(t)‖L(X) ≤ MT and ‖Sα(t)‖L(X) ≤ tα−1 MS ( for more
details see [32]).

3 Local Existence of Mild Solution

Theorem 3.1 If the conditions (A1)–(A5) are satisfied and there exists x0 ∈ PCb

such that h(x0) = φ0 on [−r, 0], then for every φ0 ∈ PCb there exists a τ0 =
τ0(φ0), 0 < τ0 < b such that the initial value problem (1) has a unique mild solution
x ∈ PC([−r, τ0], H).

Proof Since we only consider the local solutions, and hence we may assume that
b < ∞. Let t

′
> 0, R > 0 be such that BR(x0) = {x : E‖x − x0‖2

t ′ ≤
R}, E‖ f (t, x)‖2

H ≤ N1 and
∫ t

0 E‖σ(t, s, xs)‖2
L(K ,H)ds ≤ N2 for 0 ≤ t ≤ t

′
and

x ∈ BR(x0). Choose t
′′
> 0 such that E‖Tα(t)x0(0)− x0(0)‖2

H ≤ R
15 for 0 ≤ t ≤ t

′′

and E‖x0(t)− x0(0)‖2
H ≤ R

15 for 0 ≤ t ≤ t
′′

and we choose

τ0 = min

⎧
⎪⎨

⎪⎩
b, t

′
, t

′′
,

⎡

⎣
R
15 − M2

T ρm
M2

S
α2 (N1 + N2Tr(Q))

⎤

⎦

1
2α

⎫
⎪⎬

⎪⎭
,

set Y = PCτ0 = PC([−r, τ0], H) and Y0 = {x : x ∈ Y, x = x0 on [−r, 0] and
x(t) ∈ BR(x0) for 0 ≤ t ≤ τ0}. It is clear that Y0 is a bounded closed convex subset
of Y.

We define a mapping Φ : Y0 → Y by

(Φx)(t) =
⎧
⎨

⎩

x0(t); t ∈ [−r, 0],
Tα(t)x0(0)+ ∑

0<ti<t Tα (t − ti ) Ii
(
x
(
t−i
))
,

+ ∫ t
0 Sα(t − s)

[
f (s, xs)+ ∫ s

0 σ (s, τ, xτ ) dw(τ)
]

ds; t ∈ [0, τ0] .

For x ∈ Y0, t ∈ [0, τ0], we have

E ‖(Φx)(t)− x0(t)‖2
H ≤ 5

{

E ‖Tα(t)x0(0)− x0(0)‖2
H + E ‖x0(t)− x0(0)‖2

H

+E

∥
∥
∥
∥
∥
∥

∑

0<ti<t

Tα (t − ti ) Ii
(
x
(
t−i
))

∥
∥
∥
∥
∥
∥

2

H

+M2
S

∫ t

0
(t − s)α−1ds

∫ t

0
(t − s)α−1 E ‖ f (s, xs)‖2

H ds
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Local and Global Existence of Mild Solution 873

+M2
S

∫ t

0
(t − s)α−1ds

∫ t

0
(t − s)α−1Tr(Q)

∫ s

0
E ‖σ (s, τ, xτ )‖2

L(K ,H) dτds

}

≤ 5

{
R

15
+ R

15
+ M2

Sτ
2α
0

α2 (N1 + N2Tr(Q))+ M2
T ρm

}

E ‖(Φx)(t)− x0(t)‖2
H ≤ R.

Thus Φ : Y0 → Y0, if we choose τ0 > 0 such that

3

[

M2
Tμm + M2

Sτ
2α
0

α2 (N1 + N2Tr(Q))

]

< 1. (2)

Now, let x, y ∈ Y0, then

E‖(Φx)(t)− (Φy)(t)‖2
H ≤ 3

⎧
⎨

⎩

∑

0<ti<t

E
∥
∥Tα (t − ti ) Ii

(
x
(
t−i
)) − Tα (t − ti ) Ii

(
y
(
t−i
))∥
∥2

+ M2
S

∫ t

0
(t − s)α−1ds

∫ t

0
(t − s)α−1 E ‖ f (s, xs)− f (s, ys)‖2 ds

+ M2
S

∫ t

0
(t − s)α−1ds

∫ t

0
(t − s)α−1

× Tr(Q)
∫ s

0
E ‖σ (s, τ, xτ )− σ (s, τ, yτ )‖2 dτds

⎫
⎬

⎭

E‖(Φx)(t)− (Φy)(t)‖2
H ≤ 3

[

M2
Tμm + M2

Sτ
2α
0

α2 (N1 + N2Tr(Q))

]

E‖x − y‖2.

It follows from (2) and by Banach contraction mapping principle that there exists
a unique x ∈ Y0 such that x is a mild solution of (1) on [−r, τ0]. This completes the
proof. ��
Theorem 3.2 If the conditions (A5)–(A7) are satisfied and there exists x0 ∈ PCb such
that h(x0) = φ0 on [−r, 0], then for every φ0 ∈ PCb, there exists a τ0 = τ0(φ0), 0 <
τ0 < b such that the initial value problem (1) has a mild solution x ∈ PC([−r, τ0], H).

Proof We use Schauder’s fixed-point theorem for the proof of this theorem. Let Φ :
Y0 → Y0 be defined as in Theorem 3.1.

Step 1: To show that,Φ is continuous from Y0 into Y0.Let {xn} be a sequence in Y0,

such that xn → x in Y0.Then f (t, xn
t ) → f (t, xt ) andσ(t, s, xn

s ) → σ(t, s, xs)

as n → ∞, because the functions f and σ are continuous on J ×PC0 and D×PC0,

respectively. Now for every t ∈ [0, τ0], we can estimate

E
∥
∥
(
Φxn) (t)− (Φx)(t)

∥
∥2

H ≤ 3
{

M2
T E

∥
∥Ii

(
xn (t−i

)) − Ii
(
x
(
t−i
))∥
∥2

H

+M2
Sb

∫ t

0
(t − s)2(α−1)E

∥
∥ f

(
s, xn

s

) − f (s, xs)
∥
∥2

H ds
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874 P. Balasubramaniam et al.

+M2
Sb

∫ t

0
(t − s)2(α−1)

×Tr(Q)

[∫ s

0
E
∥
∥σ

(
s, τ, xn

τ

) − σ (s, τ, xτ )
∥
∥2

H dτ

]

ds

}

,

now, we use the fact that,

(t − s)2(α−1)E
∥
∥ f

(
s, xn

s

) − f (s, xs)
∥
∥2

≤ 2N1(t − s)2(α−1) ∈ L1 (J, R
+) ,

(t − s)2(α−1)
∫ s

0
E
∥
∥σ

(
s, τ, xn

τ

) − σ (s, τ, xτ )
∥
∥2 dτds

≤ 2N2(t − s)2(α−1) ∈ L1 (J, R
+) ,

and by means of Lebesgue dominated convergence theorem, we obtain

∫ t

0
(t − s)2(α−1)E

∥
∥ f

(
s, xn

s

) − f (s, xs)
∥
∥2

H ds → 0,

∫ t

0
(t − s)2(α−1)

∫ s

0
E
∥
∥σ

(
s, τ, xn

τ

) − σ (s, τ, xτ )
∥
∥2

H dτds → 0.

Hence, limn→∞ E‖Φxn − Φx‖2
τ0

= 0. Since the functions Ik, k = 1, 2, . . . ,m
are continuous. This means that Φ is continuous.
Step 2: We show that Φ(Y0) = {Φx : x ∈ Y0} be an equicontinuous family of
functions. For τ0 > τ2 > τ1 > 0, we have

E ‖(Φx) (τ2)− (Φx) (τ1)‖2
H

≤ 4
{

E ‖Tα (τ2) x0(0)− Tα (τ1) x0(0)‖2
H

+E

∥
∥
∥
∥
∥
∥

∑

0<tk<τ2

Tα (τ2 − tk) Ik
(
x
(
t−k
)) −

∑

0<tk<τ1

Tα (τ1 − tk) Ik
(
x
(
t−k
))

∥
∥
∥
∥
∥
∥

2

H

+E

∥
∥
∥
∥

∫ τ2

0
Sα (τ2 − s) f (s, xs) ds −

∫ τ1

0
Sα (τ1 − s) f (s, xs) ds

∥
∥
∥
∥

2

H

+E

∥
∥
∥
∥

∫ τ2

0
Sα (τ2 − s)

(∫ s

0
σ (s, τ, xτ ) dw(τ)

)

ds

−
∫ τ1

0
Sα (τ1 − s)

(∫ s

0
σ (s, τ, xτ ) dw(τ)

)

ds

∥
∥
∥
∥

2

H

}

≤ 6
{

E ‖Tα (τ2) x0(0)− Tα (τ1) x0(0)‖2
H

+
k∑

i=1

E
∥
∥(Tα (τ2 − ti )− Tα (τ1 − ti )) Ii

(
x
(
t−i
))∥
∥2

H
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Local and Global Existence of Mild Solution 875

+
∫ τ1

0
‖Sα (τ2 − s)− Sα (τ1 − s)‖2

L(H) ds
∫ τ1

0
E ‖ f (s, xs)‖2 ds

+
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) ds
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) E ‖ f (s, xs)‖2
H ds

+
∫ τ1

0
‖Sα (τ2 − s)− Sα (τ1 − s)‖2

L(H) ds
∫ τ1

0
Tr(Q)

×
(∫ s

0
E ‖σ (s, τ, xτ )‖2

L(K ,H) dτ

)

ds

+
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) ds
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) Tr(Q)

×
(∫ s

0
E ‖σ (s, τ, xτ )‖2

L(K ,H) dτ

)

ds

}

≤ 6
6∑

j=1

J j , (3)

where

J3 =
∫ τ1

0
‖Sα (τ2 − s)− Sα (τ1 − s)‖2

L(H) ds
∫ τ1

0
E ‖ f (s, xs)‖2 ds,

J3 ≤ τ1 N1

∫ τ1

0
‖Sα (τ2 − s)− Sα (τ1 − s)‖2

L(H) ds,

and

J5 =
∫ τ1

0
‖Sα (τ2 − s)− Sα (τ1 − s)‖2

L(H) ds

×
∫ τ1

0
Tr(Q)

(∫ s

0
E ‖σ (s, τ, xτ )‖2

L(K ,H) dτ

)

ds

≤ Tr(Q)τ1 N2

∫ τ1

0
‖Sα (τ2 − s)− Sα (τ1 − s)‖2

L(H) ds.

Since ‖Sα(τ2 − s) − Sα(τ1 − s)‖2
L(H) ≤ 2M2

S(τ0 − s)2(α−1) ∈ L1(J, R
+) for

s ∈ [0, τ0] and Sα(τ2 − s)− Sα(τ1 − s) → 0 as τ1 → τ2 because Sα(·) is strongly
continuous. This implies that limτ1→τ2 J3 = limτ1→τ2 J5 = 0. Also
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J4 =
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) ds
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) E ‖ f (s, xs)‖2
H ds,

J4 ≤ M2
S N1 (τ2 − τ1)

2α

α2 ,

and

J6 =
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) ds
∫ τ2

τ1

‖Sα (τ2 − s)‖L(H) Tr(Q)

×
(∫ s

0
E ‖σ (s, τ, xτ )‖2

L(K ,H) dτ

)

ds,

J6 ≤ M2
S N2Tr(Q) (τ2 − τ1)

2α

α2 .

Hence, limτ1→τ2 J4 = 0 and limτ1→τ2 J6 = 0. Since Tα is strongly continuous,
the continuity of t �→ ‖Tα(t)‖L(H) allows us to conclude that the right-hand side
of (3) is zero as τ1 → τ2, which implies that Φ(Y0) is equicontinuous.
Step 3: Now, we prove Φ1 is completely continuous operator on H by adopting
the method used in [32]. Decompose Φ by Φ = Φ1 +Φ2, where

(Φ1x) (t) =
{

0; t ∈ [−r, 0],
∫ t

0 Sα(t − s)
[

f (s, xs)+
∫ s

0 σ (s, τ, xτ ) dw(τ)
]

ds; t ∈ [0, τ0] ,

(Φ2x) (t) =
{

x0(t); t ∈ [−r, 0],
Tα(t)x0(0)+ ∑

0<ti<t Tα (t − ti ) Ii
(
x
(
t−i
)) ; t ∈ [0, τ0] .

From the compactness of Sα(·) and (A6), we can conclude that the set

{

Sα(t − s)

[

f (s, xs)+
∫ s

0
σ (s, τ, xτ ) dw(τ)

]

, t, s ∈ [0, τ0] , x ∈ Y0

}

,

is relatively compact in H. Furthermore, using the mean value theorem for Bochner
integral, we can conclude that (Φ1x)(t) belongs to the set

tα+1

α
conv

{

Sα(t − s)

[

f (s, xs)+
∫ s

0
σ (s, τ, xτ ) dw(τ)

]

, t, s ∈ [0, τ0] , x ∈ Y0

}

,

for all t ∈ [0, τ0], where conv(·) denotes the convex hull. Accordingly, the set
{Φ1x(t) : x ∈ Y0} is relatively compact. Now, for all t ∈ [−r, 0], (Φ2x)(t) =
x0(t). Since x0(t) is a fixed function, it follows that {Φ2x(t), t ∈ [−r, 0], x ∈ Y0}
is a compact subset of H. But then, for t ∈ [0, τ0] and x ∈ Y0,

Φ2x(t) = Tα(t)x0(0)+
∑

0<ti<t

Tα (t − ti ) Ii
(
x
(
t−i
))
.
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Since Tα(t) is compact for all t ∈ [0, τ0], it follows that the set G(t) = {(Φ2x)(t) :
t ∈ [−r, 0], x ∈ Y0} is precompact in H,Φ2 is also compact. Therefore,Φ = Φ1+Φ2
is compact. As well, the set E = {x ∈ Y0 : x = λΦx for some 0 < λ < 1} is bounded,
since E ⊂ Y0 and Y0 is closed bounded convex set. By Schauder fixed-point theorem,
we can conclude that Φ has a fixed point in Y0 and any fixed point of Φ is a mild
solution of (1) on [−r, τ0]. ��

4 Global Existence of Mild Solution

This section consider the global existence of mild solution for the system (1).

Theorem 4.1 Assume the hypothesis of Theorem 3.2, let f : [−r, b)×PC0 → H and
σ : [−r, b)× [−r, b)× PC0 → H, 0 < b ≤ ∞ are continuous and maps bounded
sets in [−r, b)×PC0 and [−r, b)×[−r, b)×PC0, respectively, into bounded sets in H,
then for everyΦ0 ∈ PCb the initial value problem (1) has a mild solution x on a maximal
interval of existence [−r, tmax). If tmax < ∞ then lim t ↑ tmax E‖x(t)‖H = ∞.

Proof By defining x(t + τ0) = V (t), the initial value problem (1) can be translated
into the following form:

⎧
⎪⎪⎨

⎪⎪⎩

c Dαt V (t)+ AV (t) = F (t, Vt )+ ∫ t
0 G (t, s, Vs) dw(s), t ∈ [0, b − τ0] , t �= tk ,

�V
(
t̃k
) = Ik

(
V
(
t̃k
))
, k = 1, 2, . . . ,m,

h̃(V (t)) = φ̃0(t), t ∈ [−r − τ0, 0] ,

,

(4)

where

F (t, Vt ) = f (t + τ0, Vt ) , t ∈ [0, b − τ0] ,

G (t, s, Vs) = σ (t + τ0, s, Vs) , t ∈ [0, b − τ0] ,

�V
(
t̃k
) = Ik

(
V
(
t̃k
))
, k = 1, 2, . . . ,m,

φ̃(t) = x (t + τ0) ,

and t̃k = tk − τ0. Since the functions F, G are bounded functions, by Theorem 3.2,
there exists a function V ∈ PC([−r − τ0, b − τ0], H) such that V is a mild solution
of (4) on [−r − τ0, τ1] for some 0 < τ1 < b − τ0 and given by

V (t) =
{

Tα(t)V (0)+ ∑
0<t̃k<t Tα

(
t − t̃k

)
Ik
(
V
(
t̃k
))
,

+ ∫ t
0 Sα(t − s)

[
F (s, Vs)+ ∫ s

0 G (s, τ, Vτ ) dw(τ)
]

ds, t ∈ [0, τ1] ,

h̃(V (t)) = φ̃(t), t ∈ [−r − τ0, 0] .
Then

x̃(t) =
{

x(t), t ∈ [−r, τ0] ,
V (t − τ0) , t ∈ [τ0, τ0 + τ1] ,
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is a mild solution of (1) on [−r, τ0 + τ1]. Since x(t + τ0) = V (t) thus for t ∈
[τ0, τ0 + τ1], we have

V (t − τ0) := x(t) =
{

Tα (t − τ0) x (τ0)+ ∑
τ0<tk<t Tα (t − tk) Ik

(
x
(
t−k
))
,

+ ∫ t
τ0

Sα(t − s)
[

f (s, xs)+ ∫ s
τ0
σ (s, τ, xτ ) dw(τ)

]
ds.

We can extend the solution of (1) to the maximal interval [−r, tmax) by continuing
in this way. Now, we can prove, if tmax < ∞, then E‖x(t)‖2

H → ∞ as t → tmax

by proving t → tmax implies limt→tmax E‖x(t)‖2
H = ∞. Indeed, if t ↑ tmax and

limt↑tmax E‖x(t)‖2
H < ∞, we may assume that ‖Tα(t)‖L(H) ≤ MT and E‖x(t)‖2

H ≤
k1 for 0 ≤ t < tmax where MT and k1 are constants. Now, if 0 < R < t < t

′
< tmax,

then

E‖x(t
′
)− x(t)‖2

H

≤ 7

{

E
∥
∥
∥Tα(t

′
)x0(0)− Tα(t)x0(0)

∥
∥
∥

2

H

+
∑

t<ti<t ′
E
∥
∥
∥Tα

(
t
′ − ti

)
Ii
(
x
(
t−i
))∥∥
∥

2

H

+
∑

0<ti<t

∥
∥
∥Tα

(
t
′ − ti

)
− Tα (t − ti )

∥
∥
∥

2

L(H)
E
∥
∥Ii

(
x
(
t−i
))∥
∥2

H

+
∫ t

0

∥
∥
∥Sα(t

′ − s)− Sα(t − s)
∥
∥
∥

2

L(H)
ds

∫ t

0
E ‖ f (s, xs)‖2

H ds

+
∫ t

′

t

∥
∥
∥Sα(t

′ − s)
∥
∥
∥

L(H)
ds

∫ t
′

t

∥
∥
∥Sα(t

′ − s)
∥
∥
∥

L(H)
E ‖ f (s, xs)‖2

H ds

+
∫ t

0

∥
∥
∥Sα(t

′ − s)− Sα(t − s)
∥
∥
∥

2

L(H)
ds

∫ t

0
Tr(Q)

(∫ s

0
E ‖σ (s, τ, xτ )‖2

H dτ

)

ds

+
∫ t

′

t

∥
∥
∥Sα(t

′ − s)
∥
∥
∥

L(H)
ds

∫ t
′

t

∥
∥
∥Sα(t

′ − s)
∥
∥
∥

L(H)
Tr(Q)

(∫ s

0
E ‖σ (s, τ, xτ )‖2

H dτ

)

ds

}

,

E
∥
∥
∥x(t

′
)−x(t)

∥
∥
∥

2

H
≤ 7

⎧
⎨

⎩
E
∥
∥
∥Tα(t

′
)x0(0)−Tα(t)x0(0)

∥
∥
∥

2

H
+ρ

∑

0<ti<t

∥
∥
∥Tα

(
t
′ −ti

)
−Tα (t −ti )

∥
∥
∥

2

L(H)

+ ρ
∑

t<ti<t ′

∥
∥
∥Tα

(
t
′ − ti

)∥
∥
∥

2

L(H)
+ N1tmax

∫ t

0

∥
∥
∥Sα(t

′ − s)− Sα(t − s)
∥
∥
∥

2

L(H)
ds

+ N1(t
′ − t)2αM2

S

α2 + N2Tr(Q)tmax

∫ t

0

∥
∥
∥Sα(t

′ − s)− Sα(t − s)
∥
∥
∥

2

L(H)
ds

+Tr(Q)N2 M2
S(t

′ − t)2α

α2

}

. (5)

Since for arbitrary t > R > 0, in the uniform operator topology for t ≥ R >

0, Tα(t), Sα(t) are continuous, which implies that the right-hand side of (5) tends to
zero as t, t

′
tends to tmax. Therefore, it proves that limt↑tmax x(t) = x(tmax) exists

and the solution x can be extended beyond tmax. Therefore, by assumption, tmax < ∞
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implies that limt↑tmax E‖x(t)‖2
H = ∞.Now the proof of the theorem can be concluded

by showing limt↑tmax E‖x(t)‖2
H = ∞. If it is not true, then there is a sequence τn ↑ tmax

and a constant k1 such that E‖x(τn)‖2
H ≤ k1 for all n. Let

β1 = sup
{

E ‖ f (t, xt )‖2
H : 0 ≤ t ≤ tmax, E‖x(t)‖2

H ≤ M2
T (k1 + 1)

}
,

β2 = sup

{∫ s

0
E ‖σ (s, τ, xτ )‖2

H dτ : 0 ≤ t ≤ tmax, E‖x(t)‖2
H ≤ M2

T (k1 + 1)

}

,

and choose ρ1 such that ρ1 <
1−6k1
8k1m .

Since t → E‖x(t)‖2
H is continuous and limt↑tmax E‖x(t)‖2

H = ∞, we can find
the sequence {λn} with the following properties: λn → 0 as n → ∞, E‖x(t)‖2

H ≤
M2

T (k1 + 1) for τn ≤ t ≤ τn + λn and E‖x(τn + λn)‖2
H = M2

T (k1 + 1). On the other
hand, we have

M2
T (k1 + 1) = E ‖x (τn + λn)‖2

H

≤ 4

⎧
⎨

⎩
E ‖Tα (λn) x (τn)‖2

H +
∑

τn<tk<τn+λn

‖Tα (τn +λn −tk)‖2
L(H) E

∥
∥Ik

(
x
(
t−k
))∥
∥2

H

+M2
S

∫ τn+λn

τn

(τn + λn − s)α−1 ds
∫ τn+λn

τn

(τn + λn − s)α−1 E ‖ f (s, xs)‖2
H ds

+M2
S

∫ τn+λn

τn

(τn + λn − s)α−1 ds
∫ τn+λn

τn

(τn + λn − s)α−1

×
(

Tr(Q)
∫ s

0
E ‖σ (s, τ, xτ )‖2

L(K ,H) dτ

)

ds

}

,

≤ 4

{

M2
T E‖x‖2

H + M2
T mρE‖x‖2

H + M2
S
λ2α

n

α2 β1 + M2
S
λ2α

n

α2 Tr(Q)β2

}

≤ 4M2
T k1 (1 + mρ1)+ 4M2

Sλ
2α
n

α2
{β1 + Tr(Q)β2}

≤ 4M2
T k1

[

1 + m

(
1 − 6k1

8k1m

)]

as λn → 0

≤ M2
T

(

k1 + 1

2

)

,

which is absurd as λn → 0. Therefore, we have limt→tmax E‖x(t)‖H = ∞. This
completes the proof. ��

5 Example

To illustrate our theoretical results, consider the following impulsive fractional semi-
linear stochastic differential equation with nonlocal conditions
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∂
1
2 u(t, x)

∂t
1
2

+ ∂2u(t, x)

∂x2 =
∫ t

0
e
(t−s)

2
‖u(s, x)‖

25 + ‖u(s, x)‖ds+
∫ t

0

et−s

4 + ‖u(s, x)‖dw(s),

(6)

t ∈ J = [0, 1], x ∈ (0, π), t �= 1

2
, 0 < α ≤ 1,

u(t, 0) = u(t, π) = 0, t ≥ 0, (7)

�u|
t= 1−

2
= sin

(
1

7

∥
∥
∥
∥u

(
1−

2
, x

)∥
∥
∥
∥

)

, (8)

1

τ

∫ 0

−τ
e2su(s, x)ds = u0(x), 0 ≤ x ≤ π. (9)

Let H = L2[0, π ], w(t) is standard cylindrical Wiener process defined on a sto-
chastic basis (Ω, F , {Ft }t≥0; P) and A : D(A) ⊂ H → H be defined by Az = z

′′

with the domain D(A) = {z ∈ H z, z
′
are absolutely continuous z

′′ ∈ H, z(0) =
z(π) = 0} then

Az =
∞∑

n=1

n2 〈z, zn〉 zn, z ∈ D(A),

where zn(x) =
√

2
π

sin(nx), n ∈ N is the orthonormal set of eigenvectors of A. It is
well known that A generates an analytic semigroup {T (t)}t≥0 and

T (t)z =
∞∑

n=1

e−n2t 〈z, zn〉 zn, z ∈ H.

It follows from the above expression that {T (t)}t≥0 is a uniformly bounded compact
semigroup, so that R(λα, A) = (λα I − A)−1 is a compact operator for all λ ∈ ρ(A). In
order to define the operator Q : H → H,we choose a sequence {ξn}, set Qzn = ξnzn

and assume that

Tr(Q) =
∞∑

n=1

√
ξn < 0.0718.

If we put t − s = −θ in the first and second term on the RHS of (6), and take
u(t, x) = u(t)x, we get

∫ t

0
e
(t−s)

2
‖u(s, x)‖

25 + ‖u(s, x)‖ds =
∫ 0

−t
e

−θ
2

‖ut (θ)(x)‖
25 + ‖ut (θ)(x)‖dθ,

and

∫ t

0

et−s

4 + ‖u(s, x)‖dw(s) =
∫ 0

−t

e−θ

4 + ‖ut (θ)x‖dw(θ),
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then (6) takes the following abstract form

D
1
2
t u(t)x + Au(t)x = f (t, ut ) (x)+

∫ t

0
σ (t, s, us) (x)dw(s),

where f : [0, 1] × PC0 → H and σ : [0, 1] × [0, 1] × PC0 → L2(K , H) given by

f (t, φ)(x) =
∫ 0

−t
e

−θ
2

‖φ(θ)(x)‖
25 + ‖φ(θ)(x)‖dθ,

σ (t, s, φ)(x) =
∫ 0

−t

e−θ

4 + ‖φ(θ)x‖dw(θ).

Ik(u) = sin( 1
7‖u‖), k = 1, h(u)(θ) = σ(u) for u ∈ PC1, θ ∈ [−τ, 0], φ(θ) ≡

u0 for θ ∈ [−τ, 0], where σ : PC1 → L2([0, π ]) is such that

σ(u) = 1

τ

∫ 0

−τ
e2su(s, x)ds.

Then (6)–(9) can be written in the abstract form of (1). For (t, φ), (s, ψ) ∈ [0, 1]×
PC0, we have

E‖ f (t, φ)− f (s, ψ)‖2
H =

∥
∥
∥
∥

∫ 0

−t
e− θ

2
φ(θ)(x)

25+φ(θ)(x)dθ−
∫ 0

−s
e− θ

2
ψ(θ)(x)

25+ψ(θ)(x)dθ

∥
∥
∥
∥

2

H

≤2
∫ −s

−t
πe−θ

∥
∥
∥
∥

φ(θ)(·)
25 + φ(θ)(·)

∥
∥
∥
∥

2

H
dθ

+ 2
∫ 0

−s
πe−θ

∥
∥
∥
∥

φ(θ)(·)
25 + φ(θ)(·) − ψ(θ)(·)

25 + ψ(θ)(·)
∥
∥
∥
∥

2

H
dθ

≤2π
(1 + e1)|t − s|2

625
+ 2π(e1 − 1)

625
E‖φ − ψ‖2

PC0

<2π
(1 + e)|t − s|2

625
+ 2π(e − 1)

625
E‖φ − ψ‖2

PC0
.

Similarly,

E‖σ(t, τ, φ)− σ(s, τ, ψ)‖2
L(K ,H) ≤πe2Tr(Q)|t − s|2

8

+πe2Tr(Q)E‖φ − ψ‖2
PC0

8
,

and

E ‖Ik(u(t))− Ik(v(t))‖2
H = E

∥
∥
∥
∥sin

(
1

7
u(t)

)

− sin

(
1

7
v(t)

)∥
∥
∥
∥

2

H
,
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≤ 1

49
E‖u(t)− v(t)‖2

PC1
, u, v ∈ PC1,

≤ 1

49
E‖u‖2

PC1
, u ∈ PC1 for t ∈ [0, 1].

Furthermore, for a defined h, we find η(t) = u0
k∗ ∈ PC1 on [τ, 0] with k∗ =

1
τ

∫ τ
0 e−2sds �= 0 such that

h(η)(θ) ≡ σ(η) = 1

τ

∫ 0

−τ
e2s

(
1

k∗ u0

)

ds = u0 ≡ φ(θ).

We have h(η) = φ. Thus, (A1)–(A7) are satisfied with N1 = 2π(1+e)
625 and N2 =

2πe2

16 , μ = 1
49 , m = 1, MT = 1, MS = 1

Γ ( 1
2 )
, α = 1

2 . Further

3

[

M2
Tμm +

(
N1

α2 + N2Tr(Q)

α2

)

M2
Sτ

2α
0

]

= 3

[
1

49
+ 2π(1 + e)4

625Γ
( 1

2

)2 + 2πe2(4)Tr(Q)

16Γ ( 1
2 )

2

]

< 1.

Therefore by Theorem (3.1) the problem (6)–(9) has a unique mild solution on
[0, 1].

6 Conclusion

In this manuscript, we have studied the local and global existence of mild solutions for
impulsive fractional semilinear stochastic differential equations with nonlocal condi-
tion in a Hilbert space. The local and global existence of mild solutions is proved,
respectively, using the Banach contraction principle and Schauder fixed-point the-
orem. The fixed-point technique and solution operator are employed to obtain the
results, and the obtained result is valid for all α ∈ (0, 1). To validate the obtained
theoretical results, one numerical example is analyzed. The FDE are very efficient to
describe the real-life phenomena; thus, it is essential to extend the present study to
establish the other qualitative and quantitative properties such as stability and control-
lability. In future, we can extend this work with Poisson jump and study the existence,
uniqueness, and stability properties as discussed in [26,28], and we could establish
the asymptotic stability as discussed in [27,29,30]. The fractional Brownian motion is
a generalization of the Brownian motion. Hence in our future work, we are interested
to implement fractional Brownian motion to get more interesting results.
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