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Abstract In this paper, we use the Linex loss function to derive the Bayesian estimate
of the parameter of the exponential distribution based on ranked set sampling. Under
this setup, we use both conjugate and Jeffreys prior distributions. To assess the effi-
ciency of the obtained estimates, we compute the bias and mean squared error of the
derived estimates and compare them with those based on the corresponding simple
random sample through Monte Carlo simulations.
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1 Introduction

Ranked set sampling enables one to provide more structure to the collected sample
items and use this structure to develop efficient inferential procedures. This approach to
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708 A. Sadek et al.

data collection was first proposed by McIntyre ([11,12]) for situations where taking the
actual measurements for sample observations is difficult (may be costly, destructive,
time-consuming), but mechanisms for either informally or formally ranking a set of
sample units are relatively easy and reliable.

For discussions of some of the settings where ranked set sampling techniques have
found applications, one may refer to Patil [13], Barnett and Moore [6], and Chen et
al. [9]. During the last four decades, a good deal of attention has been devoted to this
topic in the statistical literature. Some of this work has been geared toward specific
parametric families. Many authors have used the ranked set sampling for estimating
the unknown parameters of some distributions; for example, see Adatia [1] for the
half-logistic distribution and Shaibu and Muttlak [16] for normal, exponential, and
gamma distributions. Al-Hadhrami et al. [2] have studied the estimator of standard
deviation of normal distribution using moving extreme ranked set sampling, while Al-
Odat [3] has suggested a modification of estimating a ratio in rank set sampling. Sinha
et al. [17] have proposed best linear unbiased estimators (BLUEs) of the parameters
of the normal and exponential distributions under RSS. Stokes [18] has studied the
maximum likelihood estimators under RSS of the parameters of the location-scale
family. Sengupta and Mukhuti [15] have presented some unbiased estimators which
are better than the nonparametric minimum variance quadratic unbiased estimator
based on a balanced ranked set sample as well as the uniformly minimum variance
unbiased estimator based on a simple random sample (SRS) of the same size. Jemain
et al. [10] have studied the multistage median ranked set sampling for estimating
the population median. Al-Saleh et al. [4] have obtained the Bayesian estimate of the
exponential parameter using squared error loss function. In this paper, we use the linex
loss function to derive an explicit form of the Bayesian estimate of the exponential
distribution under ranked set sampling.

In Sect. 2, we present some preliminary details. In Sect. 3, we derive the Bayesian
estimates of the exponential parameter based on gamma and Jefferys prior distri-
butions. In Sect. 4, we develop an alternative procedure for deriving the Bayesian
estimates. Finally, in Sect. 5, we present that some numerical results demonstrate the
usefulness of the results developed here.

2 Preliminaries

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (iid)
random variables with probability density function f (x; θ) and cumulative distribution
function F(x; θ), where θ has a prior density function �(θ). This sequence will be
referred to here as a Simple Random Sample (SRS). Let

X11, X12, . . . , X1n; X21, X22, . . . , X2n; . . . ; Xs1, Xs2, . . . , Xsn

be the visual (judgment) order statistics of s sets, each is based on a simple random
sample of size n. This is observed specifically as follows. A set of n items is drawn
from the population, the items of the set are ranked by judgment, and only the item
ranked the smallest is quantified. Then another set of size n is drawn, then ranked, and
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Bayesian Estimation Based on Ranked Set 709

only the item ranked the second smallest is quantified. The procedure is repeated in
this way until the item ranked the largest in the n-th set is quantified. This completes
one cycle of this sampling. The cycle may be repeated m times until nm units have
been quantified and these nm units form the RSS data.

Let Y1, Y2, . . . , Ys be a RSS from this distribution obtained using a full data
of sn observations. It is assumed through out this paper that the judgmental iden-
tification of the ranks is perfect and at negligible cost. This assumption is made
for many developments on RSS. Under this assumption, Yi has the same distrib-
ution as Xi :n which is the i th order statistic in a random sample of size n with
pdf

fi :n(x) = n!
(i − 1)!(n − i)! (F(x))i−1(1 − F(x))n−i f (x).

Now, we assume that we have a RSS from an exponential distribution with parameter
θ with density function

f (x; θ) = θe−θx , x > 0, θ > 0. (2.1)

In the Bayesian setup, the choice of the loss function is an important part, and it is
well known that most studies use the squared error loss function (SEL) for measuring
an estimators’ performance; see Box and Tiao [8] and Berger [7]. This is due to its
simplicity and relevance to classical procedures. But, the squared error loss function
is justified only when losses are symmetric in nature. The symmetric nature of this
function gives equal weight to over-estimation as well as under-estimation. In the esti-
mation of the survival function or reliability function, such a symmetric loss function
may be inappropriate. A number of asymmetric loss functions have been discussed in
the literature, but among these asymmetric losses, Linear-exponential (LINEX) loss
function is widely used as it is a natural extension of the squared error loss function
(SEL). It was originally introduced by Varian [19] and was popularized by Zellner
[20].

The LINEX loss function for θ can be expressed as

L(�) ∝ exp(C�) − C� − 1, c �= 0, (2.2)

where � = (θ∗ − θ), and θ∗ is an estimate of θ. The sign and magnitude of the
shape parameter C represent the direction and degree of symmetry, respectively. When
value of C is less than zero, the LINEX loss function gives more weight to under-
estimation against over-estimation, and the situation is reversed when the value of C is
greater than zero. For C close to zero, the LINEX loss is approximately squared error
loss.

In order to develop the Bayesian analysis in the case at hand, the conjugate prior
for θ is considered, i.e., θ ∼ Gamma(α, β), whose probability density function is
given by

g(θ) ∝ θα−1exp(−βθ), θ > 0, (2.3)
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710 A. Sadek et al.

where α > 0 and β > 0 are the hyperparameters. If α = β = 0, the prior (2.3)
becomes the Jeffreys prior, which is given by

g(θ) ∝ 1/θ, θ ≥ 0. (2.4)

3 Bayes Estimates

In this section, we derive the Bayes estimates of the exponential parameter θ based on
both SRS and RSS. In each case, we use both conjugate prior and the non-informative
prior for the scale parameter. Also, we consider both the symmetric loss function
(squared error loss) and asymmetric loss function (Linear-exponential, LINEX) to
derive the corresponding Bayesian estimates. Throughout the paper, let π(θ |X) and
π(θ |Y ) denote the posterior densities of θ , given SRS (X) and RSS (Y ), respectively.

3.1 Bayes Estimate Based on SRS

Let x1, x2, . . . , xn be a random sample from the exponential distribution with para-
meter θ in (2.1), and g(θ) be the conjugate prior in (2.3). In this case, the posterior
density based on SRS can be written as

π(θ |X) = θn+α−1 e−θ
(

nX+β
)

�(n + α) (nX + β)−(n+α)
. (3.1)

Hence, the Bayesian estimatie of θ based on the squared error loss function is given
by

θ̃SEL(X) = n + α

nX + β
, (3.2)

while the Bayesian estimation of θ based on the LINEX loss function is given by

θ̃LINEX = − 1

C
ln(E[e−Cθ ]),

where

E[e−Cθ ] =
∫

e−Cθ θ(n+α−1) e−θ(nX+β)

�(n + α) (nX + β)−(n+α)
dθ

=
∫

θ(n+α−1) e−θ(nX+β+C)

�(n + α)
(
nX + β

)−(n+α)
dθ

=
(

1 + C

nX + β

)−(n+α)

,
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and consequently

θ̃LINEX(X) = − 1

C
ln

[(
1 + C

nX + β

)−(n+α)]
. (3.3)

3.2 Bayes Estimate Based on RSS

Now, let y1, y2, . . . , yn be a one-cycle RSS from the exponential distribution in (2.1)
and the prior density of θ be as in (2.3). The density of the j th order statistic Y j is
known to be (Arnold et al. [5])

g(y j |θ) = j

(
n

j

)
f (y j |θ)[F(y j |θ)] j−1[1 − F(y j |θ)]n− j

= j

(
n

j

)
θe−θy j (1 − e−θy j ) j−1(e−θy j )n− j

=
j−1∑

k=0

j

(
n

j

)(
j − 1

k

)
(−1)k θ (e−θy j )n− j+k+1.

=
j−1∑

k=0

ck( j) hk(y j |θ), y j > 0,

where ck( j) = j
(n

j

)( j−1
k

)
(−1)k and hk(y j |θ) = θ (e−θy j )n− j+k+1.

Then, the joint density of the RSS in this case, due to the independence of y′
i s, is

given by

g(y|θ) =
n∏

j=1

g(y j |θ) =
n∏

j=1

j−1∑

k=0

ck( j) hk(y j |θ)

=
0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦ θn e
−θ

n∑

j=1
y j (n− j+i j +1)

, y j > 0.

Hence, the posterior density can be derived as

π(θ |Y ) =

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦ θn+α−1 e
−θ

[
n∑

j=1
y j (n− j+i j +1)+β

]

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦ �(n + α)
[ n∑

j=1

y j (n − j + i j + 1) + β
]−(n+α)

,

(3.4)
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and the Bayesian estimate of θ based on the squared error loss function is then obtained
from (3.4) as

θ̃SEL(Y ) =

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦ (n + α)

⎡

⎣
n∑

j=1

y j (n − j + i j + 1) + β

⎤

⎦

−(n+α+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦
[ n∑

j=1

y j (n − j + i j + 1) + β
]−(n+α)

.

(3.5)

Next, in order to derive the Bayesian estimate of θ based on the LINEX loss function,
we need to calculate the posterior expectation of e−Cθ from (3.4) as

E[e−Cθ ] =

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦
∫

θn+α−1 e
−θ

[∑n
j=1 y j (n− j+i j +1)+β+C

]

dθ

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦ �(n + α)

⎡

⎣
n∑

j=1

y j (n − j + i j + 1) + β

⎤

⎦

−(n+α)

=

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦ (n + α)

⎡

⎣
n∑

j=1

y j (n − j + i j + 1) + β + C

⎤

⎦

−(n+α+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

⎡

⎣
n∏

j=1

ci j ( j)

⎤

⎦

⎡

⎣
n∑

j=1

y j (n − j + i j + 1) + β

⎤

⎦

−(n+α)
.

(3.6)

Then from (3.6), the Bayesian estimate of θ based on the LINEX loss function is
given by

θ̃LINEX(Y ) = − 1

C
ln

(
E[e−Cθ ]

)
, (3.7)

where E[eCθ ] is as derived in Eq. (3.6).

3.3 Bayes Estimates Based on Non-informative Prior

Let θ have a non-informative Jefferys prior in Eq. (2.4). Then, we obtain the Bayesian
estimates of θ in this case as follows:

1. SRS

θ̃ J
SEL(X) = 1

X
(3.8)

and

θ̃ J
LINEX(X) = − 1

C
ln

[(
1 + C

nX

)−n]
. (3.9)
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2. RSS

θ̃ J
SEL(Y ) =

n
0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

ci j ( j)
][ n∑

j=1

y j (n − j + i j + 1)
]−(n+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

ci j ( j)
] [ n∑

j=1

y j (n − j + i j + 1)
]−n

(3.10)

and

θ̃ J
LINEX(Y ) = − 1

C
ln

⎡

⎢
⎢⎢
⎢⎢
⎣

n
0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

ci j ( j)
][ n∑

j=1

y j (n − j + i j + 1) + C
]−(n+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

ci j ( j)
] [ n∑

j=1

y j (n − j + i j + 1)
]−n

⎤

⎥
⎥⎥
⎥⎥
⎦

.

(3.11)

3.4 Bayes Estimates Based on m-Cycle RSS

Based on m cycles, let

Y11, Y12, . . . , Y1n; Y21, Y22, . . . , Y2n; . . . ; Ym1, Ym2, . . . , Ymn

be the m-cycle RSS from the exponential distribution in Eq. (2.1) and the prior of θ

be as in Eq. (2.4). Then, the joint density in this case is given by

g(y|θ) =
m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

⎡

⎣
n∏

j=1

cil
j
( j)

⎤

⎦ θn e
−θ

n∑

j=1
yl j

(
n− j+i l

j +1
)

=
⎡

⎢
⎣

0∑

i1
1 =0

1∑

i1
2 =0

· · ·
n−1∑

i1
n =0

⎤

⎥
⎦

⎡

⎢
⎣

0∑

i2
1 =0

1∑

i2
2 =0

· · ·
n−1∑

i2
n =0

⎤

⎥
⎦ · · ·

⎡

⎣
0∑

im
1 =0

1∑

im
2 =0

· · ·
n−1∑

im
n =0

⎤

⎦ Kil
j
θnm e

−θη
ilj , yi j > 0,

where

Kil
j
=

⎡

⎣
m∏

l=1

n∏

j=1

cil
j
( j)

⎤

⎦

and

ηi l
j
=

m∑

l=1

n∑

j=1

yl j (n − j + i l
j + 1).

Hence, the posterior density can be expressed as
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π(θ |Y ) = π(θ)g(y|θ)
∫

θ

π(θ)g(y|θ)dθ

=

⎡

⎣
m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

⎤

⎦ Kil
j
θnm+α−1 e

−θη
ilj

+β

⎡

⎣
m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

⎤

⎦ Kil
j
�(nm + α)

[
ηi l

j
+ β

]−(nm+α)

, yi j > 0.

(3.12)

From (3.12), the Bayesian estimate of θ based on the squared error loss function is
obtained as

θ̃SEL(Y (m))

=

⎡

⎣
m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

⎤

⎦ Kil
j
(nm + α)

[
ηi l

j
+ β

]−(nm+α+1)

⎡

⎣
m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

⎤

⎦ Kil
j

[
ηi l

j
+ β

]−(nm+α)

,

while the Bayesian estimate of θ based on the LINEX loss function is obtained to be

θ̃LINEX(Y (m)) = − 1

C
ln

⎡

⎢⎢⎢⎢
⎣

[ m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

]
Kil

j
(nm + α)

[
ηi l

j
+ β + C

]−(nm+α+1)

[ m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

]
Kil

j

[
ηi l

j
+ β

]−(nm+α)

⎤

⎥⎥⎥⎥
⎦

.

(3.13)
Upon using the non-informative Jefferys prior in (2.4), we derive the Bayesian

estimates based on the squared error and LINEX loss functions to be

θ̃ J
SEL(Y (m)) =

[ m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

]
Kil

j
(nm)

[
ηi l

j

]−(nm+1)

[ m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

]
Kil

j

[
ηi l

j

]−(nm)

(3.14)
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and

θ̃ J
LINEX(Y (m)) = − 1

C
ln

⎡

⎢⎢⎢⎢
⎣

[ m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

]
Kil

j
(nm)

[
ηi l

j
+ C

]−(nm+1)

[ m∏

l=1

0∑

i l
1=0

1∑

i l
2=0

· · ·
n−1∑

i l
n=0

]
Kil

j

[
ηi l

j

]−(nm)

⎤

⎥⎥⎥⎥
⎦

,

(3.15)
respectively.

4 Alternative Procedure

In this section, we propose an alternative procedure for deriving the Bayesian estimates,
which is simple in nature and reduces the amount of numerical calculation quite
considerably for finding the estimates. Using the independent spacings property of
the exponential distribution (see Arnold et al. [5]) and then by employing the partial
fractions (see Sen and Balakrishnan [14]), we can rewrite the density of the j th order
statistic Y j as

g(y j |θ) =
j∑

k=1

Hk( j) θ k e−θ k y j , y j > 0,

where Hk( j) =
j∏


=1,
 �=k




−k = (−1)k−1

( j
k

)
. Then, the joint density for m-cycle RSS

can be expressed as

g(y(m)|θ) =
m∏

l=1

n∏

j=1

g(yl j |θ)

=
∑

mn Qil
j
(θ i l

j )
mn e

−θ
[ m∑

l=1

n∑

j=1
i l

j yl j

]

, yl j > 0,

where we use the notation

∑
mn =

⎡

⎢
⎣

0∑

i1
1=0

1∑

i1
2=0

· · ·
n−1∑

i1
n=0

⎤

⎥
⎦

⎡

⎢
⎣

0∑

i2
1=0

1∑

i2
2=0

· · ·
n−1∑

i2
n=0

⎤

⎥
⎦ · · ·

⎡

⎣
0∑

im
1 =0

1∑

im
2 =0

· · ·
n−1∑

im
n =0

⎤

⎦

and

Qil
j
(i l

j )
mn =

⎡

⎣
m∏

l=1

n∏

j=1

Hil
j
( j)

⎤

⎦ .
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Then, the Bayesian estimates of θ based on the gamma conjugate prior are obtained
as follows:

θ̃SEL(Y (m)) =

∑mn Qil
j
(i l

j )
mn(nm + α)

[[
m∑

l=1

n∑

j=1
i l

j yl j

]

+ β

]−(nm+α+1)

∑mn Qil
j
(i l

j )
mn

[[
m∑

l=1

n∑

j=1
i l

j yl j

]

+ β

]−(nm+α)
(4.1)

and

θ̃LINEX(Y (m)) = − 1

C
ln

⎡

⎢⎢
⎢
⎢⎢
⎣

∑mn Qil
j
(i l

j )
mn(nm + α)

[[
m∑

l=1

n∑

j=1
i l

j yl j

]

+β+C

]−(nm+α+1)

∑mn Qil
j
(i l

j )
mn

[[
m∑

l=1

n∑

j=1
i l

j yl j

]

+ β

]−(nm+α)

⎤

⎥⎥
⎥
⎥⎥
⎦

. (4.2)

Similarly, the Bayesian estimates of θ based on Jefferys prior are obtained as follows:

θ̃ J
SEL

(
Y (m)

) =

∑mn Qil
j
(i l

j )
mn(nm)

[
m∑

l=1

n∑

j=1
i l

j yl j

]−(nm+1)

∑mn Qil
j
(i l

j )
mn

[
m∑

l=1

n∑

j=1
i l

j yl j

]−(nm)
, (4.3)

and

θ̃ J
LINEX(Y (m)) = − 1

C
ln

⎡

⎢⎢⎢⎢
⎢
⎣

∑mn Qil
j
(i l

j )
mn(nm)

[[
m∑

l=1

n∑

j=1
i l

j yl j

]

+ C

]−(nm+1)

∑mn Qil
j
(i l

j )
mn

[
m∑

l=1

n∑

j=1
i l

j yl j

]−(nm)

⎤

⎥⎥⎥⎥
⎥
⎦

.

(4.4)

5 Numerical Results

In order to demonstrate the usefulness of the Bayesian estimates based on both SRS and
RSS derived in the preceding sections (for the RSS, we use the alternative procedure
as in Sect. 4), we carry out Monte Carlo simulations using the following steps:

1. Generate SRS and RSS samples of size n from the exponential distribution for the
case when m = 1 (one cycle is used in many applications).

2. Calculate the Bayesian estimates given derived in in Sect. 3 using the SRS and
RSS samples;

3. Repeat Steps 1 and 2 for 1,000 runs;
4. Then calculate the bias and mean squared error (MSE) of all the estimates.
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The results so obtained, for the cases n = 3(1)6, θ = 2, α = 1, β = 1, and
C = 1,−1, are all presented in Tables 1 and 2.

From Table 1, we first of all observe that the Bayesian estimates of θ are all biased.
Next, we observe that the estimates based on the informative gamma prior are less
biased than the corresponding estimates based on Jefferys non-informative prior. Quite
importantly, we finally observe that the Bayesian estimates based on RSS are consid-
erably less biased than the corresponding Bayesian estimates based on SRS.

From Table 2, we first note that the mean squared error of all estimates decrease
when n increases, as one would expect. Next, we observe that the mean squared error
of the Bayesian estimates based on the informative gamma prior is in general less than
the corresponding values for the estimates based on Jeffereys non-informative prior.
Finally, we observe that the Bayesian estimates based on RSS have a much smaller
mean squared error than the corresponding Bayesian estimates based on RSS in all
cases considered. This clearly demonstrates the efficiency of inference based on RSS

Table 1 Bias of the Bayesian estimates based on SRS and RSS when θ = 2, α = 1, β = 1 for n = 3(1)6

n Bayes
(
θ̂Se

)
Bayes

(
θ̂Lnx

)

Jeffrey prior Gamma prior C Jeffrey prior Gamma prior

SRS RSS SRS RSS SRS RSS SRS RSS

3 0.6695 0.3911 0.2259 0.1074 1 0.9139 0.5951 0.5518 0.3499

−1 0.0870 0.0796 −0.5507 −0.2662

4 0.5192 0.2192 0.1490 0.0251 1 0.7569 0.3807 0.4461 0.2063

−1 0.0735 0.0666 −0.4081 −0.1486

5 0.4086 0.1637 0.0903 0.0269 1 0.6324 0.2837 0.3589 0.1573

−1 0.0553 0.0058 −0.3336 −0.1448

6 0.3569 0.0978 0.0830 −0.0050 1 0.5611 0.1920 0.3213 0.0953

−1 0.0212 −0.0131 −0.3086 −0.1290

Table 2 MSE of the Bayesian estimates based on SRS and RSS when θ = 2, α = 1, β = 1 for n = 3(1)6

n Bayes
(
θ̂Se

)
Bayes

(
θ̂Lnx

)

Jeffrey prior Gamma prior C Jeffrey prior Gamma prior

SRS RSS SRS RSS SRS RSS SRS RSS

3 0.6419 0.4085 0.3955 0.3603 1 0.9249 0.5043 0.4641 0.3264

−1 1.0021 0.5861 2.0713 0.8730

4 0.5292 0.3144 0.4278 0.3249 1 0.7046 0.3277 0.4048 0.2642

−1 0.6815 0.3852 1.2230 0.4901

5 0.4190 0.2311 0.3711 0.2357 1 0.5389 0.2364 0.3289 0.2035

−1 0.6545 0.2991 1.0494 0.3661

6 0.3974 0.1684 0.3744 0.1758 1 0.4730 0.1667 0.3186 0.1524

−1 0.6388 0.2277 0.9641 0.2571
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and also the usefulness of the Bayesian estimates based on RSS developed here for
the scale parameter of the exponential distribution.

Acknowledgments The authors would like to thank the referees for their helpful comments, which
improved the presentation of the paper. This project was supported by King Saud University, Deanship
of Scientific Research, College of Science Research Center.

References

1. Adatia, A.: Estimation of parameters of the half-logistic distribution using generalized ranked set
sampling. Comput. Statist. Data Anal. 33, 1–13 (2000)

2. Al-Hadhrami, S.A., Al-Omari, A.I., Al-Saleh, M.F.: Estimation of standard deviation of normal dis-
tribution using moving extreme ranked set sampling. Proc. Acad. Sci. Eng. Technol. 37, 988–993
(2009)

3. Al-Odat, N.A.: Modification in ratio estimator using rank set sampling. Eur. J. Sci. Res. 29(2), 265–268
(2009)

4. Al-Saleh, M.F., Al-Shrafat, K., Muttlak, H.: Bayesian estimation using ranked set sampling. Biom.
J. 42, 489–500 (2000)

5. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Wiley, New York
(1992)

6. Barnett, V., Moore, K.: Best linear unbiased estimates in ranked-set sampling with particular reference
to imperfect ordering. J. Appl. Stat. 24, 697–710 (1997)

7. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York (1985)
8. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Addison-Wesley, New York (1973)
9. Chen, Z., Bai, Z., Sinha, B.K.: Ranked Set Sampling Look. Springer-Verlag, New York (2003)

10. Jemain, A.A., Al-Omari, A.I., Ibrahim, K.: Multistage extreme ranked set samples for estimating the
population mean. J. Stat. Theory Appl. 6, 456–471 (2007)

11. McIntyre, G.A.: A method for unbiased selective sampling using ranked sets. Aust. J. Agric. Res. 3,
385–390 (1952)

12. McIntyre, G.A.: A method of unbiased selective sampling using ranked sets. Am. Stat. 59, 230–232
(2005)

13. Patil, G.P.: Editorial: ranked set sampling. Environ. Ecol. Stat. 2, 271–285 (1995)
14. Sen, A., Balakrishnan, N.: Convolution of geometrics and a reliability problem. Stat. Probab. Lett. 43,

421–426 (1999)
15. Sengupta, S., Mukhti, S.: Unbiased variance estimation in a simple exponential population using ranked

set samples. J. Stat. Plan. Inference 136, 1526–1553 (2006)
16. Shaibu, A.B., Muttlak, H.A.: Estimating the parameters of normal, exponential and gamma distributions

using median and extreme ranked set samples. Statistica LXIV, 75–98 (2004)
17. Sinha, B.K., Sinha, B.K., Purkayastha, S.: On some aspects of ranked set sampling for estimation of

normal and exponential parameters. Stat. Decis. 14, 223–240 (1996)
18. Stokes, S.L.: Parametric ranked set sampling. Ann. Inst. Stat. Math. 47, 465–482 (1995)
19. Varian, H.R.: A Bayesian approach to real estate assessment. In: Feinberg, S.E., Zellner, A. (eds.)

Studies in Bayesian Econometrics and Statistics in Honor of L. J. Savage, pp. 195–208. Amsterdam,
North-Holland (1975)

20. Zellner, A.: Bayesian estimation and prediction using asymmetric loss functions. J. Am. Stat. Assoc.
81, 446–451 (1986)

123


	Bayesian Estimation Based on Ranked Set Sampling Using Asymmetric Loss Function
	Abstract
	1 Introduction
	2 Preliminaries
	3 Bayes Estimates
	3.1 Bayes Estimate Based on SRS
	3.2 Bayes Estimate Based on RSS
	3.3 Bayes Estimates Based on Non-informative Prior
	3.4 Bayes Estimates Based on m-Cycle RSS

	4 Alternative Procedure
	5 Numerical Results
	Acknowledgments
	References


