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Abstract Let H be a locally compact group, K be an LCA group, τ : H → Aut (K )

be a continuous homomorphism and Gτ = H�τ K be the semi-direct product of H and
K with respect to the continuous homomorphism τ . In this article, we introduce the τ×
τ̂ -time frequency group Gτ×τ̂ . We define the τ ×τ̂ -continuous Gabor transform of f ∈
L2(Gτ ) with respect to a window function u ∈ L2(K ) as a function defined on Gτ×τ̂ .
It is also shown that the τ × τ̂ -continuous Gabor transform satisfies the Plancherel
Theorem and reconstruction formula. This approach is tailored for choosing elements
of L2(Gτ ) as a window function. Finally, we indicate some possible applications of
these methods in the case of some well-known semi-direct product groups.

Keywords Semi-direct product · Time–frequency plane (group) · Short-time
Fourier transform (STFT) · Continuous Gabor transform · Plancherel theorem

Mathematics Subject Classification Primary 43A30 · Secondary 43A25, 43A15

1 Introduction

In [15] Gabor used translations and modulations of the Gaussian signal to represent
one-dimensional signals. The Gabor transform, named after Gabor, is a special case
of the short-time Fourier transform (STFT). It is used to determine the sinusoidal
frequency and phase content of local sections of a signal as it changes over time. The
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780 A. Ghaani Farashahi

function to be transformed is first multiplied by a Gaussian function, which can be
regarded as a window, and the resulting function is then transformed with a Fourier
transform to derive the time–frequency analysis. The window function term means that
the signal near the time being analyzed will have higher weight. The Gabor transform
of a signal x(t) is precisely defined by

G{x}(y, ω) =
∫ +∞

−∞
x(t)e−π(t−y)2

e−2π iωt dt. (1.1)

Due to (1.1) the Gabor transform of a signal x(t) is a function defined on R×̂R called
the time–frequency plane. There is also standard extension of the continuous Gabor
transform of a signal x(t) on R

n which is defined for (y, w) ∈ R
n × ̂R

n by (see [9,16])

G{x}(y, w) =
∫

Rn
x(t)e−π‖t−y‖2

e−2π iw.tdt. (1.2)

Since the theory of Gabor analysis based on the structure of translations and mod-
ulations (time–frequency plane), it is also possible to extend concepts of the Gabor
theory to other locally compact abelian (LCA) groups. For more explanation, we refer
the reader to the monograph of Gröchenig [17] or complete works of Feichtinger
and Strohmer [8] and also [7] in the case of finite abelian groups. The continuous
Gabor transform for LCA groups is closely related to the Feichtinger–Gröchenig the-
ory (coorbit space theory). In view of voice transform and the coorbit space theory,
the continuous Gabor transform for an LCA group G is precisely the voice transform
generated by the Schrödinger representation of the Weyl–Heisenberg group associate
with G (see [4–6,19]).

Many locally compact spaces and locally compact groups which are used in mathe-
matical physics and also various topics of engineering such as the n-dimensional unit
sphere, Heisenberg group, affine group, or Euclidean groups are non-abelian groups
or they are homogeneous spaces of non-abelian groups (see [10,13,21]). Large class
of non-Abelian locally compact groups is the class consist of semi-direct product
group of an LCA group with another locally compact group. The theory of harmonic
analysis for semi-direct product of locally compact groups is a significant tool in the
theory of wavelet analysis (see [1,12,18,23]). We recall that in the classical theory of
harmonic analysis for non-abelian locally compact groups (see [3,10,24,26,27]) we
lose many useful results and basic numerical concepts in abelian harmonic analysis
of LCA groups (see [10,25]), which play important roles in the usual Gabor theory
of LCA groups. If G is a non-abelain locally compact group via a natural approach,
modulation by a character will be replaced by a modulation by an equivalence class
of an irreducible representation of G (see [14]) and the natural candidate for the gen-
eralization of the time frequency plane will be G × ̂G, where ̂G stands for the set of
all equivalence class of irreducible continuous unitary representations of G. It is clear
that this extension will not be appropriate from the numerical computational aspects
and also application viewpoints. Thus, we need a new approach to find an appropriate
generalization of the continuous Gabor transform which be useful and also efficient
in application.
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Continuous Gabor Transform for Semi-Direct Products 781

This article contains 5 sections. Section 2 is devoted to fix notations including
a brief summary about harmonic analysis of semi-direct product of locally compact
groups also standard Fourier analysis and Gabor analysis on LCA groups. In Sect. 3 we
assume that H is a locally compact group and K is an LCA group, τ : H → Aut (K ) is
a continuous homomorphism and Gτ = H �τ K . We define the τ × τ̂ -time frequency
group Gτ×τ̂ and the τ × τ̂ -continuous Gabor transform of f ∈ L2(Gτ ) with respect
to a window function u ∈ L2(K ). We also prove a Plancherel and inversion formula
for the τ × τ̂ -continuous Gabor transform. To choose elements of L2(Gτ ) as window
functions we define the τ⊗τ̂ -time frequency group Gτ⊗τ̂ and also the τ⊗τ̂ -continuous
Gabor transform in Sect. 4. As an application, we study this theory on the affine group,
Weyl–Heisenberg group and the Euclidean groups in Sect. 5.

2 Preliminaries and Notations

Let H and K be locally compact groups with identity elements eH and eK , respectively,
and left Haar measures dh and dk respectively, also let τ : H → Aut (K ) be a
homomorphism such that the map (h, k) �→ τh(k) is continuous from H × K onto K .
There is a natural topology, sometimes called Braconnier topology, turning Aut (K )

into a Hausdorff topological group(not necessarily locally compact), which is defined
by the sub-base of identity neighborhoods

B(F, U ) = {α ∈ Aut (K ) : α(k), α−1(k) ∈ Uk ∀k ∈ F}, (2.1)

where F ⊆ K is compact and U ⊆ K is an identity neighborhood. Continuity of
a homomorphism τ : H → Aut (K ) is equivalent with the continuity of the map
(h, k) �→ τh(k) from H × K onto K (see [22]).

The semi-direct product Gτ = H �τ K is the locally compact topological group
with the underlying set H × K which is equipped by the product topology and also
the group operation is defined by

(h, k) �τ (h′, k′) = (hh′, kτh(k′)) and (h, k)−1 = (h−1, τh−1(k−1)). (2.2)

If H1 = {(h, eK ) : h ∈ H} and K1 = {(eH , k) : k ∈ K } then K1 is a closed
normal subgroup and H1 is a closed subgroup of Gτ . The left Haar measure of Gτ is
dμGτ (h, k) = δ(h)dhdk and the modular function �Gτ is

�Gτ (h, k) = δ(h)�H (h)�K (k),

where the positive continuous homomorphism δ : H → (0,∞) is given by [21]

dk = δ(h)d(τh(k)). (2.3)

From now on, for all p ≥ 1 we denote by L p(Gτ ) the Banach space L p(Gτ , μGτ ) and
also L p(K ) stands for L p(K , dk). When f ∈ L p(Gτ ), for a.e. h ∈ H the function
fh defined on K via fh(k) := f (h, k) belongs to L p(K ) (see [11]).
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If K is an LCA group all irreducible representations of K are one-dimensional.
Thus, if π is an irreducible unitary representation of K we have Hπ = C and also
according to the Schur’s Lemma there exists a continuous homomorphism ω of K into
the circle group T such that for each k ∈ K and z ∈ C we have π(k)(z) = ω(k)z.
Such homomorphisms are called characters of K and the set of all characters of K
denoted by ̂K . If ̂K equipped by the topology of compact convergence on K which
coincides with the w∗-topology that ̂K inherits as a subset of L∞(K ), then ̂K with
respect to the point-wise product of characters is an LCA group which is called the
dual group of K . The linear map FK : L1(K ) → C(̂K ) defined by v �→ FK (v) via

FK (v)(ω) = v̂(ω) =
∫

K
v(k)ω(k)dk, (2.4)

is called the Fourier transform on K . It is a norm-decreasing ∗-homomorphism from
L1(K ) into C0(̂K ) with a uniformly dense range in C0(̂K ) (Proposition 4.13 of [10]).
If φ ∈ L1(̂K ), the function defined a.e. on K by

φ̆(x) =
∫

̂K
φ(ω)ω(x)dω, (2.5)

belongs to L∞(K ) and also for all f ∈ L1(K ) we have the following orthogonality
relation (Parseval formula);

∫

K
f (k)φ̆(k)dk =

∫

̂K

̂f (ω)φ(ω)dω. (2.6)

The Fourier transform (2.4) on L1(K )∩L2(K ) is an isometric transform and it extends
uniquely to a unitary isomorphism from L2(K ) onto L2(̂K ) (Theorem 4.25 of [10])
also each v ∈ L1(K ) with v̂ ∈ L1(̂K ) satisfies the following Fourier inversion formula
(Theorem 4.32 of [10]);

v(k) =
∫

̂K
v̂(ω)ω(k)dω for a.e. k ∈ K . (2.7)

The fundamental operator in standard Gabor theory is the time–frequency shift
operator. If K is an LCA group, the translation (time-shifts) operator is given by
Tsv(k) = v(k − s) for all k, s ∈ K and also the modulation (frequency-shifts) opera-
tor is given by Mωv(k) = ω(k)v(k) for all ω ∈ ̂K , k ∈ K . The time–frequency shift
operator is defined on the time–frequency plane (time–frequency group) K × ̂K by
	(k, ω) = MωTk for all (k, ω) ∈ K × ̂K .

Given an appropriate window function u ∈ L2(K ) on K , the short time Fourier
transform (STFT) or the continuous Gabor transform of v ∈ L2(K ) is given
by
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Continuous Gabor Transform for Semi-Direct Products 783

Vuv(s, ω) =
∫

K
v(k)u(k − s)ω(k)dk = 〈v, 	(s, ω)u〉L2(K ). (2.8)

The continuous Gabor transform (2.8) satisfies the following Plancherel formula

∫

K×̂K
|Vuv(s, ω)|2dsdω = ‖u‖2

L2(K )
‖v‖2

L2(K )
, (2.9)

for all u, v ∈ L2(K ) (see [17]). If u, u′ ∈ L2(K ) with 〈u, u′〉L2(K ) �= 0, then each
v ∈ L2(K ) satisfies the following inversion formula in the weak sense (see [16])

v = 〈u, u′〉−1
L2(K )

∫

K×̂K
Vuv(k, ω)	(k, ω)u′dkdω. (2.10)

If a window function u ∈ L2(K ) has Fourier transform û in L1(̂K ), then each v ∈
L2(K ) with v̂ ∈ L1(̂K ) satisfies the following inversion formula;

v(s) = ‖u‖−2
L2(K )

∫

K×̂K
Vuv(k, ω)[	(k, ω)u](s)dkdω, (2.11)

for all s ∈ K .

3 τ × τ̂ -Continuous Gabor Transform

Throughout this paper, let H be a locally compact group and K be an LCA group
also let τ : H → Aut (K ) be a continuous homomorphism and Gτ = H �τ K .
For simplicity in notations we use kh instead of τh(k) for all h ∈ H and k ∈ K .
In this section we introduce the τ × τ̂ -time frequency group and also we define the
τ × τ̂ -continuous Gabor transform of f ∈ L2(Gτ ) with respect to a window function
in L2(K ).

Define τ̂ : H → Aut (̂K ) via h �→ τ̂h , given by

τ̂h(ω) := ωh = ω ◦ τh−1 (3.1)

for all ω ∈ ̂K , where ωh(k) = ω(τh−1(k)) for all k ∈ K . If ω ∈ ̂K and h ∈ H we
have ωh ∈ ̂K , because for all k, s ∈ K we have

ωh(ks) = ω ◦ τh−1(ks)

= ω(τh−1(ks))

= ω(τh−1(k)τh−1(s))

= ω(τh−1(k))ω(τh−1(s)) = ωh(k)ωh(s).
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784 A. Ghaani Farashahi

According to (3.1) for all h ∈ H we have τ̂h ∈ Aut (̂K ). Because, if k ∈ K and h ∈ H
then for all ω, η ∈ ̂K we have

τ̂h(ω.η)(k) = (ω.η)h(k)

= (ω.η) ◦ τh−1(k)

= ω.η(τh−1(k))

= ω(τh−1(k))η(τh−1(k))

= ωh(k)ηh(k) = τ̂h(ω)(k )̂τh(η)(k).

Also h �→ τ̂h is a homomorphism from H into Aut (̂K ), cause if h, t ∈ H then for all
ω ∈ ̂K and k ∈ K we get

τ̂th(ω)(k) = ωth(k)

= ω(τ(th)−1(k))

= ω(τh−1τt−1(k))

= ωh(τt−1(k))

= τ̂h(ω)(τt−1(k)) = τ̂t [̂τh(ω)](k).

Thus, we can prove the following theorem.

Theorem 3.1 Let H be a locally compact group and K be an LCA group also τ :
H → Aut (K ) be a continuous homomorphism and let δ : H → (0,∞) be the
positive continuous homomorphism satisfying dk = δ(h)dkh. The semi-direct product
G τ̂ = H �τ̂

̂K is a locally compact group with the left Haar measure dμG τ̂ (h, ω) =
δ(h)−1dhdω.

Proof Continuity of the homomorphism τ̂ : H → Aut (̂K ) given in (3.1) guaranteed
by Theorem 26.9 of [21]. Hence, the semi-direct product G τ̂ = H �τ̂

̂K is a locally
compact group. We also claim that the Plancherel measure dω on ̂K for all h ∈ H
satisfies

dωh = δ(h)dω. (3.2)

Let h ∈ H and v ∈ L1(K ). Using (2.3) we have v ◦ τh ∈ L1(K ) with ‖v ◦ τh‖L1(K ) =
δ(h)‖v‖L1(K ). Thus, for all ω ∈ ̂K we achieve

v̂ ◦ τh(ω) =
∫

K
v ◦ τh(k)ω(k)dk

=
∫

K
v(kh)ω(k)dk

=
∫

K
v(k)ωh(k)dkh−1

= δ(h)

∫

K
v(k)ωh(k)dk = δ(h)̂v(ωh).
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Now let v ∈ L1(K ) ∩ L2(K ). Due to the Plancherel theorem (Theorem 4.25 of
[10]) and also preceding calculation, for all h ∈ H we get

∫

̂K
|̂v(ω)|2dωh =

∫

̂K
|̂v(ωh−1)|2dω

= δ(h)2
∫

̂K
| ̂v ◦ τh−1(ω)|2dω

= δ(h)2
∫

K
|v ◦ τh−1(k)|2dk

= δ(h)2
∫

K
|v(k)|2dkh

= δ(h)

∫

K
|v(k)|2dk =

∫

̂K
|̂v(ω)|2δ(h)dω,

which implies (3.2). Therefore, dμG τ̂ (h, ω) = δ(h)−1dhdω is a left Haar measure for
G τ̂ = H �τ̂

̂K . ��
Remark 3.2 Due to (3.1) for all k ∈ K , ω ∈ ̂K and h, t ∈ H we have

kht = (kt )h, ωht = (ωt )h . (3.3)

Now we are in the position to introduce the τ × τ̂ -time frequency group. Define
τ× = τ × τ̂ : H → Aut (K × ̂K ) via h �→ τ×

h given by

τ×
h (k, ω) := (τh(k), τ̂h(ω)) = (kh, ωh), (3.4)

for all (k, ω) ∈ K × ̂K . Then, for all h ∈ H we have τ×
h ∈ Aut (K × ̂K ). Because

for all (k, ω), (k′, ω′) ∈ K × ̂K we have

τ×
h

(

(k, ω)(k′, ω′)
) = τ×

h (kk′, ωω′)

=
(

(kk′)h, (ωω′)h

)

=
(

khk′h, ωhω′
h

)

= (kh, ωh)(k′h, ω′
h) = τ×

h (k, ω)τ×
h (k′, ω′).

Also τ× = τ × τ̂ : H → Aut (K × ̂K ) defined by h �→ τ×
h is a homomorphism,

because for all h, t ∈ H and all (k, ω) ∈ K × ̂K we have

τ×
ht (k, ω) = (kht , ωht )

=
(

(kt )h, (ωt )h

)

= τ×
h (kt , ωt ) = τ×

h τ×
t (k, ω).
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786 A. Ghaani Farashahi

In the following proposition we show that Gτ×τ̂ = H �τ×τ̂ (K × ̂K ) is a locally
compact group.

Proposition 3.3 Let H be a locally compact group and K be an LCA group also
τ : H → Aut (K ) be a continuous homomorphism and let δ : H → (0,∞) be the
positive continuous homomorphism satisfying dk = δ(h)dkh. The semi-direct product
Gτ×τ̂ = H �τ×τ̂ (K × ̂K ) is a locally compact group with the left Haar measure

dμGτ×τ̂ (h, k, ω) = dhdkdω. (3.5)

Proof Continuity of the homomorphism τ × τ̂ : H → Aut (K × ̂K ) given in (3.4)
guaranteed by Theorem 26.9 of [21]. Thus, the semi-direct product Gτ×τ̂ = H �τ×τ̂

(K × ̂K ) is a locally compact group. Due to (2.3), (3.2) and also (3.4), for all h ∈ H
we have

dτ×
h (k, ω) = d

(

kh, ωh

)

= dkhdωh

= δ(h)−1dkδ(h)dω = dkdω = d(k, ω),

which implies that Gτ×τ̂ is a locally compact group with the left Haar measure
dμGτ×τ̂ (h, k, ω) = dhdkdω. ��

We call the semi-direct product Gτ×τ̂ as the τ × τ̂ -time frequency group associated
to Gτ . According to (3.4) for each (h, k, ω), (h′, k′, ω′) ∈ Gτ×τ̂ we have

(h, k, ω) �τ×τ̂ (h′, k′, ω′) = (

hh′, (k, ω)τ×
h (k′, ω′)

)

= (

hh′, (k, ω)(τh(k′), ω′
h)

) = (hh′, k + k′h, ωω′
h).

Let u ∈ L2(K ) be a window function and f ∈ L2(Gτ ). The τ × τ̂ -continuous
Gabor transform of f with respect to the window function u is define by

Vu f (h, k, ω) := δ(h)1/2Vu fh(k, ω) = δ(h)1/2〈 fh, 	(k, ω)u〉L2(K ). (3.6)

In the following theorem we prove a Plancherel formula for the τ × τ̂ -continuous
Gabor transform defined in (3.6).

Theorem 3.4 Let H be a locally compact group and K be an LCA group also τ :
H → Aut (K ) be a continuous homomorphism and let u ∈ L2(K ) be a window
function. The τ × τ̂ -continuous Gabor transform Vu : L2(Gτ ) → L2(Gτ×τ̂ ) is a
multiple of an isometric transform which maps L2(Gτ ) onto a closed subspace of
L2(Gτ×τ̂ ).

Proof Let u ∈ L2(K ) be a window function and also f ∈ L2(Gτ ). Using Fubini’s
Theorem and also Plancherel formula (2.9) we have
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‖Vu f ‖2
L2(Gτ×τ̂ )

=
∫

Gτ×τ̂

|Vu f (h, k, ω)|2dμGτ×τ̂ (h, k, ω)

=
∫

H

∫

K

∫

̂K
|Vu f (h, k, ω)|2dhdkdω

=
∫

H

(∫

K×̂K
|〈 fh, 	(k, ω)u〉L2(K )|2dkdω

)

δ(h)dh

= ‖u‖2
L2(K )

∫

H
‖ fh‖2

L2(K )
δ(h)dh = ‖u‖2

L2(K )
‖ f ‖2

L2(Gτ )
.

Therefore, ‖u‖−2
L2(K )

Vu : L2(Gτ ) → L2(Gτ × G τ̂ ) is an isometric transform with a

closed range in L2(Gτ × G τ̂ ). ��
Corollary 3.5 The τ × τ̂ -continuous Gabor transform defined in (3.6), for all f, g ∈
L2(Gτ ) and window functions u, v ∈ L2(K ) satisfies the following orthogonality
relation;

〈Vu f,Vvg〉L2(Gτ×τ̂ ) = 〈v, u〉L2(K )〈 f, g〉L2(Gτ ). (3.7)

The τ × τ̂ -continuous Gabor transform (3.6) satisfies the following inversion for-
mula.

Proposition 3.6 Let H be a locally compact group and K be an LCA group also
let τ : H → Aut (K ) be a continuous homomorphism and u ∈ L2(K ) with û ∈
L1(̂K ). Every f ∈ L2(Gτ ) with ̂fh ∈ L1(̂K ) for a.e. h ∈ H, satisfies the following
reconstruction formula;

f (h, k) = δ(h)−1/2‖u‖−2
L2(K )

∫

K×̂K
Vu f (h, s, ω)[	(s, ω)u](k)dsdω. (3.8)

Proof Using (2.11) for a.e. h ∈ H we have

fh(k) = ‖u‖−2
L2(K )

∫

K×̂K
Vu fh(s, ω)[	(s, ω)u](k)dsdω

= δ(h)−1/2‖u‖−2
L2(K )

∫

K×̂K
Vu f (h, s, ω)[	(s, ω)u](k)dsdω.

��
We can also define the generalized form of the τ × τ̂ -continuous Gabor transform.

Let u ∈ L2(K ) be a window function and f ∈ L2(Gτ ). The generalized τ × τ̂ -
continuous Gabor transform of f with respect to the window function u is define
by

V†
u f (h, k, ω) := δ(h)1/2Vu fh(kh, ωh) = δ(h)1/2〈 fh, 	(kh, ωh)u〉L2(K ). (3.9)

The generalized τ × τ̂ -continuous Gabor transform given in (3.9) satisfies the
following Plancherel Theorem.
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788 A. Ghaani Farashahi

Theorem 3.7 Let H be a locally compact group and K be an LCA group also τ : H →
Aut (K ) be a continuous homomorphism and let u ∈ L2(K ) be a window function.
The generalized τ × τ̂ -continuous Gabor transform V†

u : L2(Gτ ) → L2(Gτ×τ̂ ) is
a multiple of an isometric transform which maps L2(Gτ ) onto a closed subspace of
L2(Gτ×τ̂ ).

Proof Let u ∈ L2(K ) be a window function and also f ∈ L2(Gτ ). Using Fubini’s
Theorem, Plancherel formula (2.9) and also (2.3), (3.2) we have

‖V†
u f ‖2

L2(Gτ×τ̂ )
=

∫

Gτ×τ̂

|V†
u f (h, k, ω)|2dμGτ×τ̂ (h, k, ω)

=
∫

H

∫

K

∫

̂K
|V†

u f (h, k, ω)|2dhdkdω

=
∫

H

(∫

K×̂K
|〈 fh, 	(kh, ωh)u〉L2(K )|2dkdω

)

δ(h)dh

=
∫

H

(∫

K×̂K
|〈 fh, 	(k, ω)u〉L2(K )|2dkh−1

dωh−1

)

δ(h)dh

=
∫

H

(∫

K×̂K
|〈 fh, 	(k, ω)u〉L2(K )|2dkdω

)

δ(h)dh

= ‖u‖2
L2(K )

∫

H
‖ fh‖2

L2(K )
δ(h)dh = ‖u‖2

L2(K )
‖ f ‖2

L2(Gτ )
.

Thus, ‖u‖−2
L2(K )

V†
u : L2(Gτ ) → L2(Gτ×τ̂ ) is an isometric transform with a closed

range in L2(Gτ×τ̂ ). ��

Corollary 3.8 The generalized τ × τ̂ -continuous Gabor transform defined in (3.9),
for all f, g ∈ L2(Gτ ) and window functions u, v ∈ L2(K ) satisfies the following
orthogonality relation;

〈V†
u f,V†

v g〉L2(Gτ×τ̂ ) = 〈v, u〉L2(K )〈 f, g〉L2(Gτ ). (3.10)

In the next proposition we prove an inversion formula for the generalized τ × τ̂ -
continuous Gabor transform given in (3.9).

Proposition 3.9 Let H be a locally compact group and K be an LCA group also
let τ : H → Aut (K ) be a continuous homomorphism and u ∈ L2(K ) with û ∈
L1(̂K ). Every f ∈ L2(Gτ ) with ̂fh ∈ L1(̂K ) for a.e. h ∈ H, satisfies the following
reconstruction formula;

f (h, k) =
∫

K×̂K
V†

u f (h, s, ω)[	(sh, ωh)u](k)dsdω (3.11)
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Proof Using (2.11) for a.e. h ∈ H we have

fh(k) =
∫

K×̂K
Vu fh(s, ω)[	(s, ω)u](k)dsdω

=
∫

K

(∫

̂K
Vu fh(s, ωh)[	(s, ωh)u](k)dωh

)

ds

= δ(h)

∫

̂K

(∫

K
Vu fh(s, ωh)[	(s, ωh)u](k)ds

)

dω

= δ(h)

∫

̂K

(∫

K
Vu fh(sh, ωh)[	(sh, ωh)u](k)dsh

)

dω

=
∫

K×̂K
V†

u f (h, s, ω)[	(sh, ωh)u](k)dsdω.

��

Remark 3.10 It is also possible to define different variants of the Gabor transform as
we defined in (3.6) and (3.9), with similar properties. Let transforms Au and Bu for
f ∈ L2(Gτ ) be given by

Au f (h, k, ω) = Vu fh(kh, ω) Bu f (h, k, ω) = δ(h)Vu fh(k, ωh). (3.12)

It can be checked that transforms given in (3.12) satisfy the Plancherel theorem and
the following inversion formulas;

f (h, k) = δ(h)−1
∫

K×̂K
Au f (h, k, ω)[	(sh, ω)](k)dsdω,

f (h, k) =
∫

K×̂K
Bu f (h, k, ω)[	(s, ωh)](k)dsdω. (3.13)

4 τ ⊗ τ̂ -Continuous Gabor Transform

In this section we introduce another Gabor transform which we call it the τ ⊗ τ̂ -
continuous Gabor transform. In the τ ⊗ τ̂ -Gabor theory we can choose elements of
L2(Gτ ) as window functions.

Again let H be a locally compact group and K be an LCA group also let τ : H →
Aut (K ) be a continuous homomorphism. Define τ⊗ = τ⊗τ̂ : H×H → Aut (K × ̂K )

via (h, t) �→ τ⊗
(h,t) given by

τ⊗
(h,t)(k, ω) := (τh(k), τ̂t (ω)) = (kh, ωt ), (4.1)

for all (k, ω) ∈ K × ̂K . Then, for all (h, t) ∈ H × H we get τ⊗
(h,t) ∈ Aut (K × ̂K ).

Because for all (k, ω), (k′, ω′) ∈ K × ̂K we have
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τ⊗
(h,t)

(

(k, ω)(k′, ω′)
) = τ⊗

(h,t)(k + k′, ωω′)

=
(

(k + k′)h, (ωω′)t

)

=
(

kh + k′h, ωtω
′
t

)

= (kh, ωt )(k
′h, ω′

t ) = τ⊗
(h,t)(k, ω)τ⊗

(h,t)(k
′, ω′).

As well as τ⊗ = τ ⊗ τ̂ : H × H → Aut (K × ̂K ) defined by (h, t) �→ τ⊗
(h,t) is a

homomorphism, because for all (h, t), (h′, t ′) ∈ H × H and also all (k, ω) ∈ K × ̂K
we have

τ⊗
(h,t)(h′,t ′)(k, ω) = τ⊗

(hh′,t t ′)(k, ω)

= (khh′
, ωt t ′)

=
(

(kh′
)h, (ωt ′)t

)

= τ⊗
(h,t)(k

h′
, ωt ′) = τ⊗

(h,t)τ
⊗
(h′,t ′)(k, ω).

Hence, we can prove the following interesting theorem.

Theorem 4.1 Let H be a locally compact group and K be an LCA group also let
τ : H → Aut (K ) be a continuous homomorphism. The semi-direct product Gτ⊗τ̂ =
(H × H) �τ⊗τ̂

(

K × ̂K
)

is a locally compact group with the left Haar measure

dμGτ⊗τ̂ (h, t, k, ω) = δ(h)δ(t)−1dhdtdkdω, (4.2)

and also � : Gτ × G τ̂ → Gτ⊗τ̂ given by

(h, k, t, ω) �→ �(h, k, t, ω) := (h, t, k, ω) (4.3)

is a topological group isomorphism.

Proof Using Theorem 26.9 of [21], homomorphism τ ⊗ τ̂ : H × H → Aut (K ×
̂K ) given in (4.1) is continuous. Therefore, Gτ⊗τ̂ = (H × H) �τ⊗τ̂

(

K × ̂K
)

is a
locally compact group. Also, dμGτ⊗τ̂ (h, t, k, ω) = δ(h)δ(t)−1dhdtdkdω is a left Haar
measure for Gτ⊗τ̂ . Indeed, due to (2.3) and (3.2) for all (h, t) ∈ H × H we have

dτ⊗
(h,t)(k, ω) = d(kh, ωt )

= dkhdωt

= δ(h)−1dkδ(t)dω = δ(h)−1δ(t)d(k, ω).
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The τ ⊗ τ̂ -group law for all (h, t, k, ω), (h′, t ′, k′, ω′) ∈ Gτ⊗τ̂ is

(h, t, k, ω) �τ⊗τ̂ (h′, t ′, k′, ω′) =
(

(hh′, t t ′), (k, ω)τ⊗
(h,t)(k

′, ω′)
)

=
(

(hh′, t t ′), (k, ω)(k′h, ω′
t )

)

= (hh′, t t ′, k + k′h, ωω′
t ).

It is clear that � : Gτ × G τ̂ → Gτ⊗τ̂ is a homeomorphism. It is also a group
homomorphism, because for all (h, k, t, ω), (h′, k′, t ′, ω′) in Gτ × G τ̂ we get

�[(h, k, t, ω)(h′, k′, t ′, ω′)] = �[(h, k) �τ (h′, k′), (t, ω) �τ̂ (t ′, ω′)]
= �[(hh′, k + k′h), (t t ′, ωω′

t )]
= (hh′, t t ′, k + k′h, ωω′

t )

= (h, t, k, ω) �τ⊗τ̂ (h′, t ′, k′, ω′).

��

We call the semi-direct product Gτ⊗τ̂ as the τ ⊗ τ̂ -time frequency group associated
to Gτ which is precisely Gτ × G τ̂ . Thus, form now on we use the locally compact
group Gτ × G τ̂ instead of the semi-direct product Gτ⊗τ̂ .

Let g ∈ L2(Gτ ) be a window function and f ∈ L2(Gτ ). The τ ⊗ τ̂ -continuous
Gabor transform of f with respect to the window function g is defined by

Gg f (h, k, t, ω) := δ(t)Vgh ft (k, ω) = δ(t)〈 ft , 	(k, ω)gh〉L2(K ). (4.4)

The τ ⊗ τ̂ -continuous Gabor transform given in (4.4) satisfies the following
Plancherel Theorem.

Theorem 4.2 Let H be a locally compact group, K be an LCA group and τ : H →
Aut (K ) be a continuous homomorphism also Gτ = H �τ K and let g ∈ L2(Gτ ) be
a window function. The continuous Gabor transform Gg : L2(Gτ ) → L2(Gτ × G τ̂ )

is a multiple of an isometric transform which maps L2(Gτ ) onto a closed subspace of
L2(Gτ × G τ̂ ).

Proof Let g ∈ L2(Gτ ) be a window function and also let f ∈ L2(Gτ ).

‖Gg f ‖2
L2(Gτ ×G τ̂ )

=
∫

Gτ ×G τ̂

|Gg f (h, k, t, ω)|2dμGτ ×G τ̂ (h, k, t, ω)

=
∫

Gτ

∫

G τ̂

|Gg f (h, k, t, ω)|2dμGτ (h, k)dμG τ̂ (t, ω)

=
∫

H

∫

K

∫

H

∫

̂K
|Gg f (h, k, t, ω)|2δ(h)dhdkδ(t)−1dtdω

123



792 A. Ghaani Farashahi

=
∫

H

∫

H

(∫

K×̂K
|〈 ft , 	(k, ω)gh〉L2(K )|2dkdω

)

δ(h)dhδ(t)dt

=
∫

H

∫

H
‖ ft‖2

L2(K )
‖gh‖2

L2(K )
δ(h)dhδ(t)dt =‖ f ‖2

L2(Gτ )
‖g‖2

L2(Gτ )

Thus, ‖g‖−2
L2(Gτ )

Gg : L2(Gτ ) → L2(Gτ ×G τ̂ ) is an isometric transform with a closed

range in L2(Gτ × G τ̂ ). ��
Corollary 4.3 The τ × τ̂ -continuous Gabor transform defined in (4.4), for all f, f ′ ∈
L2(Gτ ) and window functions g, g′ ∈ L2(Gτ ) satisfies the following orthogonality
relation;

〈Gg f,Gg′ f ′〉L2(Gτ ×G τ̂ ) = 〈g′, g〉L2(Gτ )〈 f, f ′〉L2(Gτ ). (4.5)

In the following proposition we also prove an inversion formula.

Proposition 4.4 Let H be a locally compact group and K be an LCA group also
let τ : H → Aut (K ) be a continuous homomorphism. Every f, g ∈ L2(Gτ ) with
̂fh, ĝh ∈ L1(̂K ) for a.e. h ∈ H, satisfy the following reconstruction formula;

f (t, k) = 〈gh, gh〉−1
L2(K )

δ(t)−1
∫

K×̂K
Gg f (h, s, t, ω)[	(s, ω)gh](k)dsdω, (4.6)

for a.e. h, t ∈ H and k ∈ K . In particular, for a.e. h ∈ H we have

f (h, k) = 〈gh, gh〉−1
L2(K )

δ(h)−1
∫

K×̂K
Gg f (h, s, h, ω)[	(s, ω)gh](k)dsdω. (4.7)

Proof Using (2.11) for a.e. h, t ∈ H we have

ft (k) = 〈gh, gh〉−1
L2(K )

∫

K×̂K
Vgh ft (s, ω)[	(s, ω)gh](k)dsdω

= 〈gh, gh〉−1
L2(K )

δ(t)−1
∫

K×̂K
Gg f (h, s, t, ω)[	(s, ω)gh](k)dsdω.

��
Let g ∈ L2(Gτ ) be a window function and f ∈ L2(Gτ ). The generalized τ ⊗ τ̂ -

continuous Gabor transform of f with respect to the window function g is defined
by

G†
g f (h, k, t, ω) := δ(h)−1/2δ(t)3/2Vgh ft (k

h, ωt )

= δ(h)−1/2δ(t)3/2〈 ft , 	(kh, ωt )gh〉L2(K ). (4.8)

In the next theorem, a Plancherel formula for the generalized τ ⊗ τ̂ -continuous
Gabor transform defined in (4.8) proved.
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Theorem 4.5 Let H be a locally compact group, K be an LCA group and τ : H →
Aut (K ) be a continuous homomorphism also Gτ = H �τ K and also let g ∈ L2(Gτ )

be a window function. The generalized continuous Gabor transform G†
g : L2(Gτ ) →

L2(Gτ × G τ̂ ) is a multiple of an isometric transform which maps L2(Gτ ) onto a
closed subspace of L2(Gτ × G τ̂ ).

Proof Let g ∈ L2(Gτ ) be a window function and also let f ∈ L2(Gτ ). Using Fubini’s
theorem and also Theorem we achieve

‖Gg f ‖2
L2(Gτ ×G τ̂ )

=
∫

Gτ ×G τ̂

|G†
g f (h, k, t, ω)|2dμGτ ×G τ̂ (h, k, t, ω)

=
∫

Gτ

∫

G τ̂

|G†
g f (h, k, t, ω)|2dμGτ (h, k)dμG τ̂ (t, ω)

=
∫

H

∫

K

∫

H

∫

̂K
|G†

g f (h, k, t, ω)|2δ(h)dhdkδ(t)−1dtdω

=
∫

H

∫

H

(∫

K×̂K
|〈 ft , 	(kh, ωt )gh〉L2(K )|2dkdω

)

dhδ(t)2dt

=
∫

H

∫

H

(∫

K×̂K
|〈 ft , 	(k, ω)gh〉L2(K )|2dkh−1

dωt−1

)

dhδ(t)2dt

=
∫

H

∫

H

(∫

K×̂K
|〈 ft , 	(k, ω)gh〉L2(K )|2dkdω

)

δ(h)dhδ(t)dt

=
∫

H

∫

H
‖ ft‖2

L2(K )
‖gh‖2

L2(K )
δ(h)dhδ(t)dt =‖ f ‖2

L2(Gτ )
‖g‖2

L2(Gτ )

Thus, ‖g‖−2
L2(Gτ )

G†
g : L2(Gτ ) → L2(Gτ ×G τ̂ ) is an isometric transform with a closed

range in L2(Gτ × G τ̂ ). ��
Corollary 4.6 The τ × τ̂ -continuous Gabor transform defined in (4.8), for all f, f ′ ∈
L2(Gτ ) and window functions g, g′ ∈ L2(Gτ ) satisfies the following orthogonality
relation;

〈G†
g f,G†

g′ f ′〉L2(Gτ ×G τ̂ ) = 〈g′, g〉L2(Gτ )〈 f, f ′〉L2(Gτ ). (4.9)

Also, the generalized τ ⊗ τ̂ -continuous Gabor transform satisfies the following
inversion formula.

Proposition 4.7 Let H be a locally compact group and K be an LCA group also
let τ : H → Aut (K ) be a continuous homomorphism. Every f, g ∈ L2(Gτ ) with
̂fh, ĝh ∈ L1(̂K ) for a.e. h, t ∈ H, satisfy the following reconstruction formula;

f (t, k)=〈gh, gh〉−1
L2(K )

δ(h)−1/2δ(t)−1/2
∫

K×̂K
G†

g f (h, s, t, ω)[	(kh, ωt )gh](k)dsdω,

(4.10)
for a.e. h, t ∈ H and k ∈ K . In particular for a.e. h ∈ H we have

f (h, k) = 〈gh, gh〉−1
L2(K )

δ(h)−1
∫

K×̂K
G†

g f (h, s, h, ω)[	(sh, ωh)gh](k)dsdω.

(4.11)
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Proof Using (2.11) for a.e. h, t ∈ H we have

ft (k) = 〈gh, gh〉−1
L2(K )

∫

K×̂K
Vgh ft (s, ω)[	(s, ω)gh](k)dsdω

= 〈gh, gh〉−1
L2(K )

∫

K

∫

̂K
Vgh ft (s, ω)[	(s, ω)gh](k)dωds

= 〈gh, gh〉−1
L2(K )

∫

K

(∫

̂K
Vgh ft (s, ωt )[	(s, ωt )gh](k)dωt

)

ds

= 〈gh, gh〉−1
L2(K )

δ(t)
∫

̂K

(∫

K
Vgh ft (s

h, ωt )[	(sh, ωt )gh](k)dsh
)

dω

= 〈gh, gh〉−1
L2(K )

δ(h)−1δ(t)
∫

̂K

(∫

K
Vgh ft (s

h, ωt )[	(sh, ωt )gh](k)ds

)

dω

= 〈gh, gh〉−1
L2(K )

δ(h)−1/2δ(t)−1/2
∫

K×̂K
Gg f (h, s, t, ω)[	(sh, ωt )gh](k)dsdω.

��

5 Examples and Applications

5.1 The Affine Group ax + b

Let H = R
∗+ = (0,+∞) and K = R. The affine group ax + b is the semi-direct

product H �τ K with respect to the homomorphism τ : H → Aut (K ) given by
a �→ τa , where τa(x) = ax for all x ∈ R. Hence, the underlying manifold of the
affine group is (0,∞) × R and also the group law is

(a, x) �τ (a′, x ′) = (aa′, x + ax ′). (5.1)

The continuous homomorphism δ : H → (0,∞) is given by δ(a) = a−1 and so that
the left Haar measure is in fact dμGτ (a, x) = a−2dadx . Due to Theorem 4.5 of [10]
we can identify ̂R with R via ω(x) = 〈x, ω〉 = e2π iωx for each ω ∈ ̂R and so we can
consider the continuous homomorphism τ̂ : H → Aut (̂K ) given by a �→ τ̂a via

〈x, ωa〉 = 〈x, τ̂a(ω)〉
= 〈τa−1(x), ω〉 = 〈a−1x, ω〉 = e2π iωa−1x .

Thus, G τ̂ has the underlying manifold (0,∞) × R, with the group law given by

(a, ω) �τ̂ (a′, ω′) = (aa′, ωω′
a), (5.2)

Due to Theorem 3.1 the left Haar measure dμG τ̂ (a, ω) is precisely dadω. The τ × τ̂ -
time frequency group Gτ×τ̂ has the underlying manifold (0,∞) × R × ̂R and the
group law is

(a, x, ω) �τ×τ̂ (a′, x ′, ω′) = (aa′, x + ax ′, ωω′
a), (5.3)
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with the left Haar measure dμGτ×τ̂ (a, x, ω) = a−1dadxdω. The geometry of this
locally compact group and also the wave packet approaches of this locally compact
group was studied in [2,20]. If u ∈ L2(R) is a window function and also f ∈ L2(Gτ ).
According to (3.6) we have

Vu f (a, x, ω) = δ(a)1/2Vu fa(x, ω)

= a−1/2〈 fa, 	(x, ω)u〉L2(R)

= a−1/2
∫ ∞

−∞
f (a, y)[	(x, ω)u](y)dy

= a−1/2
∫ ∞

−∞
f (a, y)u(y − x)ω(y)dy

= a−1/2
∫ ∞

−∞
f (a, y)u(y − x)e−2π iωydy.

Using Theorem 3.4, if ‖u‖L2(R) = 1 we get

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Vu f (a, x, ω)|2

a
dadxdω =

∫ ∞

0

∫ ∞

−∞
| f (a, x)|2

a2 dadx . (5.4)

Due to the reconstruction formula (3.8) if for a.e. a ∈ (0,∞) we have ̂fa ∈ L1(R),
then for a.e. x ∈ R we get

f (a, x) = δ(a)−1/2‖u‖−2
L2(K )

∫ ∞

−∞

∫ ∞

−∞
Vu f (a, y, ω)[	(y, ω)u](x)dydω

= a1/2‖u‖−2
L2(K )

∫ ∞

−∞

∫ ∞

−∞
Vu f (a, y, ω)u(x − y)e2π iωx dydω.

As well as according to (3.9) we have

V†
u f (a, x, ω) = δ(a)1/2Vu fa(xa, ωa)

= a−1/2〈 fa, 	(xa, ωa)u〉L2(R)

= a−1/2
∫ ∞

−∞
f (a, y)[	(xa, ωa)u](y)dy

= a−1/2
∫ ∞

−∞
f (a, y)u(y − ax)ωa(y)dy

= a−1/2
∫ ∞

−∞
f (a, y)u(y − ax)e−2π iωa−1 ydy.

Using Theorem 3.7, if ‖u‖L2(R) = 1 we get

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|V†

u f (a, x, ω)|2
a

dadxdω =
∫ ∞

0

∫ ∞

−∞
| f (a, x)|2

a2 dadx . (5.5)
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Due to the reconstruction formula (3.11) if for a.e. a ∈ (0,∞) we have ̂fa ∈ L1(R),
then for x ∈ R we achieve

f (a, x) =
∫ ∞

−∞

∫ ∞

−∞
V†

u f (a, y, ω)[	(ya, ωa)u](x)dydω

=
∫ ∞

−∞

∫ ∞

−∞
V†

u f (a, y, ω)u(x − ay)e2π iωa−1x dydω.

Example 5.1 Let N > 0 and also uN = χ[−N ,N ] be a window function with compact
support and ‖uN ‖L2(R) = 2N . Then, for all f ∈ L2(Gτ ) and (a, x, ω) ∈ Gτ×τ̂ we
have

VuN f (a, x, ω) = a−1/2
∫ ∞

−∞
f (a, y)uN (y − x)ω(y)dy

= a−1/2ω(x)

∫ ∞

−∞
f (a, y + x)uN (y)ω(y)dy

= a−1/2ω(x)

∫ N

−N
f (a, y + x)ω(y)dy

= a−1/2e−2π iωx
∫ N

−N
f (a, y + x)e−2π iωydy.

If we set x = 0, then we get

VuN f (a, 0, ω) = a−1/2
∫ N

−N
f (a, y)e−2π iωydy.

Similarly, for the generalized τ × τ̂ -continuous Gabor transform we have

V†
uN

f (a, x, ω) = a−1/2
∫ ∞

−∞
f (a, y)uN (y − ax)e−2π iωa−1 ydy

= a−1/2e−2π iωx
∫ ∞

−∞
f (a, y + ax)uN (y)e−2π iωa−1 ydy

= a−1/2e−2π iωx
∫ N

−N
f (a, y + ax)e−2π iωa−1 ydy.

and also if we set x = 0, then we get

V†
uN

f (a, 0, ω) = a−1/2
∫ N

−N
f (a, y)e−2π iωa−1 ydy.

Example 5.2 Let u(x) = e−πx2
be the one-dimensional Gaussian window function

with û = u and ‖u‖L2(R) = 2−1/4. Then, for all f ∈ L2(Gτ ) and (a, x, ω) ∈ Gτ×τ̂

we have
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Vu f (x, a, ω) = a−1/2
∫ ∞

−∞
f (a, y)u(y − x)e−2π iωydy

= a−1/2
∫ ∞

−∞
f (a, y)e−π(y−x)2

e−2π iωydy.

If f for a.e. a ∈ (0,∞) satisfies ̂fa ∈ L1(R), then we can reconstruct f via

f (a, x) =
∫ ∞

−∞

∫ ∞

−∞
Vu f (a, y, ω)u(x − y)e2π iωydydω

=
∫ ∞

−∞

∫ ∞

−∞
Vu f (a, y, ω)e−π(x−y)2

e2π iωx dydω.

As well as, we can compute the generalized τ × τ̂ -continuous Gabor transform by

V†
u f (x, a, ω) = a−1/2

∫ ∞

−∞
f (a, y)u(y − ax)e−2π iωa−1 ydy

= a−1/2
∫ ∞

−∞
f (a, y)e−π(y−ax)2

e−2π iωa−1 ydy.

If f for a.e. a ∈ (0,∞) satisfies ̂fa ∈ L1(R), then we can reconstruct f via

f (a, x) =
∫ ∞

−∞

∫ ∞

−∞
V†

u f (a, y, ω)u(x − ay)e2π iωa−1x dydω

=
∫ ∞

−∞

∫ ∞

−∞
V†

u f (a, y, ω)e−π(x−ay)2
e2π iωa−1x dydω.

The τ ⊗ τ̂ -time frequency group Gτ⊗τ̂ has the underlying manifold (0,∞) ×
(0,∞) × R × ̂R and the group law is

(a, b, x, ω) �τ⊗τ̂ (a′, b′, x ′, ω′) = (aa′, bb′, x + ax ′, ωω′
b), (5.6)

with the left Haar measure dμGτ⊗τ̂ (a, b, x, ω) = a−2dadbdxdω. If g ∈ L2(Gτ ) is a
window function and also f ∈ L2(Gτ ). According to (4.4) we have

Gg f (a, x, b, ω) = δ(b)Vga fb(x, ω)

= b−1〈 fb, 	(x, ω)ga〉L2(R)

= b−1
∫ ∞

−∞
f (b, y)[	(x, ω)ga](y)dy

= b−1
∫ ∞

−∞
f (b, y)g(a, y − x)e−2π iωydy.
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Using Theorem 4.2, if ‖g‖L2(Gτ ) = 1 we get

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Gg f (a, x, b, ω)|2

a2 dadbdxdω =
∫ ∞

0

∫ ∞

−∞
| f (a, x)|2

a2 dadx .

(5.7)

Using the reconstruction formula (4.7), if for a.e. a ∈ (0,∞) we have ̂fa, ĝa ∈
L1(R), then for x ∈ R we can write

f (b, x) = b‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
Gg f (a, y, b, ω)[	(y, ω)ga](x)dydω

= b‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
Gg f (a, y, b, ω)g(a, x − y)e−2π iωx dydω,

and also in particular we get

f (a, x) = a‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
Gg f (a, y, a, ω)g(a, x − y)e−2π iωx dydω.

As well as according to (4.8) we have

G†
g f (a, x, b, ω) = δ(a)−1/2δ(b)3/2Vga fb(xa, ωb)

= a1/2b−3/2〈 fb, 	(xa, ωb)ga〉L2(R)

= a1/2b−3/2
∫ ∞

−∞
f (b, y)[	(xa, ωb)ga](y)dy

= a1/2b−3/2
∫ ∞

−∞
f (b, y)g(a, y − ax)ωb(y)dy

= a1/2b−3/2
∫ ∞

−∞
f (b, y)g(a, y − ax)e−2π iωb−1 ydy.

Using Theorem 4.5, if ‖g‖L2(Gτ ) = 1 we get

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|G†

g f (a, x, b, ω)|2
a2 dadbdxdω =

∫ ∞

0

∫ ∞

−∞
| f (a, x)|2

a2 dadx .

(5.8)
Due to the reconstruction formula (4.7) if for a.e. a ∈ (0,∞) we have ̂fa ∈ L1(R),

then for all x ∈ R and a.e. a, b ∈ (0,∞) we get

f (b, x) = δ(a)−1/2δ(b)−1/2‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, g, b, ω)[	(ga, ωb)ga](x)dgdω

= a1/2b1/2‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, g, b, ω)g(a, x − ag)e2π ib−1ωdgdω,
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and also in particular we have

f (a, x) = a‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, g, a, ω)[	(ga, ωa)ga](x)dgdω

= a‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, g, a, ω)g(a, x − ag)e2π ia−1ωdgdω.

Example 5.3 Let N > 0 and also gN (a, x) = χ[1/N ,N ]×[−N ,N ](a, x) be a window
function which has a compact support. Then, for all f ∈ L2(Gτ ) and (a, x, b, ω) ∈
Gτ⊗τ̂ we have

GgN f (a, x, b, ω) = b−1
∫ ∞

−∞
f (b, y)gN (a, y − x)e−2π iωydy

= b−1χ[1/N ,N ](a)e−2π iωx
∫ N

−N
f (b, y + x)e−2π iωydy.

If we set x = 0 and a = 1 we achieve

GgN f (1, 0, b, ω) = b−1
∫ N

−N
f (b, y)e−2π iωydy. (5.9)

Also, for (a, x, b, ω) we have

G†
gN

f (a, x, b, ω) = a1/2b−3/2
∫ ∞

−∞
f (b, y)gN (a, y − ax)e−2π iωb−1 ydy

= a1/2b−3/2χ[1/N ,N ](a)e−2π iωb−1ax
∫ N

−N
f (b, y+ax)e−2π iωb−1 ydy.

If we set x = 0 and a = 1 then

G†
gN

f (1, 0, b, ω) = b−3/2
∫ N

−N
f (b, y)e−2π iωb−1 ydy. (5.10)

Example 5.4 Let g(a, x) = ae−π(a2+x2) be the Gaussian type window function in
L2(Gτ ) with ‖g‖L2(Gτ ) = 2−1. For a.e. a ∈ (0,∞) we have ĝa = ga and ‖ga‖L1(R) =
ae−πa2

also ‖ga‖L2(R) = 2−1/4ae−πa2
. It is also separable i.e. g(a, x) = au(a)u(x).

Then, for all f ∈ L2(Gτ ) and also (a, x, b, ω) ∈ Gτ⊗τ̂ we have

Gg f (a, x, b, ω) = b−1
∫ ∞

−∞
f (b, y)g(a, y − x)e−2π iωydy

= b−1ae−πa2
∫ ∞

−∞
f (b, y)e−π(y−x)2

e−2π iωydy.
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Using the reconstruction formula if ̂fa ∈ L1(R) for a.e. a ∈ (0,∞) we have

f (a, x) = a‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
Gg f (a, y, a, ω)g(a, x − y)e2π iωx dydω

= 21/2a−1eπa2
∫ ∞

−∞

∫ ∞

−∞
Gg f (a, y, a, ω)u(x − y)e2π iωx dydω

= 21/2a−1eπa2
∫ ∞

−∞

∫ ∞

−∞
Gg f (a, y, a, ω)e−π(x−y)2

e2π iωx dydω.

As well as, for all (a, x, b, ω) ∈ Gτ⊗τ̂ we have

G†
g f (a, x, b, ω) = a1/2b−3/2

∫ ∞

−∞
f (b, y)g(a, y − ax)e−2π iωb−1 ydy

= e−πa2
a3/2b−3/2

∫ ∞

−∞
f (b, y)e−π(y−ax)2

e−2π iωb−1 ydy.

Due to the reconstruction formula if ̂fa ∈ L1(R) for a.e. a ∈ (0,∞) we have

f (a, x) = a‖ga‖−2
L2(R)

∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, y, a, ω)g(a, x − ay)e−2π ia−1ωdydω

= 21/2a−1eπa2
∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, y, a, ω)u(x − ay)e−2π ia−1ωdydω

= 21/2a−1eπa2
∫ ∞

−∞

∫ ∞

−∞
G†

g f (a, y, a, ω)e−π(x−ay)2
e−2π ia−1ωdydω.

In the sequel we compute τ × τ̂ -time frequency group Gτ×τ̂ and τ ⊗ τ̂ -time
frequency group Gτ⊗τ̂ associate to other semi-direct products.

5.2 The Weyl–Heisenberg Group

Let K be an LCA group with the Haar measure dk and ̂K be the dual group of K with
the Haar measure dω also T be the circle group and let the continuous homomorphism
τ : K → Aut (̂K × T) via s �→ τs be given by τs(ω, z) = (ω, z · ω(s)). The semi-
direct product Gτ = K �τ (̂K × T) is called the Weyl–Heisenberg group associated
with K . The group operation for all (k, ω, z), (k′, ω′, z′) ∈ K �τ (̂K × T) is

(k, ω, z) �τ (k′, ω′, z′) = (k + k′, ωω′, zz′ω′(k)). (5.11)

If dz is the Haar measure of the circle group, then dkdωdz is a Haar measure for the
Weyl–Heisenberg group and also the continuous homomorphism δ : K → (0,∞)

given in (2.3) is the constant function 1. Thus, using Theorem 4.5, Proposition 4.6
of [10] and also Proposition 3.1 we can obtain the continuous homomorphism τ̂ :
K → Aut (K × Z) via s �→ τ̂s , where τ̂s is given by τ̂s(k, n) = (k, n) ◦ τs−1 for all
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(k, n) ∈ K × Z and s ∈ K . Due to Theorem 4.5 of [10], for each (k, n) ∈ K × Z and
also for all (ω, z) ∈ ̂K × T we have

〈(ω, z), (k, n)s〉 = 〈(ω, z), τ̂s(k, n)〉
= 〈τs−1(ω, z), (k, n)〉
= 〈(ω, zω(s)), (k, n)〉
= 〈ω, k〉〈zω(s), n〉
= ω(k)znω(s)

n

= ω(k − ns)zn

= 〈ω, k − ns〉〈z, n〉 = 〈(ω, z), (k − ns, n)〉.

Thus, (k, n)s = (k − ns, n) for all k, s ∈ K and n ∈ Z. Therefore, G τ̂ has the
underlying set K × K × Z with the following group operation;

(s, k, n) �τ̂ (s′, k′, n′) = (

s + s′, (k, n)̂τs(k
′, n′)

)

= (

s + s′, (k, n)(k′ − n′s, n′)
)

= (s + s′, k + k′ − n′s, n + n′).

The Gτ×τ̂ -time frequency group has the underlying set K × ̂K × T × K × Z with the
group law

(k, ω, z, s, n) �τ×τ̂ (k′, ω′, z′, s′, n′) = (

k + k′, ωω′, zz′ω′(k), (5.12)

s + s′ − n′k, n + n′).

and the left Haar measure is dμGτ×τ̂ (k, ω, z, s, n) = dkdωdzdsdn.
The Gτ⊗τ̂ -time frequency group has the underlying set K × K × ̂K × T × K × Z

with group operation

(r, k, ω, z, s, n) �τ⊗τ̂ (r ′, k′, ω′, z′, s′, n′) = (

r + r ′, k + k′, ωω′, zz′ω′(r),

s + s′ − n′k, n + n′), (5.13)

and also the left Haar measure is dμGτ⊗τ̂ (r, k, ω, z, s, n) = drdkdωdzdsdn.

5.3 Euclidean Groups

Let E(n) be the group of rigid motions of R
n , the group generated by rotations and

translations. If we put H = SO(n) and also K = R
n , then E(n) is the semi-direct

product of H and K with respect to the continuous homomorphism τ : SO(n) →
Aut (Rn) given by σ �→ τσ via τσ (x) = σx for all x ∈ R

n . The group operation for
E(n) is

(σ, x) �τ (σ ′, x′) = (σσ ′, x + τσ (x′)) = (σσ ′, x + σx′). (5.14)
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Identifying ̂K with R
n , the continuous homomorphism τ̂ : SO(n) → Aut (Rn) is

given by σ �→ τ̂σ via

〈x, τ̂σ (w)〉 = 〈x, wσ 〉
= 〈τσ−1(x), w〉
= 〈σ−1x, w〉 = e−2π i(σ−1x,w),

where (., .) stands for the standard inner product of R
n . Since H is compact we have

δ ≡ 1 and therefore dσdx is a left Haar measure for E(n). Thus, G τ̂ has the underlying
manifold SO(n) × R

n with the group operation

(σ, w) �τ̂ (σ ′, w′) = (σσ ′, w + w′
σ ). (5.15)

According to Theorem 3.1 the left Haar measure dμG τ̂ (σ, w) is precisely dσdw. The
τ × τ̂ -time frequency group Gτ×τ̂ has the underlying manifold SO(n) × R

n × R
n

with the group law

(σ, x, w) �τ×τ̂ (σ ′, x′, w′) = (σσ ′, x + σx′, w + w′
σ ). (5.16)

Due to Proposition 3.3 and also compactness of H , dμGτ×τ̂ (σ, x, w) = dσdxdw is a
Haar measure for Gτ×τ̂ . The τ ⊗ τ̂ -time frequency group Gτ⊗τ̂ has the underlying
manifold SO(n) × SO(n) × R

n × R
n equipped with the group law

(σ, 	, x, w) �τ⊗τ̂ (σ ′, 	′, x′, w′) = (σσ ′, 		′, x + σx′, w + w′
	),

and also the Haar measure is dμGτ⊗τ̂ (σ, 	, x, w) = dσd	dxdw.
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