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Abstract In this paper, we consider a new notion of Reeb parallel shape operator
for real hypersurfaces M in complex two-plane Grassmannians G2(C

m+2). When M
has Reeb parallel shape operator and non-vanishing geodesic Reeb flow, it becomes a
real hypersurface of Type (A) with exactly four distinct constant principal curvatures.
Moreover, if M has vanishing geodesic Reeb flow and Reeb parallel shape operator,
then M is model space of Type (A) with the radius r = π
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1 Introduction

We denote by G2(C
m+2) the set of all complex two-dimensional linear subspaces

in C
m+2. This Riemannian symmetric space G2(C

m+2) has a remarkable geometric
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618 H. Lee et al.

structure. It is the unique compact irreducible Riemannian manifold with both a Kähler
structure J and a quaternionic Kähler structure J not containing J . Namely, G2(C

m+2)

is a unique compact, irreducible, Kähler, quaternionic Kähler manifold which is not
a hyper-Kähler manifold. Accordingly, in G2(C

m+2) we have two natural geometric
conditions for real hypersurfaces M : that the 1-dimensional distribution [ξ ] = Span{ξ}
and the 3-dimensional distributionD⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape
operator A of M (see [2,3] and [4]).

The almost contact structure vector field ξ is defined by ξ = −J N and is said to be a
Reeb vector field, where N denotes a local unit normal vector field of M in G2(C

m+2).
The almost contact 3-structure vector fields {ξ1, ξ2, ξ3} for the 3-dimensional distribu-
tion D⊥ of M in G2(C

m+2) are defined by ξν = −Jν N (ν = 1, 2, 3), where Jν denotes
a canonical local basis of a quaternionic Kähler structure J and Tx M = D ⊕ D⊥,
x ∈ M .

Using two invariant conditions mentioned above and the result in Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A Let M be a connected orientable real hypersurface in G2(C
m+2), m ≥ 3.

Then both [ξ ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic
HPn in G2(C

m+2).

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant under the
shape operator A. The one dimensional foliation of M by the integral manifolds of
the Reeb vector field ξ is said to be a Hopf foliation of M . We say that M is a Hopf
hypersurface in G2(C

m+2) if and only if the Hopf foliation of M is totally geodesic.
By the formulas in Sect. 3, it can be easily checked that M is Hopf if and only if the
Reeb vector field ξ is Hopf. In particular, M is said to be a real hypersurface with
non-vanishing geodesic Reeb flow in G2(C

m+2) if it has a nonzero principal curvature
for the Reeb vector field ξ , that is, Aξ = αξ where α = g(Aξ, ξ) �= 0.

Using Theorem A, many geometers have given characterizations for Hopf hyper-
surfaces in G2(C

m+2) under certain assumption for various geometry quantities, for
instance, shape operator, normal (or structure) Jacobi operator, structure tensor, and
so on.

In [4], Berndt and Suh considered some equivalent conditions of isometric Reeb
flow. Here, the Reeb flow on M in G2(C

m+2) is isometric means the Reeb vector field
ξ on M is Killing. Using this notion, they gave a characterization of real hypersurfaces
of Type (A) in Theorem A as follows:

Theorem B Let M be a connected orientable real hypersurface in G2(C
m+2), m ≥ 3.

Then the Reeb flow on M is isometric if and only if M is an open part of a tube around
a totally geodesic G2(C

m+1) in G2(C
m+2).

Among the equivalent conditions of isometric Reeb flow in [4], it is very useful to our
proof in Sect. 5 that the Reeb flow on M is isometric if and only if the shape operator
A and the structure tensor field φ commute with each other, that is, Aφ = φ A.
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Reeb Parallel Shape Operator 619

Moreover, Lee and Suh [9] gave a characterization of real hypersurfaces of Type (B)

in G2(C
m+2) in terms of the Reeb vector field ξ as follows:

Theorem C Let M be a connected orientable Hopf hypersurface in G2(C
m+2), m ≥

3. Then the Reeb vector field ξ belongs to the distribution D if and only if M is locally
congruent to an open part of a tube around a totally geodesic HPn in G2(C

m+2),
m = 2n, where the distribution D denotes the orthogonal complement of D⊥ =
Span{ξ1, ξ2, ξ3}.
In [11], Suh proved the non-existence of real hypersurfaces in G2(C

m+2) with parallel
shape operator, that is, (∇X A)Y = 0, where X and Y are any tangent vector field
on M . Moreover, he [12] also considered a new condition which is to restrict X to
a distribution F = [ξ ] ∪ D⊥, namely F-parallel shape operator, and gave two non-
existence theorems to the following two cases of real hypersurfaces M in G2(C

m+2)

with F-parallel shape operator: One is when M is a Hopf hypersurface. Another is
when M is a real hypersurface in G2(C

m+2) satisfying D⊥-invariance under the shape
operator, that is, AD⊥ ⊂ D⊥. As regards a weaker condition for a real hypersurface in
G2(C

m+2) with parallel shape operator, in [6] and [8] Kim, Yang and the first author
considered recurrent and η-parallel shape operator and gave non-existence theorems
of Hopf hypersurfaces in G2(C

m+2) satisfying such weaker parallelism conditions,
respectively.

Motivated by these notions, it is natural to consider a condition weaker than parallel
shape operator for real hypersurfaces M in G2(C

m+2). From such a point of view,
the authors in [5] studied a generalized parallelness for the shape operator of M in
G2(C

m+2), namely η-parallel shape operator of M . They defined the η-parallel shape
operator of M in G2(C

m+2) if the shape operator A of M satisfies g((∇X A)Y, Z) = 0
for any tangent vectors X, Y, Z ∈ h, where h denotes the set of all tangent vectors
being orthogonal to the Reeb vector ξ in Tx M , x ∈ M . From this definition, we see
that it becomes a weaker condition than parallel shape operator.

Accordingly, we consider a new notion weaker than parallel shape operator, that is,
Reeb parallel shape operator which is defined by

(∇ξ A)Y = 0 (*)

for any tangent vector field Y on M .
In this paper, we give a classification of real hypersurfaces in G2(C

m+2) with Reeb
parallel shape operator as follows:

Theorem 1 Let M be a connected orientable real hypersurface in G2(C
m+2), m ≥ 3,

with non-vanishing geodesic Reeb flow. Then the shape operator of M is Reeb parallel
if and only if M is an open part of a tube of some radius r ∈ (0, π

4
√

2
) ∪ ( π

4
√

2
, π

2
√

2
)

around a totally geodesic G2(C
m+1) in G2(C

m+2).

Actually, when the Reeb vector field ξ belongs to the distribution D⊥, the shape
operator A for a Hopf hypersurface M in G2(C

m+2) with vanishing geodesic Reeb
flow satisfies automatically the Reeb parallelness (see Sect. 6). Using this fact, we
give:
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620 H. Lee et al.

Theorem 2 Let M be a connected orientable real hypersurface in G2(C
m+2), m ≥ 3,

with Reeb parallel shape operator and vanishing geodesic Reeb flow. If the squared
norm of the shape operator satisfies TrA2 = ||A||2 ≤ 4m, then M is locally congruent
to an open part of a tube of radius r = π

4
√

2
around a totally geodesic G2(C

m+1) in

G2(C
m+2).

In order to give the proof of our theorems, in Sect. 2 we recall Riemannian geometry of
complex two-plane Grassmannians G2(C

m+2). In Sect. 3, some fundamental formulas
including the Codazzi and Gauss equations for real hypersurfaces in G2(C

m+2) will
be also recalled. In Sect. 4, we will prove that the Reeb vector field ξ of a Hopf
hypersurface in G2(C

m+2) with Reeb parallel shape operator belongs to either the
distribution D or the distribution D⊥. And in the same section, we will check whether
real hypersurfaces of Type (A) or Type (B) in Theorem A satisfy the condition (*)
or not. In Sect. 5, we will give a complete proof of our Theorem 1 according to the
non-vanishing geodesic Reeb flow. Finally, we will give the proof of Theorem 2 in
Sect. 6.

2 Riemannian Geometry of G2(C
m+2)

In this section, we summarize basic material about G2(C
m+2), for details we refer

to [2,3], and [4]. By G2(C
m+2) we denote the set of all complex two-dimensional

linear subspaces in C
m+2. The special unitary group G = SU (m +2) acts transitively

on G2(C
m+2) with stabilizer isomorphic to K = S(U (2) × U (m)) ⊂ G. Then

G2(C
m+2) can be identified with the homogeneous space G/K , which we equip with

the unique analytic structure for which the natural action of G on G2(C
m+2) becomes

analytic. Denote by g and k the Lie algebra of G and K , respectively, and by m the
orthogonal complement of k in g with respect to the Cartan-Killing form B of g. Then
g = k ⊕ m is an Ad(K )-invariant reductive decomposition of g. We put o = eK and
identify ToG2(C

m+2) with m in the usual manner. Since B is negative definite on g, its
negative restricted to m×m yields a positive definite inner product on m. By Ad(K )-
invariance of B this inner product can be extended to a G-invariant Riemannian metric
g on G2(C

m+2). In this way, G2(C
m+2) becomes a Riemannian homogeneous space,

even a Riemannian symmetric space. For computational reasons, we normalize g such
that the maximal sectional curvature of (G2(C

m+2), g) is eight.
When m = 1, G2(C

3) is isometric to the two-dimensional complex projective
space CP2 with constant holomorphic sectional curvature eight.

When m = 2, we note that the isomorphism Spin(6) � SU (4) yields an isom-
etry between G2(C

4) and the real Grassmann manifold G+
2 (R6) of oriented two-

dimensional linear subspaces in R
6. In this paper, we will assume m≥3.

The Lie algebra k of K has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R,
where R denotes the center of k. Viewing k as the holonomy algebra of G2(C

m+2),
the center R induces a Kähler structure J and the su(2)-part a quaternionic Kähler
structure J on G2(C

m+2). If Jν is any almost Hermitian structure in J, then J Jν =
Jν J , and J Jν is a symmetric endomorphism with (J Jν)

2 = I and tr(J Jν) = 0 for
ν = 1, 2, 3.
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Reeb Parallel Shape Operator 621

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian
structures Jν in J such that Jν Jν+1 = Jν+2 = −Jν+1 Jν , where the index ν is taken
modulo three. Since J is parallel with respect to the Riemannian connection ˜∇ of
(G2(C

m+2), g), there exist for any canonical local basis {J1, J2, J3} of J three local
one-forms q1, q2, q3 such that

˜∇X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (2.1)

for all vector fields X on G2(C
m+2).

The Riemannian curvature tensor ˜R of G2(C
m+2) is locally given by

˜R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X

− g(J X, Z)JY − 2g(J X, Y )J Z

+
3

∑

ν=1

{

g(JνY, Z)Jν X − g(Jν X, Z)JνY − 2g(Jν X, Y )Jν Z
}

+
3

∑

ν=1

{

g(Jν JY, Z)Jν J X − g(Jν J X, Z)Jν JY
}

, (2.2)

where {J1, J2, J3} denotes a canonical local basis of J.

3 Some Fundamental Formulas

In this section, we derive some basic formulas and the Codazzi equation for a real
hypersurface in G2(C

m+2) (see [9–12] and [7]).
Let M be a real hypersurface of G2(C

m+2), that is, a submanifold of G2(C
m+2)

with real codimension one. The induced Riemannian metric on M will also be denoted
by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal
vector field of M and A the shape operator of M with respect to N .

Now let us put

J X = φX + η(X)N , Jν X = φν X + ην(X)N (3.1)

for any tangent vector field X of a real hypersurface M in G2(C
m+2). From the Kähler

structure J of G2(C
m+2) there exists an almost contact metric structure (φ, ξ, η, g)

induced on M in such a way that

φ2 X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ) (3.2)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local basis of
J. Then the quaternionic Kähler structure Jν of G2(C

m+2), together with the condition
Jν Jν+1 = Jν+2 = −Jν+1 Jν in Sect. 1, induces an almost contact metric 3-structure
(φν, ξν, ην, g) on M as follows:
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622 H. Lee et al.

φ2
ν X = −X + ην(X)ξν, ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φνφν+1 X = φν+2 X + ην+1(X)ξν,

φν+1φν X = −φν+2 X + ην(X)ξν+1 (3.3)

for any vector field X tangent to M . Moreover, from the commuting property of
Jν J = J Jν , ν = 1, 2, 3 in Sect. 2 and (3.1), the relation between these two contact
metric structures (φ, ξ, η, g) and (φν, ξν, ην, g), ν = 1, 2, 3, can be given by

φφν X = φνφX + ην(X)ξ − η(X)ξν,

ην(φX) = η(φν X), φξν = φνξ. (3.4)

On the other hand, from the parallelism of Kähler structure J , that is, ˜∇ J = 0 and
the quaternionic Kähler structure J (see (2.1)), together with Gauss and Weingarten
formulas it follows that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φ AX, (3.5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φν AX, (3.6)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX

−g(AX, Y )ξν. (3.7)

Combining these formulas, we find the following:

∇X (φνξ) = ∇X (φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφ AX

−g(AX, ξ)ξν + η(ξν)AX. (3.8)

Using the above expression (2.2) for the curvature tensor ˜R of G2(C
m+2), the

equations of Codazzi and Gauss are respectively given by

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3

∑

ν=1

{

ην(X)φνY − ην(Y )φν X − 2g(φν X, Y )ξν

}

+
3

∑

ν=1

{

ην(φX)φνφY − ην(φY )φνφX
}

+
3

∑

ν=1

{

η(X)ην(φY ) − η(Y )ην(φX)
}

ξν (3.9)
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Reeb Parallel Shape Operator 623

and

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+
3

∑

ν=1

{

g(φνY, Z)φν X − g(φν X, Z)φνY − 2g(φν X, Y )φν Z
}

+
3

∑

ν=1

{

g(φνφY, Z)φνφX − g(φνφX, Z)φνφY
}

−
3

∑

ν=1

{

η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY
}

−
3

∑

ν=1

{

η(X)g(φνφY, Z) − η(Y )g(φνφX, Z)
}

ξν

+ g(AY, Z)AX − g(AX, Z)AY, (3.10)

where R denotes the curvature tensor of a real hypersurface M in G2(C
m+2).

4 Hopf Hypersurfaces in G2(C
m+2) with Reeb Parallel Shape Operator

From now on, we assume that M is a Hopf hypersurface in G2(C
m+2) with Reeb

parallel shape operator, that is, the shape operator A of M satisfies:

(∇ξ A)Y = 0 (*)

for any tangent vector field Y on M .
Then from the equation of Codazzi (3.9), we have

(∇ξ A)Y = (∇Y A)ξ + φY +
3

∑

ν=1

{

ην(ξ)φνY − ην(Y )φνξ + 3ην(φY )ξν

}

for any tangent vector field Y on M .
Since (∇Y A)ξ = (Yα)ξ + αφ AY − Aφ AY , the condition (*) can be written as

(Yα)ξ + αφ AY − Aφ AY + φY

+
3

∑

ν=1

{

ην(ξ)φνY − ην(Y )φνξ + 3ην(φY )ξν

} = 0 (4.1)

for any tangent vector field Y on M .
Substituting Y = ξ in above equation, we have (ξα)ξ = 0. From this, we obtain

the following result:
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624 H. Lee et al.

Lemma 4.1 Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3, with Reeb parallel

shape operator. Then the principal curvature α is constant along the direction of ξ ,
that is, ξα = 0.

In this section, our main purpose is to show that the Reeb vector field ξ belongs to
either the distribution D or the orthogonal complement D⊥ such that Tx M = D⊕D⊥
for any point x ∈ M .

To show this fact, unless otherwise stated in this section, we consider that the Reeb
vector field ξ satisfies

ξ = η(X0)X0 + η(ξ1)ξ1 (**)

for some unit vectors X0 ∈ D and ξ1 ∈ D⊥ and η(X0)η(ξ1) �= 0.

Remark 4.2 Under this situation, in [7] the authors proved that D and D⊥-components
of the Reeb vector field ξ are invariant under the shape operator when a Hopf hyper-
surface in G2(C

m+2) satisfies the condition ξα = 0.

On the other hand, using the notion of the geodesic Reeb flow, Berndt and Suh ([3,4])
proved the following:

Lemma A If M is a connected orientable real hypersurface in G2(C
m+2) with geo-

desic Reeb flow, then we have the following two equations:

Yα = (ξα)η(Y ) − 4
3

∑

ν=1

ην(ξ)ην(φY ), (4.2)

and

αAφY +αφ AY −2Aφ AY +2φY = 2
3

∑

ν=1

{

−ην(Y )φξν −ην(φY )ξν

−ην(ξ)φνY +2η(Y )ην(ξ)φξν +2ην(φY )ην(ξ)ξ
}

(4.3)

for any tangent vector field Y on M.

Remark 4.3 Assume that the D-component of ξ is invariant under the shape operator
A, that is, AX0 = αX0. By putting Y = X0 in (4.3) and using the fact φX0 =
−η(ξ1)φ1 X0 which is induced by φξ = 0, we see that

αAφX0 = (

α2 + 4η2(X0)
)

φX0. (4.4)

Now, using these facts, we prove the following proposition:

Proposition 4.4 Let M be a real hypersurface in complex two-plane Grassmannians
G2(C

m+2), m ≥ 3 with Reeb parallel shape operator. Then the Reeb vector field ξ

belongs to either the distribution D or the distribution D⊥.
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Reeb Parallel Shape Operator 625

Proof Under our assumption, M is a Hopf hypersurface with Reeb parallel shape
operator, we see that ξα = 0 (Lemma 4.1). Moreover, we know that D and D⊥-
components of the Reeb vector field ξ are invariant under the shape operator A of M ,
that is, Aξ1 = αξ1 and AX0 = αX0 (see Remark 4.2).

Actually, when the smooth function α = g(Aξ, ξ) identically vanishes, this propo-
sition can be verified directly from (4.2).

Thus, in this proof, we consider only the case that the function α is non-vanishing.
In order to prove our proposition, we put Y = X0 in (4.1). It follows

(X0α)ξ + αφ AX0 − Aφ AX0 + φX0 +
3

∑

ν=1

{

ην(ξ)φν X0 + 3ην(φX0)ξν

} = 0.

Since φX0 ∈ D and AX0 = αX0, it becomes

(X0α)ξ + α2φX0 − αAφX0 + φX0 +
3

∑

ν=1

ην(ξ)φν X0 = 0.

Moreover, using (**), we have

η(X0)(X0α)X0 + η(ξ1)(X0α)ξ1 + α2φX0 − αAφX0 + φX0 + η(ξ1)φ1 X0 = 0.

From (4.4), we obtain

η(X0)(X0α)X0 + η(ξ1)(X0α)ξ1 − 4η2(X0)φX0 + φX0 + η(ξ1)φ1 X0 = 0.

Using φξ = 0 and (**), we see that φX0 = −η(ξ1)φ1 X0. It implies that

η(X0)(X0α)X0 + η(ξ1)(X0α)ξ1 + 4η2(X0)η(ξ1)φ1 X0 = 0. (4.5)

Taking the inner product with φ1 X0 in (4.5), we get 4η2(X0)η(ξ1) = 0. It contra-
dicts our assumption η(X0)η(ξ1) �= 0. Accordingly, we get a complete proof of our
Proposition 4.4. 
�

Before giving the proofs of our Theorems in the introduction, let us check whether
the shape operator A of real hypersurfaces of Type (A) and of Type (B) in Theorem A
satisfies the condition (*) or not for any tangent vector field Y ∈ T M .

First, let us check our problem for the case that M is locally congruent to a real
hypersurface of Type (A), that is, an open part of a tube around a totally geodesic
G2(C

m+1) in G2(C
m+2) with some radius r ∈ (0, π

2
√

2
). In order to do this, we recall

a proposition due to Berndt and Suh [3] as follows :

Proposition A Let M be a connected real hypersurface of G2(C
m+2). Suppose that

AD ⊂ D, Aξ = αξ , and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian
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626 H. Lee et al.

structure such that J N = J1 N. Then M has three (if r = π/2
√

8) or four (otherwise)
distinct constant principal curvatures

α = √
8 cot(

√
8r), β = √

2 cot(
√

2r), λ = −√
2 tan(

√
2r), μ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m − 2 = m(μ),

and the corresponding eigenspaces are

Tα = Rξ = RJ N = Rξ1 = Span
{

ξ
} = Span

{

ξ1
}

,

Tβ = C
⊥ξ = C

⊥N = Rξ2 ⊕ Rξ3 = Span
{

ξ2, ξ3
}

,

Tλ = {X | X ⊥ Hξ, J X = J1 X },
Tμ = {X | X ⊥ Hξ, J X = −J1 X },

where Rξ , Cξ , and Hξ , respectively, denote real, complex, and quaternionic span of
the structure vector field ξ , and C

⊥ξ denotes the orthogonal complement of Cξ in Hξ .

For our convenience, let MA be a real hypersurface of Type (A) in G2(C
m+2). Using

the equation of Codazzi (3.9) and the fact that the principal curvature α of ξ is a
constant, we have the following equation.

(∇ξ A)Y = αφ AY − Aφ AY + φY + φ1Y + 2η3(Y )ξ2 − 2η2(Y )ξ3 (4.6)

for any tangent vector field Y on M .
From now on, using (4.6), let us check whether each eigenspace, Tα , Tβ , Tλ, and

Tμ of MA in G2(C
m+2), has Reeb parallel shape operator or not.

Case A-1 : Y = ξ(= ξ1) ∈ Tα .
By putting Y = ξ into (4.6), we know that the shape operator A becomes Reeb

parallel, that is, (∇ξ A)ξ = 0.
Case A-2 : Y ∈ Tβ where Tβ = Span{ξ2, ξ3}.
Since Tβ is spanned by ξ2 and ξ3, we put Y = ξ2 and Y = ξ3 in (4.6). Then we

have
(∇ξ A)ξ2 = (β2 − αβ − 2)ξ3

and
(∇ξ A)ξ3 = −(β2 − αβ − 2)ξ2,

respectively. On the other hand, we know that

β2 − αβ − 2 = 0,

because α = √
8 cot(

√
8r) and β = √

2 cot(
√

2r) in Proposition A. So we conclude
that the shape operator of MA also satisfies (∇ξ A)Y = 0 for any eigenvector Y ∈ Tβ .

Case A-3 : Y ∈ Tλ = { Y | Y ∈ D, JY = J1Y }.
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Reeb Parallel Shape Operator 627

We naturally see that if Y ∈ Tλ then φY = φ1Y . Moreover, the vector φY also
belong to the eigenspace Tλ for any Y ∈ Tλ, that is, φTλ ⊂ Tλ. Putting Y ∈ Tλ in (4.6)
and together with these facts, we obtain

(∇ξ A)Y = −(λ2 − αλ − 2)φY.

But in Proposition A, since the principal curvatures α and λ are given by α =√
8 cot(

√
8r) and λ = −√

2 tan(
√

2r) for r ∈ (0, π/
√

8), respectively, we get

λ2 − αλ − 2 = 0.

It implies that (∇ξ A)Y = 0 for any tangent vector field Y ∈ Tλ.
Case A-4 : Y ∈ Tμ = { Y | Y ∈ D, JY = −J1Y }.
In this case, if Y ∈ Tμ then φY = −φ1Y . Moreover, we see φTμ ⊂ Tμ. So, (4.6)

is reduced to (∇ξ A)X = 0, because μ = 0.
Summing up all cases mentioned above, we can assert that:

Remark 4.5 The shape operator A of real hypersurfaces of Type (A) in G2(C
m+2) is

Reeb parallel.

Next, let us check whether the shape operator A of real hypersurfaces of Type (B)

satisfies the condition (*) for any tangent vector field Y ∈ T M . From now on, we will
denote such real hypersurfaces by MB for the sake of convenience. As is well known,
MB has five distinct constant principal curvatures as follows [3]:

Proposition B Let M be a connected real hypersurface of G2(C
m+2). Suppose that

AD ⊂ D, Aξ = αξ , and ξ is tangent to D. Then the quaternionic dimension m of
G2(C

m+2) is even, say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), μ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ ), m(λ) = 4n − 4 = m(μ)

and the corresponding eigenspaces are

Tα = Rξ = Span
{

ξ
}

,

Tβ = JJξ = Span
{

ξν | ν = 1, 2, 3
}

,

Tγ = Jξ = Span
{

φνξ | ν = 1, 2, 3
}

,

Tλ, Tμ,

where
Tλ ⊕ Tμ = (HCξ)⊥, JTλ = Tλ, JTμ = Tμ, J Tλ = Tμ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ where

HCξ = Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.
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Now, to prove the claim, we suppose that MB has Reeb parallel shape operator.
Then, since ξ ∈ D, MB satisfies the following equation:

αφ AY − Aφ AY + φY −
3

∑

ν=1

{

ην(Y )φνξ − 3ην(φY )ξν

} = 0, ∀Y ∈ T M,

from (4.1).
If we put Y = ξ2 ∈ Tβ in above equation, it becomes

αβφξ2 = 0

because Aφ2ξ = γφ2ξ and γ = 0. From this, it follows that

αβ = 0.

But, from Proposition B, we see that αβ = −4 for some r ∈ (0, π/4). This is a
contradiction. So this case can not occur.

Therefore we also have the following:

Remark 4.6 The shape operator A of real hypersurfaces of Type (B) in G2(C
m+2)

does not satisfy the Reeb parallel condition (*).

5 The Proof of Theorem 1

In this section, let M be a real hypersurface in G2(C
m+2) with Reeb parallel shape

operator and non-vanishing geodesic Reeb flow.
In [4], Berndt and Suh proved that

Lemma B Let M be a connected orientable real hypersurface in Kähler manifolds.
Then the following statements are equivalent:

(a) The Reeb flow on M is geodesic;
(b) The Reeb vector field ξ is a principal curvature vector of M everywhere;
(c) The maximal complex subbundle B of T M is invariant under the shape operator A

of M.

From this, we see that a real hypersurface M satisfying our condition becomes
Hopf, since our real hypersurface M has non-vanishing geodesic Reeb flow. Thus by
Proposition 4.4, we consider the following two cases:

• Case I : the Reeb vector field ξ belongs to the distribution D⊥,
• Case II : the Reeb vector field ξ belongs to the distribution D.

First of all, let us consider the Case I, that is, ξ ∈ D⊥. Accordingly, we may put
ξ = ξ1. Under these assumptions, we prove the following:

Proposition 5.1 Let M be a real hypersurface in G2(C
m+2), m ≥ 3, with Reeb

parallel shape operator and non-vanishing geodesic Reeb flow. If the Reeb vector
field ξ belongs to the distribution D⊥, then the shape operator A commutes with the
structure tensor field φ.
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Reeb Parallel Shape Operator 629

Proof From our assumptions, (4.1) can be written as

(Yα)ξ + αφ AY − Aφ AY + φY + φ1Y + 2η3(Y )ξ2 − 2η2(Y )ξ3 = 0

for any tangent vector field Y on M . It follows that

2Aφ AY = 2(Yα)ξ + 2αφ AY + 2φY + 2φ1Y + 4η3(Y )ξ2 − 4η2(Y )ξ3.

On the other hand, from (4.3) we also obtain

2Aφ AY = αAφY + αφ AY + 2φY + 2φ1Y + 4η3(Y )ξ2 − 4η2(Y )ξ3.

Thus from the preceding two equations, we have finally

2(Yα)ξ + αφ AY − αAφY = 0 (5.1)

for any tangent vector field Y on M .
But, under our assumptions, we have already seen that ξα = 0 (see Lemma 4.1).

From this fact, (4.2) can be written as

Yα = −4
3

∑

ν=1

ην(ξ)ην(φY )

for any Y ∈ T M . Therefore since ξ = ξ1, it follows that Yα = 0. Substituting this
result into (5.1), it follows that

α(φ A − Aφ)Y = 0

for any tangent vector field Y on M . It means that the shape operator A commutes with
the structure tensor field φ on M in G2(C

m+2), since M has non-vanishing geodesic
Reeb flow. It completes the proof of our Proposition 5.1.

Remark 5.2 As mentioned in the introduction, the structure tensor field φ and the
shape operator A of M commute with each other if and only if the Reeb flow on M is
isometric (see [4]).

Therefore from Theorem B and Remark 4.5, we have the following:

Theorem 5.3 Let M be a connected real hypersurface in G2(C
m+2), m ≥ 3 with

non-vanishing geodesic Reeb flow. The shape operator A of M is Reeb parallel and
the Reeb vector field ξ belongs to the distribution D⊥ if and only if M is locally
congruent to an open part of a tube around radius r on a totally geodesic G2(C

m+1)

in G2(C
m+2) where r ∈ (0, π

4
√

2
) ∪ ( π

4
√

2
, π

2
√

2
).

Next, we consider the case ξ ∈ D. By Theorem C, we see that M is locally
congruent to a real hypersurface of Type (B) under our assumptions. But as mentioned
in Sect. 4, a real hypersurface of Type (B) does not have Reeb parallel shape operator
(see Remark 4.6). From these facts, we obtain the following theorem:
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Theorem 5.4 There does not exist any real hypersurface in G2(C
m+2), m ≥ 3, with

Reeb parallel shape operator and non-vanishing geodesic Reeb flow when the Reeb
vector field ξ belongs to the distribution D.

Combining Proposition 4.4, and Theorems 5.3 and 5.4, this completes the proof of
our Theorem 1 in the introduction.

6 The Proof of Theorem 2

From now on, let M be a real hypersurface in G2(C
m+2), m ≥ 3, with Reeb parallel

shape operator and vanishing geodesic Reeb flow. By virtue of Lemma B given in the
previous section, M must be Hopf, that is, Aξ = αξ where α = g(Aξ, ξ) = 0. Then
by Proposition 4.4, we consider the following two cases:

• Case I : the Reeb vector field ξ belongs to the distribution D⊥,
• Case II : the Reeb vector field ξ belongs to the distribution D.

By virtue of Theorem C and Proposition B, we assert that when the Reeb vector field ξ

belongs to the distribution D, there does not exist any real hypersurface in G2(C
m+2),

m ≥ 3, with Reeb parallel shape operator and vanishing geodesic Reeb flow. In fact,
a real hypersurface of Type (B) in Theorem A due to Berndt and Suh [3] does not
have vanishing geodesic Reeb flow (see Proposition B in Sect. 4).

From such a point of view, from now on we only consider the Case I, that is, ξ ∈ D⊥.
Accordingly, we may put ξ = ξ1. Under these assumptions, we prove the following:

Proposition 6.1 Let M be a real hypersurface in G2(C
m+2), m ≥ 3, with Reeb

parallel shape operator and vanishing geodesic Reeb flow. If the Reeb vector field ξ

belongs to the distribution D⊥ and the squared norm of the shape operator satisfies
||A||2 ≤ 4m, then the Reeb flow on M is isometric.

Proof Since M has vanishing geodesic Reeb flow, that is, Aξ = 0, we obtain

(∇X A)ξ = −Aφ AX

for any tangent vector field X on M . Using the equation of Codazzi (3.9), we get

(∇X A)ξ = −φX − φ1 X − 2η3(X)ξ2 + 2η2(X)ξ3

together with our assumptions that M has Reeb parallel shape operator and ξ = ξ1
(since we now consider the case ξ ∈ D⊥, we may put ξ = ξ1). Hence the above two
equations give us

Aφ AX = φX + φ1 X + 2η3(X)ξ2 − 2η2(X)ξ3 (6.1)

for any vector field X ∈ T M .
Moreover, applying the structure tensor φ to (6.1), it can be written as

φ Aφ AX = φ2 X + φφ1 X + 2η3(X)φξ2 − 2η2(X)φξ3

= −X + η(X)ξ + φφ1 X − 2η3(X)ξ3 − 2η2(X)ξ2
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for any tangent vector field X on M .
Let {e1, e2, · · · , e4m−1} be an orthonormal basis for Tx M where x is any point of

M . Then we get

φ Aφ Aei = −ei + η(ei )ξ + φφ1ei − 2η3(ei )ξ3 − 2η2(ei )ξ2 (6.2)

for i = 1, 2, · · · , 4m − 1. From this, we calculate the trace of the matrix φ Aφ A, that
is,

Tr(φ Aφ A) =
4m−1
∑

i=1

g(φ Aφ Aei , ei )

= −
4m−1
∑

i=1

g(ei , ei ) +
4m−1
∑

i=1

η(ei )g(ξ, ei ) +
4m−1
∑

i=1

g(φφ1ei , ei )

−2
4m−1
∑

i=1

η3(ei )g(ξ3, ei ) − 2
4m−1
∑

i=1

η2(ei )g(ξ2, ei )

= −(4m − 1) + g(ξ, ξ) + Tr(φφ1) − 2g(ξ3, ξ3) − 2g(ξ2, ξ2)

= −4m, (6.3)

together with Tr(φφν) = 2ην(ξ), ν = 1, 2, 3 (see [13]).
On the other hand, we are able to calculate the following:

||φ A − Aφ||2 =
4m−1
∑

i=1

g
(

(φ A − Aφ)ei , (φ A − Aφ)ei
)

= −
4m−1
∑

i=1

g(Aφ2 Aei , ei ) +
4m−1
∑

i=1

g(φ Aφ Aei , ei )

+
4m−1
∑

i=1

g(Aφ Aφei , ei ) −
4m−1
∑

i=1

g(φ A2φei , ei )

=
4m−1
∑

i=1

g(A2ei , ei ) −
4m−1
∑

i=1

η(Aei )g(Aξ, ei )

+2
4m−1
∑

i=1

g(Aφ Aφei , ei ) −
4m−1
∑

i=1

g(φ A2φei , ei )

= TrA2 + 2Tr(Aφ Aφ) − Tr(φ A2φ)

= TrA2 + 2Tr(φ Aφ A) − Tr(A2φ2)

= 2TrA2 + 2Tr(φ Aφ A), (6.4)

using the facts, Aξ = 0 and Tr(AB) = Tr(B A) for any two matrices A, B with same
size.

123



632 H. Lee et al.

From this, together with (6.3) and our assumption for the squared norm of shape
operator A of M , the left side of (6.4) should vanish for a real hypersurface M in
G2(C

m+2) with α = 0 and ∇ξ A = 0. This gives that the shape operator A commutes
with the structure tensor φ, that is, Aφ = φ A. According to the result due to Berndt
and Suh [4], the Reeb flow on M becomes isometric. It completes a proof of our
proposition. 
�

Hence from Theorem B, we can assert that if a real hypersurface M in G2(C
m+2)

satisfies the conditions in Proposition 6.1, then M becomes a model space of Type (A)

in Theorem A. To serve the convenience of notation, a model space of Type (A) with
radius r is denoted by MA or MA(r). From this let us now check if the model space
MA satisfies the assumptions in Proposition 6.1 or not.

First, we can state that MA has Reeb parallel shape operator from the observation
given in Sect. 4. Moreover, we see that a model space MA becomes an open part of a
tube around a totally geodesic G2(C

m+1) in G2(C
m+2) with radius r = π

4
√

2
, because

the principal curvature α of ξ on MA must be zero. From this and Proposition A in
Sect. 4, we have the following three distinct principal curvatures and the corresponding
multiplicities with respect to the eigenspaces of MA( π

4
√

2
):

Principal curvature Multiplicity Eigenspace

α = 0 1 Tα = Span{ξ}
β = √

2 2 Tβ = Span{ξ2, ξ3}
λ = −√

2 2(m − 1) Tλ = {X | X⊥Hξ, J X = J1 X}
μ = 0 2(m − 1) Tμ = {X | X⊥Hξ, J X = −J1 X}

By this table and a straightforward calculation we have the squared norm of the
shape operator A on MA( π

4
√

2
) as follows.

||A2|| =
4m−1
∑

i=1

g(Aei , Aei )

=
2m−2
∑

i=1

g(Aei , Aei ) +
4m−4
∑

i=2m−1

g(Aei , Aei ) + g(Ae4m−3, Ae4m−3)

+g(Ae4m−2, Ae4m−2) + g(Ae4m−1, Ae4m−1)

=
2m−2
∑

i=1

λ2g(ei , ei ) +
4m−4
∑

i=2m−1

μ2g(ei , ei ) + g(Aξ, Aξ)

+g(Aξ2, Aξ2) + g(Aξ3, Aξ3)

= 2(m − 1)λ2 + 2(m − 1)μ2 + α2 + 2β2

= 4(m − 1) + 4

= 4m,
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where e1, e2, · · · , e2m−2 ∈ Tλ, e2m−1, · · · , e4m−4 ∈ Tμ, e4m−3 = ξ = ξ1,
e4m−2 = ξ2, e4m−1 = ξ3. From this calculation, we see that MA( π

4
√

2
) also satis-

fies our assumption in Proposition 6.1.
Summing up these discussions, we obtain our Theorem 2 mentioned in the intro-

duction. 
�
Lastly, we will give a proof for our assertion given in the introduction as follows.

Lemma 6.2 Let M be a real hypersurface in G2(C
m+2), m ≥ 3, with vanishing

geodesic Reeb flow. If the Reeb vector field ξ belongs to the distribution D⊥, then the
shape operator A of M is Reeb parallel.

Proof Using the equation of Codazzi (3.9), we obtain that

(∇ξ A)Y − (∇Y A)ξ = φY +
3

∑

ν=1

{

ην(ξ)φνY − ην(Y )φνξ + 3ην(φY )ξν

}

for any tangent vector field Y on M .
From our assumptions, Aξ = 0 and ξ = ξ1, we have

(∇ξ A)Y + Aφ AY = φY + φ1Y + 2η2(Y )ξ2 − 2η3(Y )ξ3. (6.5)

Moreover, since M is Hopf, (4.3) implies that

Aφ AY = φY + φ1Y + 2η2(Y )ξ2 − 2η3(Y )ξ3, (6.6)

together with α = 0 and ξ = ξ1.
From (6.5) and (6.6), we get (∇ξ A)Y = 0 for any tangent vector field Y on M .

That is, a real hypersurface M in G2(C
m+2) with vanishing geodesic Reeb flow, that

is, α = g(Aξ, ξ) = 0 and ξ ∈ D⊥ has automatically Reeb parallel shape operator.
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