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Abstract A k-total-coloring of a graph G is a coloring of vertex set and edge set using
k colors such that no two adjacent or incident elements receive the same color. In this
paper, we prove that if G is a planar graph with maximum � ≥ 8 and every 6-cycle
of G contains at most one chord or any chordal 6-cycles are not adjacent, then G has
a (� + 1)-total-coloring.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow
[2] for terminologies and notations not defined here. Let G be a graph. We use V (G),
E(G), �(G) and δ(G) (or simply V , E , � and δ) to denote the vertex set, the edge
set, the maximum degree and the minimum degree of G, respectively. For a vertex
v ∈ V , let N (v) denote the set of vertices adjacent to v and let d(v) = |N (v)| denote
the degree of v. A k-vertex, a k−-vertex or a k+-vertex is a vertex of degree k, at most
k or at least k, respectively. A k-cycle is a cycle of length k. We use (v1, v2, . . . , vd) to
denote a cycle (or a face) whose boundary vertices are v1, v2, . . . , vd in the clockwise
order. Note that all the subscripts in the paper are taken modulo d. We say that two
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cycles are adjacent (or intersecting) if they share at least one edge (or one vertex,
respectively). Let C = (v1, v2, . . . , vk)(k ≥ 4) be a cycle. If there is an edge viv j

with j �≡ i ± 1 (mod k), then the edge viv j is called a chord of C .
A k-total-coloring of a graph G = (V, E) is a coloring of V ∪ E using k colors

such that no two adjacent or incident elements receive the same color. A graph G is
total-k-colorable if it admits a k-total-coloring. The total chromatic number χ ′(G) of
G is the smallest integer k such that G has a k-total-coloring. Clearly, χ ′′(G) ≥ �+1.
Behzad [1] and Vizing [11] conjectured independently that χ ′′(G) ≤ � + 2 for each
graph G. This conjecture was confirmed for graphs with � ≤ 5. For planar graphs
the only open case is that of � = 6 (see [6,9]). In recent years, the study of total
colorings planar graphs has attracted considerable attention. For planar graphs with
large maximum degree, it is possible to determine χ ′′(G) = � + 1. This first result
was given in [3] for � ≥ 14, which was finally extended to � ≥ 9 in [7]. Zhu [8]
proved that if G is a planar graph with maximum degree 8, and for each vertex x ,
there is an integer kx ∈ {3, 4, 5, 6, 7, 8} such that there is no kx -cycle which contains
x , then χ ′′(G) = 9. Wang et al. [13] extended this result to that there is at most one
kx -cycle which contains x . Chang [4] proved that for planar graph G with � ≥ 7, if
there is an integer kx ∈ {3, 4, 5, 6} such that there is no kx -cycle which contains x
for each x ∈ V (G), then χ ′′(G) = � + 1. Wang et al. [12] proved χ ′′(G) = � + 1
for some planar graphs with small maximum degree. Hou et al. [5] proved that every
planar graphs with � ≥ 8 and without 6-cycles are total-9-colorable. Shen and Wang
[10] extended this result to planar graphs without chordal 6-cycles. In this paper, we
extend this result and get the following theorem.

Theorem 1 Let G be a planar graph with maximum degree � ≥ 8. If every 6-cycle
of G contains at most one chord or chordal 6-cycles are not adjacent in G, then
χ ′′(G) = � + 1.

2 Proof of Theorem 1

First, we introduce additional notations and definitions here for convenience. Let G
be a planar graph having a plane drawing and let F be the face set of G. For a face f
of G, the degree d( f ) is the number of edges incident with it, where each cut-edge is
counted twice. A k-face, a k−-face or a k+-face is a face of degree k, at most k or at
least k, respectively. Denote by nd(v) the number of d-vertices adjacent to the vertex
v, fd(v) the number of d-faces incident with v.

Now, we begin to prove Theorem 1. According to [7], the theorem is true for
� ≥ 9. So we assume in the following that � = 8. Let G = (V, E) be a minimal
counterexample to the planar graph G with maximum degree� = 8, such that |V |+|E |
is minimal and G has been embedded in the plane. Then every proper subgraph of G
is total-9-colorable. First we give some lemmas for G.

Lemma 1 [3]

(a) G is 2-connected.
(b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ � + 2 = 10.

By Lemma 1(b), any two neighbors of a 2-vertex are 8-vertices.
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Fig. 1 Forbidden configurations in G
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Fig. 2 Forbidden configurations in G

Note that in all figures of the paper, vertices marked • have no edges of G incident
with them other than those shown and vertices marked ◦ are 3+-vertices.

Lemma 2 G has no configurations depicted in Fig. 1, where v denotes the vertex of
degree of 7.

Proof The proof of (1), (2), (4) and (6) can be found in [14], (3) can be found in [10],
(5) can be found in [7]. 
�
Lemma 3 Suppose v is a d-vertex of G with d ≥ 5. Let v1, . . . , vd be the neighbor
of v and f1, f2, . . . , fd be faces incident with v, such that fi is incident with vi and
vi+1, for i ∈ {1, 2, . . . , d}. Let d(v1) = 2 and {v, u1} = N (v1). Then G does not
satisfy one of the following conditions (see Fig. 2).

(1) there exists an integer k (2 ≤ k ≤ d − 1) such that d(vk+1) = 2, d(vi ) = 3
(2 ≤ i ≤ k) and d( f j ) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d − 1) such that d(vk) = 2,
d(vi ) = 3 (k + 1 ≤ i ≤ t), d( ft ) = 3 and d( f j ) = 4 (k ≤ j ≤ t − 1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that d(vi ) = 3
(k ≤ i ≤ t), d( fk−1) = d( ft ) = 3 and d( f j ) = 4 (k ≤ j ≤ t − 1).

Proof Suppose G satisfies all of the conditions (1)-(3). If d( fi ) = 4, then let ui be
adjacent to vi and vi+1. By the minimality of G, G ′ = G − vv1 has a (� + 1)-
total-coloring φ. Let C(x) = {φ(xy) : y ∈ N (x)} ∪ {φ(x)}. First we erase the
colors on all 3−-vertices adjacent to v. We have φ(v1u1) �∈ C(v), for otherwise, the
number of the forbidden colors for vv1 is at most �, so vv1 can be properly colored
and by properly recoloring the erased vertices, we get a (� + 1)-total-coloring of
G, a contradiction. Without loss of generality, assume that C(v) = {1, 2, . . . , d}
with φ(vvi ) = i (i ∈ {2, 3, . . . , d}), φ(v1u1) = d + 1 and φ(v) = 1. Thus we have
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d+1 ∈ C(vi ) for all i ∈ {2, 3, . . . , d}, for otherwise, we can recolor vvi with d+1 and
color vv1 with i , and by properly recoloring the erased vertices, we get a (�+1)-total-
coloring of G, a contradiction, too. In the following we consider (1)-(3) one by one.

(1) Since d + 1 ∈ C(vi ) for all i ∈ {2, 3, . . . , d}, there is a vertex us (1 ≤ s ≤ k)

such that d + 1 appears at least twice on us , a contradiction to φ.
(2) Since d + 1 ∈ C(vi ) for all i ∈ {2, 3, . . . , d}, φ(vkuk) = φ(vk+1uk+1) = · · · =

φ(vt−1ut−1) = φ(vtvt+1) = d + 1. We also have φ(vt ut−1) = t + 1. For
otherwise, we can recolor vtvt+1 with t + 1, vvt+1 with d + 1 and color vv1
with t + 1. By properly recoloring the erased vertices, we get a (� + 1)-total-
coloring of G, a contradiction. Similarly, φ(vt−1ut−2) = φ(vt−2ut−3) = · · · =
φ(vk+1uk) = t +1. So we can recolor vvt+1 with d +1, vtvt+1 with t +1, vt ut−1
with d +1, vt−1ut−1 with t +1,. . ., vk+1uk+1 with t +1, vk+1uk with d +1, vkuk

with t + 1 and color vv1 with t + 1. By properly recoloring the erased vertices,
we get a (� + 1)-total-coloring of G, also a contradiction.

(3) If d +1 �∈ {φ(vk−1vk)∪φ(vtvt+1)}, then there is a vertex us (k ≤ s ≤ t −1) such
that d + 1 appears at least twice on us , a contradiction to φ. So without loss of
generality, assumeφ(vk−1vk) = d+1. If φ(vk+1uk) = d+1, thenφ(vk+2uk+1) =
φ(vk+3uk+2) = · · · = φ(vt ut−1) = d + 1. By the discussion of (2), we also have
φ(vkuk) = φ(vk+1uk+1) = · · · = φ(vt−1ut−1) = φ(vtvt+1) = k − 1. Then we
can recolor vvk−1 with d + 1, vk−1vk with k − 1, vkuk with d + 1, vk+1uk with
k − 1, . . ., vt−1ut−1 with d + 1, vt ut−1 with k − 1, vtvt+1 with t + 1, vvt+1
with k − 1 and color vv1 with t + 1. By properly recoloring the erased vertices,
we get a (� + 1)-total-coloring of G, a contradiction. If φ(vk+1uk+1) = d + 1,
then φ(vk+2uk+2) = φ(vk+3uk+3) = · · · = φ(vt−1ut−1) = φ(vtvt+1) = d + 1.
Similarly, we have φ(vt ut−1) = φ(vt−1ut−2) = · · · = φ(vk+1uk) = t + 1. Let
φ(vkuk) = s. Then we can recolor vvt+1 with d + 1, vtvt+1 with t + 1, vt ut−1
with d + 1, vt−1ut−1 with t + 1, . . ., vk+1uk+1 with t + 1, vk+1uk with s, vkuk

with t + 1, and color vv1 with t + 1. By properly recoloring the erased vertices,
we get a (� + 1)-total-coloring of G, a contradiction, too. 
�

By the Euler’s formula |V | − |E | + |F | = 2, we have

∑

v∈V

(2d(v) − 6) +
∑

f ∈F

(d( f ) − 6) = −6(|V | − |E | + |F |) = −12 < 0

We define ch the initial charge that ch(x) = 2d(x) − 6 for each x ∈ V and
ch(x) = d(x) − 6 for each x ∈ F . So

∑
x∈V ∪F ch(x) = −12 < 0. In the following,

we will reassign a new charge denoted by ch′(x) to each x ∈ V ∪ F according to the
discharging rules. If we can show that ch′(x) ≥ 0 for each x ∈ V ∪ F , then we get
an obvious contradiction to 0 ≤ ∑

x∈V ∪F ch′(x) = ∑
x∈V ∪F ch(x) = −12, which

completes our proof. Now we define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.
R2. Let f be a 3-face. If f is incident with a 3−-vertex, then it receives 3

2 from each
of its two incident 7+-vertices. If f is incident with a 4-vertex, then it receives 5

4
from each of its two incident 6+-vertices. If f is not incident with any 4−-vertex,
then it receives 1 from each of its two incident 5+-vertices.
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Fig. 3 Forbidden configurations in G

R3. Let f be a 4-face. If f is incident with two 3−-vertices, then it receives 1 from
each of its two incident 7+-vertices. If f is incident with only one 3−-vertex, then
it receives 3

4 from each of its two incident 7+-vertices; and 1
2 from the left incident

4+-vertex. If f is not incident with any 3−-vertex, then it receives 1
2 from each of

its incident 4+-vertices.
R4. Each 5-face receives 1

3 from each of its incident 4+-vertices.

Next, we show that ch
′
(x) ≥ 0 for all x ∈ V ∪ F . It is easy to check that ch

′
( f ) ≥ 0

for all f ∈ F and ch
′
(v) ≥ 0 for all 2-vertices v ∈ V by the above discharging rules.

If d(v) = 3, then ch
′
(v) = ch(v) = 0. If d(v) = 4, then ch

′
(v) ≥ ch(v) − 1

2 × 4 = 0
by R2 and R3. For d(v) ≥ 5, we need the following structural lemma.

Lemma 4 (1) Suppose that every 6-cycle of G contains at most one chord. Then we
have the following results.
(a) G has no configurations depicted in Fig. 3(1), Fig. 3(2) and Fig. 3(3);
(b) Suppose G has a subgraph isomorphic to Fig. 3(4). Then d( f1) ≥ 4 and

d( f2) �= 4. More over if d( f1) = 4, then d( f2) ≥ 5;
(c) If G has a subgraph isomorphic to Fig. 3(5), then d( f1) ≥ 5 and d( f2) ≥ 5.

(2) Suppose that all chordal 6-cycles are not adjacent. Then we have the following
results.
(d) If G has a subgraph isomorphic to Fig. 3(5), then max{d( f1), d( f2)} ≥ 4;
(e) G has no configurations depicted in Fig. 3(6) and Fig. 3(7).

Suppose d(v) = 5. Then f3(v) ≤ 4 by Lemma 4. If f3(v) = 4, then f6+(v) ≥
1, so ch

′
(v) ≥ ch(v) − 1 × 4 = 0. If f3(v) ≤ 3, then ch′(v) ≥ ch(v) − 1 ×

f3(v) − 1
2 × (5 − f3(v)) = 3− f3(v)

2 ≥ 0. Suppose d(v) = 6. Then f3(v) ≤ 4

and ch
′
(v) ≥ ch(v) − 5

4 × f3(v) − 1
2 × (6 − f3(v)) = 3(4− f3(v))

4 ≥ 0. Suppose
d(v) = 7. Then f3(v) ≤ 5. By Lemma 2(1), v is incident with at most two 3-
faces are incident with a 3−-vertex, that is, v sends 3

2 to each of the two 3-faces
and at most 5

4 to each other 3-face. If f3(v) = 5, then f5+(v) ≥ 1, and ch′(v) ≥
ch(v) − 3

2 × 2 − 5
4 × 3 − 3

4 × 1 − 1
3 × 1 = 1

6 > 0. If 2 ≤ f3(v) ≤ 4, then

ch′(v) ≥ ch(v)− 3
2 × 2 − 5

4 × ( f3(v)− 2)− 1 × (5 − f3(v))− 3
4 × 2 = 4− f3(v)

4 ≥ 0.

If f3(v) ≤ 2, then ch
′
(v) ≥ ch(v) − 3

2 × f3(v) − 1 × (7 − f3(v)) = 2− f3(v)
2 > 0.

Suppose d(v) = 8. Then ch(v) = 10. Let v1, . . . , v8 be neighbors of v in the
clockwise order and f1, f2, . . . , f8 be faces incident with v, such that fi is incident
with vi and vi+1, for i ∈ {1, 2, . . . , 8}, and f9 = f1.

Suppose n2(v) = 0. Then f3(v) ≤ 6. If f3(v) = 6, then f5+(v) ≥ 2, so ch′(v) ≥
10− 3

2 ×6− 1
3 ×2 = 1

3 > 0. If f3(v) = 5, then f5+(v) ≥ 1, so ch′(v) ≥ 10− 3
2 ×5−1×

2− 1
3 ×1 = 1

6 > 0. If f3(v) ≤ 4, then ch′(v) ≥ 10− 3
2 × f3(v)−1×(8− f3(v)) ≥ 0.
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Suppose n2(v) = 1. Without loss of generality, assume d(v1) = 2.
Suppose v1 is incident with a 3-cycle f1.
By Lemma 4, f3(v) ≤ 6 and all 3-faces incident with no 3−-vertex except f1 by

Lemma 2(6). If f3(v) = 6, then f5+(v) ≥ 2, so ch′(v) ≥ 10 − 1 − 3
2 × 1 − 5

4 ×
5 − 1

3 × 2 = 7
12 > 0. If 4 ≤ f3(v) ≤ 5, then ch′(v) ≥ 10 − 1 − 3

2 × 1 − 5
4 ×

( f3(v) − 1) − 1 × (6 − f3(v)) − 3
4 × 2 = 5− f3(v)

4 ≥ 0. If 1 ≤ f3(v) ≤ 3, then

ch′(v) ≥ 10 − 1 − 3
2 × 1 − 5

4 × ( f3(v) − 1) − 1 × (8 − f3(v)) = 3− f3(v)
4 ≥ 0.

Suppose v1 is not incident with a 3-cycle.
Suppose every 6-cycle of G contains at most one chord. Then f3(v) ≤ 5 by

Lemma 2(2)–(4). If 4 ≤ f3(v) ≤ 5, then f5+(v) ≥ 2, so ch′(v) ≥ 10 − 1 − 3
2 ×

( f3(v) − 1) − 1 × 1 − 1 × (6 − f3(v)) − 1
3 × 2 = 17−3 f3(v)

6 > 0. If f3(v) = 3,
then f5+(v) ≥ 1, so ch′(v) ≥ 10 − 1 − 3

2 × 3 − 1 × 4 − 1
3 × 1 = 1

6 > 0.
If f3(v) = 2, then ch′(v) ≥ 10 − 1 − 3

2 × 2 − 1 × 6 = 0. If f3(v) = 1,
then without loss of generality, d( f2) = 3, i.e. d(v3) = 3 and d(v2) ≥ 7, so
ch′(v) ≥ 10 − 1 − 3

2 × 1 − 1 × 6 − 3
4 × 1 = 3

4 > 0. If f3(v) = 0, then
ch′(v) ≥ 10 − 1 − 1 × 8 = 1 > 0.

Suppose any two chordal 6-cycles are not adjacent. Then f3(v) ≤ 5 by Lemma 2(2)–
(4). If f3(v) ≥ 4, then ch′(v) ≥ 10 − 1 − 3

2 × 2 − 5
4 × ( f3(v)) − 3

4 × (8 − f3(v)) =
5− f3(v)

2 ≥ 0. If f3(v) = 3, then ch′(v) ≥ 10 − 1 − 3
2 × 3 − 3

4 × 5 = 3
4 > 0. If

1 ≤ f3(v) ≤ 2, then ch′(v) ≥ 10−1− 3
2 × f3(v)−1×(6−2 f3(v))− 3

4 ×(2+ f3(v)) =
6− f3(v)

4 > 0. If f3(v) = 0, then ch′(v) ≥ 10 − 1 − 1 × 8 = 1 > 0.
Note that next Lemma 5 is also true for general planar graphs if we just use the

above discharging rules.

Lemma 5 Suppose d(v) = 8 and 2 ≤ n2(v) ≤ 8. Then ch′(v) ≥ 0.

Proof Since d(v) = 8, then ch(v) = 10. First we give a Claim for convenience.

Claim Suppose that d(vi ) = d(vi+k+1) = 2 and d(v j ) ≥ 3 for i + 1 ≤ j ≤ i + k.
Then v sends at most φ (in total) to fi and fi+1, fi+2, . . ., fi+k , where φ = 5k+1

4
(k = 1, 2, 3, 4, 5), see Fig. 4.

By Lemma 2, d( fi ) ≥ 4 and d( fi+k) ≥ 4.
Case 1. k = 1 By Lemma 3(1), we have d(vi+1) ≥ 4 or max{d( fi ), d( fi+1)} ≥ 5,

so φ ≤ max{ 3
4 × 2, 1 + 1

3 } = 3
2 by R3.

Case 2. k = 2 If d( fi+1) = 3, then min{d(vi+1), d(vi+2)} ≥ 4 or
max{d( fi ), d( fi+2)} ≥ 5 by Lemma 3(2), and it follows that φ ≤ max{ 3

4 + 5
4 +
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3
4 , 1

3 + 3
2 + 3

4 } = 11
4 . Otherwise, d( fi+1) ≥ 4, then min{d(vi+1), d(vi+2)} ≥ 4

or max{d( fi ), d( fi+1), d( fi+2)} ≥ 5 by Lemma 3(1), and it follows that φ ≤
max{1 + 3

4 × 2, 1 × 2 + 1
3 } = 5

2 < 11
4 .

Case 3. k = 3 Suppose d( fi+1) = d( fi+2) = 3. Then d(vi+2) ≥ 4. If d(vi+1) =
d(vi+3) = 3, then d( fi ) ≥ 5 and d( fi+3) ≥ 5, so φ ≤ 3

2 × 2 + 1
3 × 2 = 11

3 . If
min{d(vi+1), d(vi+3)} ≥ 4, then φ ≤ 5

4 × 2 + 3
4 × 2 = 4. Suppose d( fi+1) = 3 and

d( fi+2) ≥ 4. If d(vi+1) = 3, then d(vi+2) ≥ 7 and d( fi ) ≥ 5, so φ ≤ 1
3 + 3

2 + 3
4 +1 =

43
12 . If d(vi+2) = 3, then d(vi+1) ≥ 7 and d(vi+3) ≥ 4, so φ ≤ 3

4 + 3
2 + 3

4 +
3
4 = 15

4 . If min{d(vi+1), d(vi+2)} ≥ 4, φ ≤ 3
4 + 5

4 + 3
4 + 1 = 15

4 . It is similar
with d( fi+2) = 3 and d( fi+1) ≥ 4. Suppose min{d( fi+1), d( fi+2)} ≥ 4. Then
max{d(vi+1), d(vi+2), d(vi+3)} ≥ 4 or max{d( fi ), d( fi+1), d( fi+2), d( fi+3)} ≥
5, so φ ≤ max{1 × 2 + 3

4 × 2, 1 × 3 + 1
3 } = 7

2 . So φ ≤ max{ 11
3 , 4, 43

12 , 15
4 , 7

2 } = 4.
Case 4. k = 4 Suppose d( fi+1) = d( fi+2) = d( fi+3) = 3. Then

min{d(vi+2), d(vi+3)} ≥ 4. If d(vi+1) = d(vi+4) = 3, then d( fi ) ≥ 5 and
d( fi+4) ≥ 5, so φ ≤ 3

2 × 2 + 1 × 1 + 1
3 × 2 = 14

3 . If min{d(vi+1), d(vi+4)} ≥ 4,
then φ ≤ 5

4 × 3 + 3
4 × 2 = 21

4 . Suppose d( fi+1) = d( fi+2) = 3, d( fi+3) ≥ 4.
Then d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(vi+4) ≥ 4 and d( fi ) ≥ 5,
so φ ≤ 3

2 × 2 + 3
4 × 2 + 1

3 × 1 = 29
6 . If min{d(vi+1), d(vi+3)} ≥ 4, then

φ ≤ 5
4 × 2 + 1 × 1 + 3

4 × 2 = 5. Similar with d( fi+2) = d( fi+3) = 3, d( fi+1) ≥ 4.
Suppose d( fi+1) = d( fi+3) = 3, d( fi+2) ≥ 4. Then max{d(vi+2), d(vi+3)} ≥ 4
by Lemma 3(3), so φ ≤ 3

2 × 1 + 5
4 × 1 + 3

4 × 3 = 5. Suppose d( fi+1) = 3,
d( fi+2) ≥ 4 and d( fi+3) ≥ 4. If d(vi+1) = 3, then d(vi+2) ≥ 7 and d( fi ) ≥ 5,
so φ ≤ 3

2 + 1 × 2 + 3
4 × 1 + 1

3 × 1 = 55
12 . If d(vi+2) = 3, then d(vi+1) ≥ 7

and max{d(vi+3), d(vi+4)} ≥ 4, so φ ≤ 3
2 × 1 + 1 × 1 + 3

4 × 3 = 19
4 . Oth-

erwise, φ ≤ 5
4 × 1 + 1 × 2 + 3

4 × 2 = 19
4 . It is similar with d( fi+3) = 3,

d( fi+1) ≥ 4 and d( fi+2) ≥ 4. Suppose d( fi+2) = 3, d( fi+1) ≥ 4 and d( fi+3) ≥ 4.
If d(vi+2) = 3 or d(vi+3) = 3, then φ ≤ 3

2 × 1 + 1 × 1 + 3
4 × 3 = 19

4 . Otherwise,
φ ≤ 5

4 ×1+1×2+ 3
4 ×2 = 19

4 . Suppose min{d( fi+1), d( fi+2), d( fi+3)} ≥ 4. Then
max{d(vi+1), d(vi+2), d(vi+3), d(vi+4)} ≥ 4 or max{d( fi ), d( fi+1), d( fi+2),

d( fi+3), d( fi+4)} ≥ 5, so φ ≤ max{1 × 3 + 3
4 × 2, 1 × 4 + 1

3 } = 9
2 . So

φ ≤ max{ 14
3 , 21

4 , 29
6 , 5, 55

12 , 19
4 , 9

2 } = 21
4 .

Case 5. k = 5 If k = 5, then φ ≤ 13
2 . It is similar to prove (e), we omit it here.

Next, we prove the Lemma.
If n2(v) = 8, then all faces incident with v are 6+-faces by Lemma 2(2)–(4), that

is, f6+(v) = 8, so ch
′
(v) = 10 − 1 × 8 = 2 > 0. If n2(v) = 7, then f6+(v) ≥ 6 and

f3(v) = 0, so ch
′
(v) ≥ 10 − 1 × 7 − 3

2 = 3
2 > 0 by Claim (a).

Suppose n2(v) ≤ 6. The possible distributions of 2-vertices adjacent to v are
illustrated in Fig. 5. For Fig. 5(1), we have f6+(v) ≥ 5 and ch′(v) ≥ 10−1×6− 11

4 =
5
4 > 0 by Claim (b).
For Fig. 5(2)–(4), we have f6+(v) ≥ 4 and ch′(v) ≥ 10 −1×6− 3

2 ×2 = 1 > 0. For
Fig. 5(5), we have f6+(v) ≥ 4 and ch′(v) ≥ 10 − 1 × 5 − 4 = 1 > 0 by Claim (c).
For Fig. 5(6)–(7), we have f6+(v) ≥ 3 and ch′(v) ≥ 10 − 1 × 5 − 3

2 − 11
4 = 3

4 > 0.
For Fig. 5(8)–(9), we have f6+(v) ≥ 2 and ch′(v) ≥ 10−1×5− 3

2 ×3 = 1
2 > 0. For

123



568 R. Xu et al.

n2(v)=6

n2(v)=5

n2(v)=4

n2(v)=3

n2(v)=2

(1)

6+ 6+
6+

6+

(3)

6+

6+

6+
6+

(4)

6+

6+6+

6+

6+

6+

6+

6+

6+

6+

6+
6+

6+

6+
6+6+

6+
6+

6+
6+

6+
6+

(2)

(8) (7) (5) (6) (9)

(10)

6+
6+

(12)

6+

(13)

6+
6+

6+

6+
6+

(11) (14)
6+

6+

(16) (17)

6+ 6+

(15)

6+

6+

6+
6+ 6+

(21) (20) (18) (19) (22)

(23) (25) (26)

6+

(24)

f
1

f
2v

2
v

3 f
.3v

4
f
4

f
5

v
5

f
6

v
6

f
7 v

7

6+

Fig. 5 n2(v) ≤ 6

Fig. 5(10), we have f6+(v) ≥ 3 and ch′(v) ≥ 10−1×4− 21
4 = 3

4 > 0 by Claim (d). For
Fig. 5(11) and (13), we have f6+(v) ≥ 2 and ch′(v) ≥ 10−1×4− 3

2 −4 = 1
2 > 0. For

Fig. 5(12) and (16), we have f6+(v) ≥ 2 and ch′(v) ≥ 10−1×4− 11
4 ×2 = 1

2 > 0. For
Fig. 5(14) and (15), we have f6+(v) ≥ 1 and ch′(v) ≥ 10−1×4− 3

2 ×2− 11
4 = 1

4 > 0.
For Fig. 5 (17), we have ch′(v) ≥ 10 − 1 × 4 − 3

2 × 4 = 0. For Fig. 5(18), we have
f6+(v) ≥ 2 and ch′(v) ≥ 10 − 1 × 3 − 13

2 = 1
2 > 0 by Claim (e). For Fig. 5(19),

we have f6+(v) ≥ 1 and ch′(v) ≥ 10 − 1 × 3 − 3
2 − 21

4 = 1
4 > 0. For Fig. 5(20),

we have f6+(v) ≥ 1 and ch′(v) ≥ 10 − 1 × 3 − 11
4 − 4 = 1

4 > 0. For Fig. 5(21),
we have ch′(v) ≥ 10 − 1 × 3 − 3

2 × 2 − 4 = 0. For Fig. 5(22), we have ch′(v) ≥
10 − 1 × 3 − 3

2 − 11
4 × 2 = 0. For Fig. 5(23), we have f6+(v) ≥ 1. Suppose d( f2) =

d( f3) = d( f4) = d( f5) = d( f6) = 3. Then min{d(v3), d(v4), d(v5), d(v6)} ≥ 4.
If d(v2) = d(v6) = 3, then d( f1) ≥ 5 and d( f7) ≥ 5 by Lemma 3, so ch′(v) ≥
10 − 1 × 2 − 3

2 × 2 − 5
4 × 2 − 1 × 1 − 1

3 × 2 = 5
6 > 0. If f2, f3, f4, f5 and f6 are

incident with no 3−-vertex, then ch′(v) ≥ 10 − 1 × 2 − 5
4 × 5 − 3

4 × 2 = 1
4 > 0. For

Fig. 5(24), we have ch′(v) ≥ 10−1×2− 3
2 − 13

2 = 0. For Fig. 5(25), we have ch′(v) ≥
10 − 1 × 2 − 11

4 − 21
4 = 0. For Fig. 5(26), we have ch′(v) ≥ 10 − 1 × 2 − 4 × 2 = 0.


�
Hence we complete the proof of the theorem.

123



Total Coloring of Planar Graphs 569

Acknowledgments The total work is supported by a research Grant NSFC (11271006) of China. Huijuan
Wang work is supported by a research Grant NSFC (11201440) of China.

References

1. Behzad, M.: Graphs and their chromatic numbers, Ph.D. Thesis, Michigan State University (1965)
2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. MacMillan, London (1976)
3. Borodin, O.V.: On the total coloring of planar graphs. J. Reine Angew. Math. 394, 180–185 (1989)
4. Chang, G.J., Hou, J.F., Roussel, N.: Local condition for planar graphs of maximum degree 7 to be

8-totally colorable. Discret. Appl. Math. 159, 760–768 (2011)
5. Hou, J.F., Zhu, Y., Liu, G.Z., Wu, J.L., Lan, M.: Total colorings of planar graphs without small cycles.

Graphs Comb. 24, 91–100 (2008)
6. Kostochka, A.V.: The total chromatic number of any multigraph with maximum degree five is at most

seven. Discret. Math. 162, 199–214 (1996)
7. Kowalik, L., Sereni, J.-S., S̆krekovski, R.: Total coloring of plane graphs with maximum degree nine.

SIAM J. Discret. Math. 22, 1462–1479 (2008)
8. Roussel, N., Zhu, X.: Total coloring of planar graphs of maximum degree eight. Inform. Process. Lett.

110, 321–324 (2010)
9. Sanders, D.P., Zhao, Y.: On total 9-coloring planar graphs of maximum degree seven. J. Graph Theory

31, 67–73 (1999)
10. Shen, L., Wang, Y.Q.: Total colorings of planar graphs with maximum degree at least 8. Sci. China

Ser. A 52(8), 1733–1742 (2009)
11. Vizing, V.G.: Some unsolved problems in graph theory. Uspekhi Mat. Nauk 23, 117–134 (1968). (in

Russian)
12. Wang, B., Wu, J.L., Tian, S.F.: Total colorings of planar graphs with small maximum degree. Bull.

Malays. Math. Sci. Soc. 36(3), 783–787 (2013)
13. Wang, H.J., Liu, B., Wu, J.L.: Total coloring of planar graphs without intersecting short cycles, sub-

mitted
14. Wang, W.F.: Total chromatic number of planar graphs with maximum degree ten. J. Graph Theory

54(2), 91–102 (2007)

123


	Total Coloring of Planar Graphs Without Some Chordal 6-cycles
	Abstract
	1 Introduction
	2 Proof of Theorem 1
	Acknowledgments
	References


