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Abstract In this paper, we study the existence of analytic solutions of a second-order
differential equation

αz + βx ′(z)+ γ x ′′(z) = x(az + bx ′′(z)),

in the complex field C,where α, β, γ, a, b are complex numbers. We discuss not only
the constant λ at resonance, i.e. at a root of the unity, but also those λ near resonance
(near a root of the unity) under the Brjuno condition.

Keywords Iterative differential equation · Analytic solution · Resonance · Brjuno
condition

Mathematics Subject Classifications 34K05 · 39B22 · 34A25

1 Introduction

Functional differential equation of the form

x ′(z) = f (z, x(z − τ(z)))

has been studied in [1] and [6]. However, such equations, when the delay function
τ(z) depends not only on the argument of the unknown function, but also state or
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720 H. Zhao

state derivative, τ(z) = τ(z, x(z), x ′(z)), have been relatively little researched. In
[5,8,13–15] and [10,18–23], analytic solutions of the state- dependent functional
differential equations are found. In particular, under the Bruno condition, the quasi-
periodic solutions and stability of a reversible and Hamiltonian systems have been
discussed by Hanssmann and Si in [7]. In [11,16,17], the authors studied the existence
of analytic solutions of the equations with state derivative dependent delay

αz + βx ′(z) = x(az + bx ′(z)),
x ′′(z) = x(az + bx ′(z)),

and

αz + βx ′(z) = x(az + bx ′′(z)),

respectively.
For the inner function with second-order derivative ([11]), to the best of our knowl-

edge, there are little results about it. If there is no derivative for the inner function, we
can transform the original equation into an iterative equation, which can be solved. If
it is the inner function with first derivative, we can transform it into a new iterative
equation with an integral. However, when it comes to the inner function with second
derivative, there will be a double integral after transformation, which is complicated
and worth our effort to deal with.

In this paper, we will deal with a more general functional differential equation of
the form

αz + βx ′(z)+ γ x ′′(z) = x(az + bx ′′(z)), z ∈ C, (1.1)

where we assume that α, β, γ, a, b are complex numbers and γ �= 0 . We will establish
existence theorem of analytic solutions of Eq. (1.1) in the complex field.

2 Auxiliary Solutions of the Auxiliary Equation

In this section, we discuss local invertible analytic solutions of Eq. (1.1) with b �= 0.
In order to construct analytic solutions of Eq. (1.1), we first let

y(z) = az + bx ′′(z). (2.1)

Then for any numbers z0, we have

x ′(z) = x ′(z0)+ 1

b

∫ z

z0

(y(s)− as)ds, (2.2)

and

x(z) = x(z0)+ x ′(z0)(z − z0)+ 1

b

∫ z

z0

∫ s

z0

(y(t)− at)dtds, (2.3)
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Analytic Solutions of a Second-Order Functional Differential Equation 721

so x(y(z)) = x(z0)+ x ′(z0)(y(z)− z0)+ 1
b

∫ y(z)
z0

∫ s
z0
(y(t)− at)dtds. Therefore, in

view of Eq. (1.1), we have

bαz + bβx ′(z0)+ β

∫ z

z0

(y(s)− as)ds + γ (y(z)− az)

= bx(z0)+ bx ′(z0)(y(z)− z0)+
∫ y(z)

z0

∫ s

z0

(y(t)− at)dtds. (2.4)

If z0 is a fixed point of y(z), we see that

x(z0) = βγ

b
+ (γ + bα − aγ )

z0

b
+ (bα − aγ )β + (1 − a)β2z0

by′(z0)
,

x ′(z0) = γ

b
+ (bα − aγ )+ (1 − a)βz0

by′(z0)
.

(2.5)

Furthermore, differentiating both sides of (2.4) with respect to z, we obtain

β(y′(z)− a)y′(z)− (βy(z)− aβz + bα − aγ )y′′(z)
= (y(y(z))− ay(z))(y′(z))3. (2.6)

To find analytic solution of (2.6), as in [16,17], we reduce Eq. (2.6) with y(z) =
g(λg−1(z)), called the Schröder transformation sometimes (see [9]), to the auxiliary
equation

βλ
(g′(λz))2

(g′(z))2
− aβ

g′(λz)

g′(z)
−

(
βg(λz)− aβg(z)+ bα − aγ

)

×λg′′(λz)g′(z)− g′(λz)g′′(z)
(g′(z))3

= λ2(g(λ2z)− ag(λz))
(g′(λz))3

(g′(z))3
, (2.7)

with the initial value conditions

g(0) = 0, g′(0) = η �= 0. (2.8)

We will assume that λ in (2.7) satisfies one of the following conditions:

(C1) 0 < |λ| < 1;
(C2) λ = e2π iθ , θ ∈ R\Q and θ is a Brjuno number ([2,12]): B(θ) =∑∞

n=0
log qn+1

qn
< ∞, where {pn/qn} denotes the sequence of partial fraction

of the continued fraction expansion of θ;
(C3) λ = e2π iq/p for some integer p ∈ N with p ≥ 2 and q ∈ Z\{0}, andλ �= e2π iξ/v

for all 1 ≤ v ≤ p − 1 and ξ ∈ Z\{0}.
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We observe that λ is inside the unit circle S1 in case (C1) but on S1 in the rest cases.
More difficulties are encountered for λ on S1 since the small divisor λn −1 is involved
in the latter (2.13). Under Diophantine condition: “λ = e2π iθ , where θ ∈ R\Q and
there exist constants ζ > 0 and δ > 0 such that |λn − 1| ≥ ζ−1n−δ for all n ≥ 1,”
the number λ ∈ S1 is “far” from all roots of the unity. Since then, we have been
striving to give a result of analytic solutions for those λ “near” a root of the unity,
i.e., neither being roots of the unity nor satisfying the Diophantine condition. The
Brjuno condition in (C2) provides such a chance for us. Moreover, we also discuss
the so-called resonance case, i.e., the case of (C3).

Theorem 2.1 Suppose (C1) holds and μ = aγ − bα �= 0, then for any η ∈ C\{0},
Eq. (2.7) in a neighborhood of the origin has an analytic solution of the form

g(z) = ηz +
∞∑

n=2

gnzn . (2.9)

Proof As in [11], we rewrite (2.7) in the form

(
(βg(λz)− aβg(z)+ bα − aγ )g′(z)

g′(λz)

)′
= λ2

(
g(λ2z)− ag(λz)

)
g′(λz). (2.10)

When g′(0) = η �= 0, Eq. (2.10) is reduced equivalent to the integro-differential
equation

μ
(

g′(λz)− g′(z)
)

= λ2g′(λz)
∫ z

0

(
g(λ2s)− ag(λs)

)
g′(λs)ds − β

(
g(λz)− ag(z)

)
g′(z). (2.11)

We now seek a solution of (2.7) in the form of a power series (2.9). Substituting (2.9)
into (2.11), since μ �= 0 after comparing coefficients, we obtain

μ(λ0 − 1)g1 = 0, (2.12)

μ(n + 1)(λn − 1)gn+1

=
n−2∑
j=0

n− j−2∑
k=0

( j + 1)(k + 1)

n − j
λ j+k+2

(
λ2(n− j−k−1) − aλn− j−k−1

)

× g j+1gk+1gn− j−k−1

−
n−1∑
k=0

(k + 1)β(λn−k − a)gk+1gn−k, n ≥ 1. (2.13)

Then for arbitrarily chosen g1 = η �= 0, the sequence {gn}∞n=2 is successively deter-
mined by (2.13) in a unique manner. Now, we show that the power series (2.9) con-
verges in a neighborhood of the origin. Since 0 < |λ| < 1, we have
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Analytic Solutions of a Second-Order Functional Differential Equation 723

lim
n→∞

1

|λn − 1| = 1,

there exists L > 0 such that 1
|λn−1| ≤ L , ∀n ≥ 1. It follows from (2.13) that

|gn+1| ≤ L(1 + |a|)
|μ|

( n−2∑
j=0

n− j−2∑
k=0

|g j+1||gk+1||gn− j−k−1| + |β|
n−1∑
k=0

|gk+1||gn−k |
)

(2.14)

for n ≥ 1.
We consider the implicit function equation

G(z) = |η|z + L(1 + |a|)
|μ| [|β|G2(z)+ G3(z)].

Define the function


(z, ω; L , a, μ, η, β) = |η|z − ω + L(1 + |a|)
|μ| (|β|ω2 + ω3) (2.15)

for (z, ω) from a neighborhood of (0, 0), then the function G(z) satisfies


(z,G(z); L , a, μ, η, β) = 0. (2.16)

In view of 
(0, 0; L , a, μ, η, β) = 0,


′
ω(0, 0; L , a, μ, η, β) = −1 �= 0,

and the implicit function theorem, there exists a unique function �(z), analytic in a
neighborhood of zero, such that

�(0) = 0, �′(0) = −
′
z(0, 0; L , a, μ, η, β)


′
ω(0, 0; L , a, μ, η, β)

= |η|,

and 
(z,�(z); L , a, μ, η, β) = 0. According to (2.16), we have G(z) = �(z).
If we assume that the power series expansion of G(z) is

G(z) =
∞∑

n=1

Gnzn, G1 = |η|, (2.17)
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then substituting the series in (2.16), we have

∞∑
n=0

Gn+1zn+1 = |η|z + L

|μ| (1 + |a|)
⎡
⎣ ∞∑

n=0

⎛
⎝ n∑

j=0

n− j∑
k=0

G j+1Gk+1Gn− j−k+1

⎞
⎠ zn+3

+ |β|
∞∑

n=0

(
n∑

k=0

Gk+1Gn−k+1

)
zn+2

⎤
⎦ .

Comparing coefficients , we obtain G1 = |η| and

Gn+1 = L

|μ| (1 + |a|)
⎛
⎝n−2∑

j=0

n− j−2∑
k=0

G j+1Gk+1Gn− j−k−1

+ |β|
n−1∑
k=0

Gk+1Gn−k

⎞
⎠ , n ≥ 1, (2.18)

from (2.14) we obtainimmediately that |gn+1| ≤ Gn+1 for all n by induction. This
implies that (2.9) converges in a neighborhood of the origin. This completes the
proof. 
�

Next, we devote to the existence of analytic solutions of Eq. (2.7) under the Brjuno
condition. First, we recall briefly the definition of Brjuno numbers and some basic facts.
As stated in [3], for a real number θ,we let [θ ] denote its integer part and {θ} = θ−[θ ]
its fractional part. Then, every irrational number θ has a unique expression of the
Gauss’s continued fraction

θ = d0 + θ0 = d0 + 1

d1 + θ1
= · · · ,

denoted simply by θ = [d0, d1, . . . , dn, . . .], where d j ’s and θ j ’s are calculated by the

algorithm: (a) d0 = [θ ], θ0 = {θ} and (b) dn =
[

1
θn−1

]
, θn =

{
1

θn−1

}
for all n ≥ 1.

Define the sequences (pn)n∈N and (qn)n∈N as follows:

q−2 = 1, q−1 = 0, qn = dnqn−1 + qn−2

p−2 = 0, p−1 = 1, pn = dn pn−1 + pn−2.

It is easy to show that pn/qn = [d0, d1, . . . , dn]. Thus, for every θ ∈ R\Q, we
associate, using its convergence, an arithmetical function B(θ) = ∑

n≥0
log qn+1

qn
. We

say that θ is a Brjuno number or that it satisfies Brjuno condition if B(θ) < +∞. The
Brjuno condition is weaker than the Diophantine condition. For example, if dn+1 ≤
cedn for all n ≥ 0, where c > 0 is a constant, then θ = [d0, d1, . . . , dn, . . .] is a Brjuno
number but is not a Diophantine number. So, the case (C2) contains both Diophantine
condition and a part of α “near” resonance. Let θ ∈ R\Q and (qn)n∈N be the sequence
of partial denominators of the Gauss’s continued fraction for θ. As in [3], let
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Analytic Solutions of a Second-Order Functional Differential Equation 725

Ak =
{

n ≥ 0|‖nθ‖ ≤ 1

8qk

}
, Ek = max

(
qk,

qk+1

4

)
, ηk = qk

Ek
.

Let A∗
k be the set of integers j ≥ 0 such that either j ∈ Ak or for some j1 and j2 in

Ak, with j2 − j1 < Ek, one has j1 < j < j2 and qk divides j − j1. For any integer
n ≥ 0, define

lk(n) = max

(
(1 + ηk)

n

qk
− 2, (mnηk + n)

1

qk
− 1

)
,

where mn = max{ j |0 ≤ j ≤ n, j ∈ A∗
k}. We then define function hk : N → R+ as

follows:

hk(n) =
{ mn+ηk n

qk
− 1, if mn + qk ∈ A∗

k ,

lk(n), if mn + qk /∈ A∗
k .

Let gk(n) := max
(

hk(n),
[

n
qk

])
, and define k(n) by the condition qk(n) ≤ n ≤

qk(n)+1.Clearly, k(n) is non-decreasing. Then we are able to state the following result:

Lemma 2.1 ( Davie’s lemma [4]) Let K (n) = n log 2+∑k(n)
k=0 gk(n) log(2qk+1).Then

(a) there is a universal constant � > 0(independent of n and θ ) such that

K (n) ≤ n

⎛
⎝k(n)∑

k=0

log qk+1

qk
+ �

⎞
⎠ ,

(b) K (n1)+ K (n2) ≤ K (n1 + n2) for all n1 and n2, and
(c) − log |λn − 1| ≤ K (n)− K (n − 1).

Theorem 2.2 Suppose (C2) holds and μ �= 0, then for any η ∈ C\{0}, Eq. (2.7) has
an analytic solution of the form (2.9) in a neighborhood of the origin.

Proof As in the Theorem 2.1, we seek a power series solution of the form (2.9). Then
(2.13) again holds. From (2.13), we have

|gn+1|

≤ (1 + |a|)
|λn − 1||μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

|g j+1||gk+1||gn− j−k−1|+|β|
n−1∑
k=0

|gk+1||gn−k |
⎞
⎠ , n ≥1.

(2.19)

To construct a majorant series of (2.9), we consider the implicit functional equation


(z, ψ; L , a, μ, η, β) = 0, (2.20)
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where 
 is defined in (2.15) and L = 1. Similar to the proof of Theorem 2.1, using
the implicit function theorem, we can prove that (2.20) has a unique analytic solution
ψ(z) in a neighborhood of the origin such thatψ(0) = 0 andψ ′(0) = |η|. Thus, ψ(z)
in (2.20) can be expanded into a convergent series

ψ(z) =
∞∑

n=1

Bnzn, (2.21)

in a neighborhood of the origin. Replacing (2.21) into (2.20) and comparing coeffi-
cients, we obtain that B1 = |η| and

Bn+1 = 1

|μ| (1+|a|)
⎛
⎝n−2∑

j=0

n− j−2∑
k=0

B j+1 Bk+1 Bn− j−k−1+|β|
n−1∑
k=0

Bk+1 Bn−k

⎞
⎠, n ≥1.

(2.22)

Note that the series (2.21) converges in a neighborhood of the origin. Now, we can
deduce, by induction, that |gn| ≤ BneK (n−1) for n ≥ 1, where K : N → R is defined
in Lemma 2.1.

In fact, |g1| = |η| = B1. For inductive proof, we assume that |g j | ≤ B j eK ( j−1),

for j = 1, 2, . . . , n. From (2.19), we know

|gn+1| ≤ (1 + |a|)
|1 − λn||μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

|g j+1||gk+1||gn− j−k−1| + |β|
n−1∑
k=0

|gk+1||gn−k |
⎞
⎠

≤ (1 + |a|)
|1 − λn||μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

B j+1 Bk+1 Bn− j−k−1eK ( j)eK (k)eK (n− j−k−2)

+|β|
n−1∑
k=0

Bk+1 Bn−keK (k)eK (n−k−1)

⎞
⎠ , n ≥ 1.

Note that

K ( j)+ K (k)+ K (n − j − k − 2) ≤ K (n − 1),

K (k)+ K (n − k − 1) ≤ K (n − 1).

Then, from Lemma 2.1, we have

|gn+1| ≤ (1 + |a|)eK (n−1)

|1 − λn||μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

B j+1 Bk+1 Bn− j−k−1 + |β|
n−1∑
k=0

Bk+1 Bn−k

⎞
⎠

≤ Bn+1eK (n), n ≥ 1.
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Since
∑∞

n=1 Bnzn is convergent in a neighborhood of the origin, there exists a constant
� > 0 such that

Bn < �n, n ≥ 1.

Moreover, from Lemma 2.1, we know that K (n) ≤ n(B(θ) + �) for some universal
constant � > 0. Then

|gn| ≤ BneK (n−1) ≤ �ne(n−1)(B(θ)+�),

that is,

lim
n→∞ sup(|gn|) 1

n ≤ lim
n→∞ sup

(
�ne(n−1)(B(θ)+�)) 1

n = �eB(θ)+�.

This implies that the convergence radius of (2.9) is at least (�eB(θ)+�)−1. This com-
pletes the proof. 
�

In the case (C3), both the Diophantine condition and Brjuno condition are not
satisfied. We need to define a sequence {Cn}∞n=1 by C1 = |η| and

Cn+1 = (1 + |a|)�
|μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

C j+1Ck+1Cn− j−k−1 + |β|
n−1∑
k=0

Ck+1Cn−k

⎞
⎠ , n ≥ 1,

(2.23)

where � := max
{

1, 1
|1−λ| ,

1
|1−λ2| , . . . ,

1
|1−λ(p−1)|

}
, and p is defined in (C3).

Theorem 2.3 Assume that (C3) holds and μ �= 0. Let {gn}∞n=0 be determined by
g1 = η and

μ(n + 1)(λn − 1)gn+1 = �(n, λ), n ≥ 1, (2.24)

where

�(n, λ) =
n−2∑
j=0

n− j−2∑
k=0

( j + 1)(k + 1)

n − j
λ j+k+2

(
λ2(n− j−k−1) − aλn− j−k−1

)

× g j+1gk+1gn− j−k−1

−
n−1∑
k=0

(k + 1)β(λn−k − a)gk+1gn−k .

If �(lp, λ) = 0 for all l = 1, 2, . . . , then Eq. (2.7) has an analytic solution of the
form

g(z) = ηz +
∑

n=lp+1,l∈N

μlp+1zn +
∑

n �=lp+1,l∈N

gnzn, N = {1, 2, 3, . . .}
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in a neighborhood of the origin, where allμlp+1s are arbitrary constants satisfying the
inequality |μlp+1| ≤ Clp+1 and the sequence {Cn}∞n=1 is defined in (2.23). Otherwise,
if�(lp, α) �= 0 for some l = 1, 2, . . . , then Eq. (2.7) has no analytic solutions in any
neighborhood of the origin.

Proof Analogously to the proof of Theorem 2.1, let (2.9) be the expansion of a formal
solution g(z) of Eq. (2.7), we also have (2.13) or (2.24). If �(lp, λ) �= 0 for some
natural number l, then the equality in (2.24) does not hold for n = lp since λlp−1 = 0.
In such a circumstance Eq. (2.7), has no formal solutions.

If �(lp, λ) = 0 for all natural numbers l, then there are infinitely many choices of
corresponding glp+1 in (2.24) and the formal solutions (2.9) form a family of functions
of infinitely many parameters. We can arbitrarily choose glp+1 = μlp+1 such that
|μlp+1| ≤ Clp+1, l = 1, 2, . . . . In what follows, we prove that the formal solution
(2.9) converges in a neighborhood of the origin. First of all, note that |λn − 1|−1 ≤ �.

for n �= lp. It follows from (2.24) that

|gn+1| ≤ (1 + |a|)�
|μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

|g j+1||gk+1||gn− j−k−1| + |β|
n−1∑
k=0

|gk+1||gn−k |
⎞
⎠ ,

(2.25)

for all n �= lp, l = 1, 2, . . . . Further, we can prove that

|gn| ≤ Cn, n = 1, 2, . . . . (2.26)

In fact, for inductive proof, we assume that |gr | ≤ Cr for all 1 ≤ r ≤ n. When n = lp,
we have |gn+1| = |μn+1| ≤ Cn+1. On the other hand, when n �= lp, from (2.26), we
get

|gn+1| ≤ (1 + |a|)�
|μ|

⎛
⎝n−2∑

j=0

n− j−2∑
k=0

C j+1Ck+1Cn− j−k−1 + |β|
n−1∑
k=0

Ck+1Cn−k

⎞
⎠

= Cn+1

as desired. Set

F(z) =
∞∑

n=1

Cnzn, C1 = |η|. (2.27)

It is easy to check that (2.27) satisfies


(z, ω;�, a, μ, η, β) = 0, (2.28)

where the function 
 is defined in (2.15). Moreover, similar to the proof of Theo-
rem 2.1, we can prove that (2.28) has a unique analytic solution F(z) in a neighbor-
hood of the origin such that F(0) = 0 and F ′(0) = |η| �= 0. Thus, (2.27) converges

123



Analytic Solutions of a Second-Order Functional Differential Equation 729

in a neighborhood of the origin. By the convergence of (2.27) and inequality (2.26),
the series (2.9) converges in a neighborhood of the origin. This completes the proof.
�

3 Analytic Solutions of Eq. (1.1)

Theorem 3.1 Suppose that conditions of Theorem 2.1, 2.2, or 2.3 are fulfilled. Then
Eq. (2.6) has an invertible analytic solution of the form

y(z) = g(λg−1(z))

in a neighborhood of the origin, where g(z) is an analytic solution of (2.7) satisfying
the initial conditions (2.8).

Proof In a view of Theorems 2.1–2.3, we may find an analytic solution g(z) of the
auxiliary equation (2.7) in the form of (2.9) such that g(0) = 0 and g′(0) = η �= 0.
Clearly, the inverse g−1(z) exists and is analytic in a neighborhood of the g(0) = 0.
Define

y(z) := g(λg−1(z)). (3.1)

Then y(z) is invertible analytic in a neighborhood of z = 0. From (3.1), it is easy to
see

y(0) = g(λg−1(0)) = g(0) = 0,

y′(0) = λg′(λg−1(0))(g−1)′(0) = λg′(λg−1(0))

g′(g−1(0))
= λg′(0)

g′(0)
= λ �= 0,

and

y′(z) = λg′(λg−1(z))

g′(g−1(z))
, (3.2)

y′′(z) = λ2g′′(λg−1(z))g′(g−1(z))− λg′(λg−1(z))g′′(g−1(z))

(g′(g−1(z))3
, (3.3)

from (3.2), (3.3), and (2.7), we have

β(y′(z)− a)y′(z)− (βy(z)− aβz + bα − aγ )y′′(z)

= λ2β
(g′(λg−1(z)))2

(g′(g−1(z)))2
− aλβ

g′(λg−1(z))

g′(g−1(z))
− λ

(
βg(λg−1(z))− aβz + bα − aγ

)

×λg′′(λg−1(z))g′(g−1(z))− g′(λg−1(z))g′′(g−1(z))

(g′(g−1(z)))3

= λ3
(

g(λ2g−1(z))− ag(λg−1(z))
) (g′(λg−1(z)))3

(g′(g−1(z)))3

= (y(y(z))− ay(z))(y′(z))3

as required. This completes the proof. 
�
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By the Theorem 3.1 , we have shown that under the conditions of Theorems 2.1, 2.2
or 2.3, Eq. (2.6) has an analytic solution y(z) = g(λg−1(z)) in a neighborhood of the
number 0, where g(z) is an analytic solution of (2.7). Since the function g(z) in (2.9)
can be determined by (2.13), it is possible to calculate, at least in theory, the explicit
form of y(z), an analytic solution of (1.1), in a neighborhood of the fixed point 0 of
y(z) by means of (2.2) and (2.5). However, knowing that an analytic solution of (1.1)
exists, we can take an alternative route as follows:

Assume that α, β, γ, a, b are unequal to 0 and x(z) is of the form

x(z) = x(0)+ x ′(0)z + x ′′(0)
2! z2 + · · · , (3.4)

we need to determine the derivatives x (n)(0), n = 0, 1, 2, . . . . First of all, in view of
(2.5), we have

x(0) = β

bη
(ηγ + bα − aγ ) = β

bη
(ηγ − μ)

and

x ′(0) = 1

bη
(ηγ + bα − aγ ) = 1

bη
(ηγ − μ).

Moreover, from (2.1), we have

x ′′(0) = 0.

Next, by calculating the derivatives of both sides of (1.1), respectively, we obtain

α + βx ′′(z)+ γ x ′′′(z) = x ′(az + bx ′′(z))(a + bx ′′′(z)),
βx ′′′(z)+ γ x (4)(z) = x ′′(az + bx ′′(z))(a + bx ′′′(z))2

+ bx ′(az + bx ′′(z))x (4)(z), · · · · · · .

Thus,

x ′′′(0) = ax ′(0)− α

γ − bx ′(0)
= η − a

b
,

x (4)(0) = βx ′′′(0)
bx ′(0)− γ

= (a − η)βη

bμ
,

· · · · · · .

Then, the explicit from of solution x(z) is

x(z) = β

bη
(ηγ − μ)+ 1

bη
(ηγ − μ)z + η − a

6b
z3 + (a − η)βη

24bμ
z4 + · · · .
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