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Abstract In this paper, we prove the existence of nontrivial nonnegative time peri-
odic solutions for a pseudo-parabolic type equation with weakly nonlinear periodic
sources. Moreover, we investigate the asymptotic behavior of solutions as the viscous
coefficient k tends to zero.
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1 Introduction

This paper is concerned with the following one spatial dimensional viscous diffusion
equation

∂u

∂t
− k

∂ D2u

∂t
= D2u + m(x, t)uq + f (x, t), (x, t) ∈ Q (1.1)

subject to the boundary value conditions

u(0, t) = u(1, t) = 0, t ≥ 0 (1.2)
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668 Y. Li, Y. Cao

and the time periodic condition

u(x, t + ω) = u(x, t), (x, t) ∈ Q, (1.3)

where Q = (0, 1) × R
+, D = ∂/∂x , 0 < q < 1, k > 0 denotes the viscous

coefficient, m(x, t) and f (x, t) are positive time periodic functions in Cα,α/2(Q) with
period ω > 0 and α ∈ (0, 1). The purpose of this paper is to investigate the existence
and asymptotic behavior of the time periodic solutions of the problem (1.1)–(1.3).

Equations of type (1.1) with a one time derivative appearing in the highest order
term are called pseudo-parabolic or Sobolev equations and arise in many areas of math-
ematics and physics. They have been used, for instance, to model fluid flow in fissured
porous media [1], two-phase flow in porous media with dynamical capillary pressure
[2], heat conduction involving a thermodynamic temperature θ = u − k�u and a
conductive temperature u [3], flow of some non-Newtonian fluids [4], etc. Third-order
mixed derivatives terms also appear as regularization of forward-backward diffusion
equations as in [5] and in the viscous Cahn–Hilliard equation [6].

Mathematical study of pseudo-parabolic equations goes back to works of Showal-
ter in the seventies [7], since then, numerous of interesting results about linear and
nonlinear pseudo-parabolic equations have been obtained. Existence and uniqueness
of solutions to nonlinear pseudo-parabolic equations are proved in [8–11], error esti-
mates for an Euler implicit time discretization scheme for nonlinear pseudo-parabolic
equations are also given in [11], and the research for asymptotic behavior of solu-
tions can be found in [12,13], whereas the existence and uniqueness of solutions for
pseudo-parabolic Burgers’ equations, including the long-time behavior are considered
in [14,15]. Recently, considerable attentions have been paid to the study of propaga-
tion problems for pseudo-parabolic equations. In [16], existence, monotonicity and
stability of global traveling waves are studied for a pseudo-parabolic Burgers’ equation
which models non-static groundwater flow. Traveling wave solutions and their relation
to non-standard shock solutions to hyperbolic conservation laws are investigated in
[17,18] for the extension Buckley–Leverett equation with a third-order mixed deriv-
atives term. Moreover, the small and waiting time behavior of interfaces is analyzed
in [19]. Besides above, periodic problems of pseudo-parabolic equations have also
been investigated, but most works are devoted to periodic boundary value problems
of [20–23].

For time periodic problems of pseudo-parabolic equations, according to our sur-
vey, expect the early works of Matahashi and Tsutsumi, and the recent researches of
authors of this paper, there are no other investigations. In [24] and [25], Matahashi
and Tsutsumi have established the existence theorems of time periodic solutions for
the linear case

∂u

∂t
− ∂�u

∂t
= �u + f (x, t),

and the semilinear case

∂u

∂t
− ∂�u

∂t
= �u − |u|p−1u + f (x, t)
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Time Periodic Solutions 669

for 1 < p < 1 + 4
N with N = 2, 3, 4 or 0 < p < 3 with N = 1, respectively. In

[26] and [27], the authors investigate the viscous diffusion equation (1.1) with f = 0,
for one-dimensional case and N-dimensional case, respectively. They obtain a rather
complete classification of the exponent q, in terms of the existence and nonexistence
of nontrivial and nonnegative periodic solutions. Further, they also investigate the
asymptotic behavior of time periodic solutions when k → 0.

In this paper, we are going to deal with the existence of nontrivial time periodic
solutions of (1.1) for the case 0 < q < 1 with positive f . In fact, considering results
and technique for both parabolic and pseudo-parabolic equations, there are essential
differences between weakly nonlinear sources uq (0 < q < 1) and strongly nonlinear
sources uq (q > 1). For initial-boundary value problem or Cauchy problem, there
exists at least one initial datum such that the solution blows up in a finite time in
the case q > 1, while there exist global solutions for each initial datum in the case
0 < q < 1 [28,29]. For time periodic problem, there exists at least one nontrivial
periodic solution in the case 0 < q < 1, but there may have no nontrivial periodic
solution when q > 1 [27,30,31]. Moreover, the discussion using topological degree
method for strongly nonlinear source in [26] strongly depends on the assumption q > 1
and is invalid for the case 0 < q < 1. Here we apply Leray–Schauder’s fixed point
theorem, and prove that there exists a fixed point in a “ball” {u; ‖u‖Cα,α/2(Qω) ≤ C}
including the original point u ≡ 0. Only from the above result, we cannot exclude
that the fixed point we obtained is just the trivial one. Besides, it is evident that when
f ≡ 0, then u ≡ 0 is a trivial periodic solution. However due to the positivity of f ,
we can eliminate the trivial periodic solution.

Actually, in many physical reality, the positive source term f does exist. At this case,
the problem is known as inhomogeneous problem, which has significantly difference
with homogeneous one, namely f ≡ 0. Taking its influence on the asymptotic behav-
ior of solutions for example, inhomogeneous term usually makes the critical Fujita
exponent bigger than that of the corresponding homogeneous problem, see [32,33].
That is mainly caused by the reason that the inhomogeneous term f will strength the
energy aggregation which promote blow-up of solutions. To the best of our knowledge,
there are few investigations devoted to inhomogeneous semilinear pseudo-parabolic
equation. Then the existence of nontrivial nonnegative periodic solutions obtained here
reveals that, at least for semilinear pseudo-parabolic equation with weakly nonlinear
source uq (0 < q < 1), the inhomogeneous term f is not strong enough to cause
blow-up.

This paper is organized as follows. In Sect. 2, we prove the existence of time periodic
solutions to the problem (1.1)–(1.3). In Sect. 3, we discuss the asymptotic behavior of
the solutions as the viscosity coefficient k tends to zero.

2 Existence of Periodic Solutions

This section is devoted to the solvability of the time periodic problem (1.1)–(1.3). Due
to the time periodicity of solutions under consideration, we need only to consider the
problem on Qω = (0, 1) × (0, ω). Throughout the paper, we use standard notations.
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670 Y. Li, Y. Cao

Notation (1) Let k be a nonnegative integer and 1 ≤ p < +∞. The set

{u; Dβ Dr
t u ∈ L p(Qω), for any β and r such that |β| + 2r ≤ 2k}

endowed with the norm

‖u‖W 2k,k
p (Qω)

=
⎛
⎝

∫∫
Qω

∑
|β|+2r≤2k

|Dβ Dr
t u|pdxdt

⎞
⎠

1/p

is denoted by W 2k,k
p (Qω). Specially, H2k,k(Qω) = W 2k,k

2 (Qω).
(2) For any points P1(x1, t1), P2(x2, t2) ∈ Qω, define the parabolic distance between

them as

d(P1, P2) = (|x1 − x2|2 + |t1 − t2|)1/2.

Let v(x, t) be a function on Qω. For 0 < α < 1, define

[v]α,α/2;Qω
= sup

P1,P2∈Qω,P1 	=P2

|v(P1) − v(P2)|
dα(P1, P2)

,

which is a semi-norm, and denote by Cα,α/2(Qω) the set of all functions on Qω

such that [v]α,α/2;Qω
< +∞, endowed with the norm

‖v‖Cα,α/2(Qω) = ‖v‖0;Qω
+ [v]α,α/2;Qω

,

where ‖v‖0;Qω
is the maximum norm of v(x, t) on Qω. For any integer k ≥ 0,

denote the Hölder space

C2k+α,k+α/2(Qω) = {u; ∂β
x ∂r

t u ∈ Cα,α/2(Qω),

for any β, r such that |β| + 2r ≤ 2k}.

The main result of this section is as follows.

Theorem 2.1 The problem (1.1)–(1.3) admits a nontrivial nonnegative time periodic
solution u ∈ C2+α,1+α/2(Qω) with D2ut ∈ Cα,α/2(Qω).

The existence results we obtained are finally for the classical solutions, but due
to the proof procedure, we need first to discuss the strong solutions of the problem
(1.1)–(1.3).

Definition 2.1 A function u is said to be a strong time periodic solution of the problem
(1.1)–(1.3), if u ∈ Cα,α/2(Qω) ∩ H2,1(Qω) with Dut and D2ut in L2(Qω), and
satisfies (1.2), (1.3) and the following equation
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Time Periodic Solutions 671

∫∫
Qω

∂u

∂t
ϕdxdt − k

∫∫
Qω

∂ D2u

∂t
ϕdxdt

=
∫∫

Qω

D2uϕdxdt +
∫∫

Qω

m(x, t)uqϕdxdt +
∫∫

Qω

f (x, t)ϕdxdt,

for any ϕ ∈ C(Qω) with ϕ(x, 0) = ϕ(x, ω) and ϕ(0, t) = ϕ(1, t) = 0 for any
t ∈ [0, ω].
Proposition 2.1 The problem (1.1)–(1.3) admits a nontrivial strong time periodic
solution.

To prove the existence of strong solutions, we employ the following Leray–
Schauder’s fixed point theorem.

Theorem 2.2 (Leray–Schauder’s Fixed Point Theorem) Let X be a Banach space,
F(u, σ ) be a mapping from X × [0, 1] to X satisfying the following conditions:

(i) F is a compact mapping;
(ii) F(u, 0) = 0, ∀ u ∈ X;

(iii) There exists a constant M > 0, such that for any u ∈ X, if u = F(u, σ ) holds
for some σ ∈ [0, 1], then ‖u‖X ≤ M.

Then the mapping F(·, 1) has a fixed point, that is, there exists u ∈ X, such that
u = F(u, 1).

In terms of the above theorem, we can study the problem (1.1)–(1.3) by considering
the following equation:

∂u

∂t
− k

∂ D2u

∂t
= D2u + σm(x, t)vq + σ f (x, t), (x, t) ∈ Qω (2.1)

subject to the conditions (1.2)–(1.3), where σ is a parameter taking value on the
interval [0, 1], and v ∈ Cα,α/2(Qω) is periodic in time t with period ω. Recalling
m(x, t), f (x, t) ∈ Cα,α/2(Qω), by virtue of the results in [24,26], we know that the
linear equation (2.1) with conditions (1.2) and (1.3) admits a unique classical solution
u ∈ C2+α,1+α/2(Qω) with D2ut ∈ Cα,α/2(Qω), and hence we can define a map F as
follows

F : Cα,α/2(Qω) × [0, 1] → Cα,α/2(Qω), (v, σ ) �→ u.

Since C2+α,1+α/2(Qω) can be compactly embedded into Cα,α/2(Qω), the map F is
compact. Obviously, for any given v ∈ Cα,α/2(Qω), F(v, 0) = 0. By virtue of Leray–
Schauder’s Fixed Point Theorem, to prove the existence of solutions to the problem
(1.1)–(1.3), we only need to show that if u = F(v, σ ) admits a fixed point uσ in
the space Cα,α/2(Qω) for some σ ∈ [0, 1], then ‖uσ ‖Cα,α/2(Qω) ≤ C with C being a
constant independent of uσ and σ . In the following, we omit the subscript of uσ for
convenience.
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672 Y. Li, Y. Cao

Lemma 2.1 Let u be a time periodic solution of the equation

∂u

∂t
− k

∂ D2u

∂t
= D2u + σm(x, t)uq + σ f (x, t), (x, t) ∈ Qω (2.2)

subject to the conditions (1.2), (1.3), where σ ∈ [0, 1]. Then

‖u‖Cα,α/2(Qω) ≤ C, (2.3)

where C is a constant independent of the solution u and σ . Moreover, we also have

‖u‖H2,1(Qω) + ‖Dut‖L2(Qω) + ‖D2ut‖L2(Qω) ≤ C. (2.4)

Proof Multiplying (2.2) by u and integrating the result with respect to x over (0, 1),
we have

1

2

d

dt

∫ 1

0

(
u2 + k|Du|2

)
dx +

∫ 1

0
|Du|2dx = σ

∫ 1

0
m(x, t)uq+1dx + σ

∫ 1

0
f udx

≤ 1

2

∫ 1

0
|Du|2dx + C, (2.5)

where the fact 0 < q < 1, Young’s inequality and Poincaré’s inequality have been
used. From (2.5), we have that

d

dt

∫ 1

0

(
u2 + k|Du|2

)
dx ≤ C, ∀t ∈ (0, ω). (2.6)

Integrating (2.5) over (0, ω) and noticing the periodicity of u, we get

∫∫
Qω

|Du|2dxdt ≤ C,

which combining with Poincaré’s inequality gives

∫∫
Qω

(
u2 + k|Du|2

)
dxdt ≤ C. (2.7)

Set

F(t) =
∫ 1

0
(u2(x, t) + k|Du(x, t)|2)dx, ∀t ∈ [0, ω].

By (2.7), the mean value theorem implies that there exists a point t̃ ∈ (0, ω) such
that

F(t̃) = 1

ω

∫ ω

0
F(t)dt ≤ C.
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Time Periodic Solutions 673

For any t ∈ (t̃, ω], integrating (2.6) from t̃ to t gives

F(t) ≤ C + F(t̃) ≤ C, ∀t ∈ [t̃, ω].

Noticing the periodicity of F(t), we have

F(0) = F(ω) ≤ C.

Hence, integrating (2.6) over (0, t), we get

F(t) ≤ C, ∀t ∈ [0, ω].

Recalling the definition of F(t) and k > 0, we have

∫ 1

0
|Du(x, t)|2dx ≤ C, ∀t ∈ [0, ω]. (2.8)

Noticing that u(0, t) = 0, there holds

|u(x, t)| =
∣∣∣∣
∫ x

0
Du(y, t)dy

∣∣∣∣ ≤
(∫ 1

0
|Du(x, t)|2dx

)1/2

≤ C, ∀(x, t) ∈ Qω,

which implies that

‖u‖L∞(Qω) ≤ C. (2.9)

Multiplying (2.2) with D2u and integrating the result with respect to x over (0, 1),
by (2.9) and Young’s inequality, we have

1

2

d

dt

∫ 1

0

(
|Du|2 + k|D2u|2

)
dx +

∫ 1

0
|D2u|2dx

= −σ

∫ 1

0
m(x, t)uq+1 D2udx − σ

∫ 1

0
f D2udx

≤ 1

2

∫ 1

0
|D2u|2dx + C,

Similar to the above discussion, we can obtain

∫∫
Qω

|D2u|2dxdt ≤ C, (2.10)

∫ 1

0
|D2u(x, t)|2dx ≤ C, ∀t ∈ [0, ω]. (2.11)
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From (2.8), by the mean value theorem, we see that there exists a point x̂ ∈ (0, 1)

such that

|Du(x̂, t)|2 =
∫ 1

0
|Du(x, t)|2dx ≤ C.

Then, by (2.11) we have

|Du(x, t)| ≤ |Du(x, t) − Du(x̂, t)| + |Du(x̂, t)| =
∣∣∣∣
∫ x

x̂
D2u(y, t)dy

∣∣∣∣ + |Du(x̂, t)|

≤
(∫ 1

0
|D2u(x, t)|2dx

)1/2

+ |Du(x̂, t)| ≤ C, ∀(x, t) ∈ Qω,

which implies that

‖Du‖L∞(Qω) ≤ C. (2.12)

Multiplying (2.2) by
∂u

∂t
and integrating the result over (0, 1) with respect to x , by

(2.9), (2.12) and Young’s inequality, we have

∫ 1

0

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dx + k
∫ 1

0

∣∣∣∣
∂ Du

∂t

∣∣∣∣
2

dx

= −
∫ 1

0
Du

∂ Du

∂t
dx + σ

∫ 1

0
m(x, t)uq ∂u

∂t
dx + σ

∫ 1

0
f
∂u

∂t
dx

≤ k

2

∫ 1

0

∣∣∣∣
∂ Du

∂t

∣∣∣∣
2

dx + 1

2

∫ 1

0

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dx + C,

from which we have

∫ 1

0

∣∣∣∣
∂u

∂t
(x, t)

∣∣∣∣
2

dx ≤ C,

∫ 1

0

∣∣∣∣
∂ Du

∂t
(x, t)

∣∣∣∣
2

dx ≤ C, ∀t ∈ [0, ω]. (2.13)

We rewrite Eq. (2.2) into the following form

∂ D2u

∂t
= 1

k

∂u

∂t
− 1

k
D2u − σ

k
m(x, t)uq − σ

k
f (x, t).

Recalling k > 0 and using (2.9), (2.11) and (2.13), we get

∫ 1

0

∣∣∣∣
∂ D2u

∂t
(x, t)

∣∣∣∣
2

dx ≤ C, ∀t ∈ [0, ω]. (2.14)

Now, we claim that

|u(x1, t1) − u(x2, t2)| ≤ C
(
|x1 − x2| + |t1 − t2|1/2

)
(2.15)
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for all (xi , ti ) ∈ Qω(i = 1, 2). It is obvious that the above inequality is equivalent to

|u(x1, t) − u(x2, t)| ≤ C |x1 − x2|, ∀t ∈ [0, ω], x1, x2 ∈ [0, 1], (2.16)

|u(x, t1) − u(x, t2)| ≤ C |t1 − t2|1/2, ∀x ∈ [0, 1], t1, t2 ∈ [0, ω]. (2.17)

In fact, (2.16) is a direct consequence of (2.8). To prove (2.17), it suffices to consider
that 0 ≤ x ≤ 1/2, �t = t2 − t1 > 0, �t ≤ 1/4. For any y ∈ (x, x + �t), integrating
Eq. (2.2) over (y, y + �t) × (t1, t2) yields

∫ y+�t

y
(u(z, t2) − u(z, t1))dz

= k
∫ t2

t1

∫ y+�t

y

∂ D2u

∂t
(z, t)dzdt +

∫ t2

t1

∫ y+�t

y
D2u(z, t)dzdt

+ σ

∫ t2

t1

∫ y+�t

y
m(z, t)uq(z, t)dzdt + σ

∫ t2

t1

∫ y+�t

y
f (z, t)dzdt.

From (2.9), (2.11), (2.14), it follows that

�t
∫ 1

0
[u(y + θ�t, t2) − u(y + θ�t, t1)] dθ

≤ k
∫ t2

t1

⎡
⎣

(∫ 1

0

∣∣∣∣
∂ D2u

∂t

∣∣∣∣
2

dx

)1/2 (∫ y+�t

y
12dx

)1/2
⎤
⎦ dt

+
∫ t2

t1

[(∫ 1

0
|D2u|2dx

)1/2 (∫ y+�t

y
12dx

)1/2
]

dt + C(�t)2

≤ C(�t)3/2.

Integrating the above equality with respect to y over (x, x + �t), using the mean
value theorem, we get

|u(x∗, t2) − u(x∗, t1)| ≤ C |t2 − t1|1/2,

where x∗ = y∗+θ∗�t , y∗ ∈ (x, x+�t), θ∗ ∈ (0, 1). Combining the above inequality
with (2.16), we have

|u(x, t1) − u(x, t2)| ≤ |u(x, t1) − u(x∗, t1)|
+ |u(x∗, t1) − u(x∗, t2)| + |u(x∗, t2) − u(x, t2)|

≤ C |t1 − t2|1/2.

Thus, (2.17) holds. So the estimate (2.3) follows. Moreover, from (2.7), (2.10),
(2.13) and (2.14), we also obtain the estimate (2.4). The proof of Lemma 2.1 is com-
plete. ��
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Proof of Proposition 2.1 From Lemma 2.1, the condition (iii) of Leray–Schauder’s
Fixed Point Theorem 2.2 can be satisfied. By the arguments which are addressed
before Lemma 2.1, we know that the conditions (i) and (ii) of Leray–Schauder’s Fixed
Point Theorem also hold. Therefore, Leray–Schauder’s Fixed Point Theorem implies
that the operator F has a fixed point u with σ = 1. In terms of (2.3) and (2.4) we
see that u ∈ Cα,α/2(Qω) ∩ H2,1(Qω) with Dut , D2ut ∈ L2(Qω) is a strong time
periodic solution of the problem (1.1)–(1.3). Moreover, by virtue of the positivity of
f (x, t), u is obviously nontrivial. The proof of this proposition is complete. ��
Proposition 2.2 If u ∈ Cα,α/2(Qω) is a nontrivial strong time periodic solution of

∂u

∂t
− k

∂ D2u

∂t
= D2u + m(x, t)|u|q + f (x, t), (2.18)

subject to (1.2), (1.3), then it is just the nontrivial nonnegative time periodic solution
u ∈ C2+α,1+α/2 (Qω) with D2ut ∈ Cα,α/2(Qω).

Proof We rewrite Eq. (2.18) into the following form

∂u

∂t
+ 1

k
u =

(
I − k D2

)−1
[

1

k
u + m(x, t)|u|q + f (x, t)

]
. (2.19)

As is well known, the operator
(
I − k D2

)−1
is bounded from Cα,α/2(Qω) to

C2+α,α/2(Qω). Recalling the strong solution u ∈ Cα,α/2(Qω) and the functions
m(x, t), f (x, t) ∈ Cα,α/2(Qω), we have

∂u

∂t
+ 1

k
u ∈ C2+α,α/2(Qω). (2.20)

Multiplying et/k on both sides of Eq. (2.19), we get

∂

∂t

(
et/ku

)
= et/k

(
I − k D2

)−1
[

1

k
u + m(x, t)|u|q + f (x, t)

]
.

For any t ∈ [0, ω], integrating the above equation over [t, t + ω] and noticing the
periodicity of u yield

u(x, t) =
(

e(t+ω)/k − et/k
)−1

∫ t+ω

t
es/k

(
I − k D2

)−1

×
[

1

k
u(x, s) + m(x, s)|u|q(x, s) + f (x, s)

]
ds,

which with (2.20) imply that

u ∈ C2+α,1+α/2(Qω),
∂u

∂t
∈ C2+α,α/2(Qω).
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Time Periodic Solutions 677

Hence, u is a classical solution, which satisfies

∂u

∂t
−

(
I − k D2

)−1
D2u =

(
I − k D2

)−1 [m(x, t)|u|q + f (x, t)].

Further, we conclude that u ≥ 0. Suppose to the contrary, there exists a pair of points
(x0, t0) ∈ (0, 1) × (0, ω) such that

u(x0, t0) < 0.

Since u is continuous, then there exists a interval (a, b) which contains x0 such that
u(x, t0) < 0 in (a, b) and u(a, t0) = u(b, t0) = 0. Multiplying (2.18) by ϕ, which is
the principle eigenfunction of −D2 in (a, b) with homogeneous Dirichlet boundary
condition, and integrating the result on (a, b), we can get

(1 + kλr )

∫ b

a
utϕdx + λr

∫ b

a
uϕdx =

∫ b

a
m(x, t)|u|qϕdx +

∫ b

a
f (x, t)ϕdx,

(2.21)

where λr is the first eigenvalue. Integrating the above inequality from 0 to ω and using
the periodicity of u, we have

λr

∫ ω

0

∫ b

a
uϕdxdt > 0.

By the mean value theorem, there exists a point t∗ ∈ (0, ω) such that

∫ b

a
u(x, t∗)ϕdx > 0.

Actually (2.21) is equivalent to

∫ b

a

∂etλr /(1+kλr )u

∂t
ϕdx = 1

1 + kλr

∫ b

a
etλr /(1+kλr )(m(x, t)|u|q + f (x, t))ϕdx .

(2.22)

Integrating the above inequality from t∗ to ω implies that

∫ b

a
eωλr /(1+kλr )u(x, ω)ϕdx > 0.

Recalling the periodicity of u, we see that

∫ b

a
u(x, 0)ϕdx > 0.
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Then integrating (2.22) over (0, t) implies that

∫ b

a
etλr /(1+kλr )u(x, t)ϕdx > 0, t ∈ (0, ω),

which is contradict with u(x, t0) < 0 in (a, b). The proof is complete. ��
Proof of Theorem 2.1 Actually, Proposition 2.1 is also valid for (2.18) subject to (1.2)
and (1.3). Then using Proposition 2.2, we know that (2.18) subject to (1.2) and (1.3)
admits a nontrivial nonnegative classical time periodic solution, namely, we only need
to consider the problem throw off the symbol of absolute value of |u|. Thus, Theorem
2.1 is just the deduction of Proposition 2.1 and 2.2.

3 Asymptotic Behavior

In this section, we discuss the asymptotic behavior of time periodic solutions as k → 0.
Here, we denote by C a constant independent of u and k, C(k) a constant independent
of u.

Theorem 3.1 If uk is a nontrivial nonnegative time periodic solution of the problem
(1.1)–(1.3), then uk → u uniformly in Qω as k → 0, and the limit function u ∈
C1/2,1/4(Qω) ∩ H2,1(Qω) is a nontrivial nonnegative weak periodic solution of the
following problem

∂u

∂t
= D2u + m(x, t)uq + f (x, t), (x, t) ∈ Qω, (3.1)

u(0, t) = u(1, t) = 0, t ∈ [0, ω], (3.2)

u(x, ω) = u(x, 0), x ∈ [0, 1]. (3.3)

Proof Multiplying uk for (1.1) and integrating the result with respect to x over (0, 1)

yield

d

dt

∫ 1

0
(u2

k + k|Duk |2)dx ≤ C, ∀t ∈ (0, ω), (3.4)
∫∫

Qω

|Duk |2dxdt ≤ C. (3.5)

From (3.5), the Poincaré inequality gives

∫∫
Qω

(u2
k + k|Duk |2)dxdt ≤ C + C(k). (3.6)

Combining (3.4) with (3.6), we can deduce that

∫ 1

0
u2

k(x, t)dx ≤ C + C(k), ∀t ∈ [0, ω]. (3.7)
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Multiplying (1.1) with D2uk and integrating the result with respect to x over (0, 1),
using (3.7), we get

d

dt

∫ 1

0
(|Duk |2 + k|D2uk |2)dx ≤ C + C(k), ∀t ∈ (0, ω), (3.8)

∫∫
Qω

|D2uk |2dxdt ≤ C + C(k). (3.9)

From (3.5) and (3.9), we have

∫∫
Qω

(|Duk |2 + k|D2uk |2)dxdt ≤ C + C(k).

Combining the above inequality with (3.8), we can deduce that

∫ 1

0
|Duk(x, t)|2dx ≤ C + C(k), ∀t ∈ [0, ω],

from which and the boundary value conditions (1.2), we can obtain

‖uk‖L∞(Qω) ≤ C + C(k). (3.10)

Multiplying (1.1) by
∂uk

∂t
and integrating the result over Qω, by (3.10) and noticing

the periodicity of uk , we have

∫∫
Qω

∣∣∣∣
∂uk

∂t

∣∣∣∣ dxdt + k
∫∫

Qω

∣∣∣∣
∂ Duk

∂t

∣∣∣∣ dxdt =
∫∫

Qω

[m(x, t)uq
k + f (x, t)]∂uk

∂t
dxdt

≤ 1

2

∫∫
Qω

∣∣∣∣
∂uk

∂t

∣∣∣∣ dxdt + C + C(k).

It follows that

∫∫
Qω

∣∣∣∣
∂uk

∂t

∣∣∣∣
2

dxdt ≤ C + C(k). (3.11)

Recalling the Eq. (1.1), by (3.9)–(3.12), we get

∫∫
Qω

∣∣∣∣k
∂ D2uk

∂t

∣∣∣∣
2

dxdt ≤ C + C(k). (3.12)

Similar to the proof in Proposition 2.1, we can prove that

|uk(x1, t1) − uk(x2, t2)| ≤
(

C + C(k))(|x1 − x2|1/2 + |t1 − t2|1/4
)
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for all (xi , ti ) ∈ Qω(i = 1, 2). Therefore, there exists a function u ∈ Cμ,μ/2(Qω) ∩
H2,1(Qω) with μ ∈ (0, 1/2) such that

uk → u uniformly in Qω,

∂uk

∂t
⇀

∂u

∂t
, D2uk ⇀ D2u weakly in L2(Qω),

as k → 0. Recalling the Eq. (1.1), for any ϕ ∈ C2,0(Qω) satisfying ϕ(x, ω) = ϕ(x, 0)

and ϕ(0, t) = ϕ(1, t) = 0 for any t ∈ [0, ω], we have

∫∫
Qω

∂uk

∂t
ϕdxdt − k

∫∫
Qω

∂uk

∂t
D2ϕdxdt

=
∫∫

Qω

D2ukϕdxdt +
∫∫

Qω

m(x, t)uq
k ϕdxdt.

Taking k → 0, we have

∫∫
Qω

∂u

∂t
ϕdxdt =

∫∫
Qω

D2uϕdxdt +
∫∫

Qω

m(x, t)uqϕdxdt,

which implies that u ∈ Cμ,μ/2(Qω) ∩ H2,1(Qω) satisfies the Eq. (3.1) in the sense
of distribution. It is evident that u satisfies (3.2) and (3.3). Furthermore, noticing that
f is positive and uk is nonnegative, u is obviously nontrivial and nonnegative. The
proof is complete. ��

Final Remark

In fact, when D2u is replaced by a p-Laplacian term D(|Du|p−2 Du), the global
existence and asymptotic behavior of solutions for initial-boundary value problem are
obtained in [34]. A more interesting problem is that is the periodicity preserved for
such nonlinear pseudo-parabolic model with periodic coefficients? We guess it is true,
but to prove it, there needs to get more precise estimates and find suitable space for
solutions.

Acknowledgments This work was supported by the National Natural Science Foundation of China (Nos.
11201047, 11371153, 11301192, 11471127), SRFDP (Nos. 20134407120001, 20114407110008), CSC
(No. 201406755006), Guangdong Natural Science Foundation (No. S2012010010408), the Doctor Startup
Foundation of Liaoning Province (No. 20121025) and the Fundamental Research Funds for the Central
Universities (Grant No. DUT13LK08). The authors would like to express their sincere thanks to the referees
for their valuable comments.

References

1. Barwnblatt, G.I., Zheltov, IvP, Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous
liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

123



Time Periodic Solutions 681

2. Mikelic, A.: A global existence result for the equations describing unsatured flow in porous media with
dynamic capillary pressure. J. Differ. Equ. 248, 1561–1577 (2010)

3. Ting, T.W.: A cooling process according to two-temperature theory of heat conduction. J. Math. Anal.
Appl. 45, 23–31 (1974)

4. Ting, T.W.: Certain non-steady flows of second order fluids. Arch. Ration. Mech. Anal. 14, 1–26 (1963)
5. Padrón, V.: Effect of aggregation on population recovery modeled by a forward-backward pesudopar-

abolic equation. Trans. Am. Math. Soc. 356(7), 2739–2756 (2004)
6. Li, Y.H., Cao, Y.: A viscous Cahn–Hilliard equation with periodic gradient dependent potentials and

sources. Math. Model. Anal. 17(3), 403–422 (2012)
7. Showalter, R.E., Ting, T.W.: Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1,

1–26 (1970)
8. Gladkov, A.L.: Uniqueness solvability of the cauchy problem for certain quasilinear pseudoparabolic

equations. Math. Notes 60(3), 264–268 (1996)
9. Kozhanov, A.I.: Initial boundary value problem for generalized Boussinesque type equations with

nonlinear source. Math. Notes 1(65), 59–63 (1999)
10. Ptashnyk, M.: Degenerate quasilinear pseudoparabolic equations with memory terms and variational

inequalities. Nonlinear Anal. 66(12), 2653–2675 (2007)
11. Fan, Y., Pop, I.S.: A class of pseudo-parabolic equations: existence, uniqueness of weak solutions,

and error estimates for the Euler-implicit discretization. Math. Methods Appl. Sci. 34(18), 2329–2339
(2011)

12. Kaikina, E.I., Naumkin, P.I., Shishmarev, I.A.: The cauchy problem for an equation of Sobolev type
with power non-linearity. Izv. Math. 1(69), 59–111 (2005)

13. Karch, G.: Asymptotic behaviour of solutions to some pesudoparabolic equations. Math. Methods
Appl. Sci. 20(3), 271–289 (1997)

14. Cuesta, C.M., Hulshof, J.: A model problem for groundwater flow with dynamic capillary pressure:
stability of travelling waves. Nonlinear Anal. 52(4), 1199–1218 (2003)

15. Cuesta, C.M., Pop, I.S.: Numerical schemes for a pseudo-parabolic Burgers equation: discontinuous
data and long-time behaviour. J. Comput. Appl. Math. 224(1), 269–283 (2009)

16. Cuesta, C.M., van Duijn, C.J., Hulshof, J.: Infiltration in porous media with dynamic capillary pressure:
travelling waves. Eur. J. Appl. Math. 11(4), 381–397 (2000)

17. van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of the Buckley–Leverett
equation. SIAM J. Math. Anal. 39(2), 507–536 (2007)

18. Cuesta, C.M.: Linear stability analysis of travelling waves for a pseudo-parabolic Burgers’ equation.
Dyn. Partial Differ. Equ. 7(1), 77–105 (2010)

19. King, J.R., Cuesta, C.M.: Small and waiting-time behavior of a Darcy flow model with a dynamic
pressure saturation relation. SIAM J. Appl. Math. 66(5), 1482–1511 (2006)

20. Medeiros, L.A., Menzala, G.P.: Existence and uniqueness for periodic solutions of the Benjamin–
Bona–Mahony equation. SIAM J. Math. Anal. 8, 792–799 (1977)

21. Quarteroni, A.: Fourier spectral methods for pseudo-parabolic equations. SIAM J. Numer. Anal. 2(24),
323–335 (1987)

22. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic
quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51(5), 475–504 (1998)

23. Kaikina, E.I., Naumkin, P.I., Shishmarev, I.A.: Periodic boundary value problem for nonlinear Sobolev-
type equations. Funct. Anal. Appl. 44(3), 171–181 (2010)

24. Matahashi, T., Tsutsumi, M.: On a periodic problem for pseudo-parabolic equations of Sobolev–
Galpern type. Math. Jpn. 22, 535–553 (1978)

25. Matahashi, T., Tsutsumi, M.: Periodic solutions of semilinear pseudo-parabolic equations in Hilbert
space. Funkcialaj Ekvacioj 22, 51–66 (1979)

26. Li, Y., Cao, Y., Yin, J., Wang, Y.: Time periodic solutions for a viscous diffusion equation with nonlinear
periodic sources. Electron. J. Qual. Theory Differ. Equ. 10, 1–19 (2011)

27. Cao, Y., Yin, J.X., Jin, C.H.: A Periodic Problem of a Semilinear Pseudoparabolic Equation. Abstr.
Appl. Anal. 2011, Article ID 363579, 27, (2011). doi:10.1155/2011/363579

28. Quittner, P., Souplet, P.: Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States,
Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser Verlag, Basel (2007)

29. Cao, Y., Yin, J., Wang, C.: Cauchy problems of semilinear pseudo-parabolic equations. J. Differ. Equ.
246(12), 4568–4590 (2009)

123

http://dx.doi.org/10.1155/2011/363579


682 Y. Li, Y. Cao

30. Esteban, M.: On periodic solutions of superlinear parabolic problems. Trans. Am. Math. Soc. 293,
171–189 (1986)

31. Amann, H.: Periodic Solutions of Semilinear Parabolic Equations, Nonlinear Analysis. Academic
Press, New York (1978). 1-29

32. Bandle, C., Levine, H., Zhang, Q.S.: Critical exponents of Fujita type for inhomogeneous parabolic
equations and systems. J. Math. Anal. Appl. 251, 624–648 (2000)

33. Zhang, Q.S.: Blow-up results for nonlinear parabolic equations on manifolds. Duke Math. J. 97, 515–
539 (1999)

34. Li, Y., Cao, Y., Yin, J.: A class of viscous p-Laplace equation with nonlinear sources. Chaos, Solitons,
Fractals 57, 24–34 (2013)

123


	Time Periodic Solutions for a Pseudo-parabolic Type Equation with Weakly Nonlinear Periodic Sources
	Abstract
	1 Introduction
	2 Existence of Periodic Solutions
	3 Asymptotic Behavior
	Final Remark

	Acknowledgments
	References


