Total Coloring of Planar Graphs Without Some Chordal 6-cycles

Renyu Xu · Jianliang Wu · Huijuan Wang

Received: 7 November 2012 / Revised: 2 February 2013 / Published online: 29 October 2014 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2014

Abstract A *k*-total-coloring of a graph *G* is a coloring of vertex set and edge set using *k* colors such that no two adjacent or incident elements receive the same color. In this paper, we prove that if *G* is a planar graph with maximum $\Delta \ge 8$ and every 6-cycle of *G* contains at most one chord or any chordal 6-cycles are not adjacent, then *G* has a $(\Delta + 1)$ -total-coloring.

Keywords Planar graph · Total coloring · Cycle

Mathematics Subject Classification 05C15

1 Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for terminologies and notations not defined here. Let *G* be a graph. We use V(G), E(G), $\Delta(G)$ and $\delta(G)$ (or simply *V*, *E*, Δ and δ) to denote the vertex set, the edge set, the maximum degree and the minimum degree of *G*, respectively. For a vertex $v \in V$, let N(v) denote the set of vertices adjacent to v and let d(v) = |N(v)| denote the degree of v. A *k*-vertex, a *k*⁻-vertex or a *k*⁺-vertex is a vertex of degree *k*, at most *k* or at least *k*, respectively. A *k*-cycle is a cycle of length *k*. We use (v_1, v_2, \ldots, v_d) to denote a cycle (or a face) whose boundary vertices are v_1, v_2, \ldots, v_d in the clockwise order. Note that all the subscripts in the paper are taken modulo *d*. We say that two

R. Xu · J. Wu (⊠) · H. Wang School of Mathematics, Shandong University, Jinan 250100, China e-mail: jlwu@sdu.edu.en

R. Xu e-mail: xu-renyu@163.com

Communicated by Xueliang Li.

cycles are *adjacent* (or *intersecting*) if they share at least one edge (or one vertex, respectively). Let $C = (v_1, v_2, ..., v_k)(k \ge 4)$ be a cycle. If there is an edge $v_i v_j$ with $j \ne i \pm 1 \pmod{k}$, then the edge $v_i v_j$ is called a *chord* of *C*.

A k-total-coloring of a graph G = (V, E) is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. A graph G is *total-k-colorable* if it admits a k-total-coloring. The *total chromatic number* $\chi'(G)$ of G is the smallest integer k such that G has a k-total-coloring. Clearly, $\chi''(G) > \Delta + 1$. Behzad [1] and Vizing [11] conjectured independently that $\chi''(G) \leq \Delta + 2$ for each graph G. This conjecture was confirmed for graphs with $\Delta < 5$. For planar graphs the only open case is that of $\Delta = 6$ (see [6,9]). In recent years, the study of total colorings planar graphs has attracted considerable attention. For planar graphs with large maximum degree, it is possible to determine $\chi''(G) = \Delta + 1$. This first result was given in [3] for $\Delta \ge 14$, which was finally extended to $\Delta \ge 9$ in [7]. Zhu [8] proved that if G is a planar graph with maximum degree 8, and for each vertex x, there is an integer $k_x \in \{3, 4, 5, 6, 7, 8\}$ such that there is no k_x -cycle which contains x, then $\chi''(G) = 9$. Wang et al. [13] extended this result to that there is at most one k_x -cycle which contains x. Chang [4] proved that for planar graph G with $\Delta \geq 7$, if there is an integer $k_x \in \{3, 4, 5, 6\}$ such that there is no k_x -cycle which contains x for each $x \in V(G)$, then $\chi''(G) = \Delta + 1$. Wang et al. [12] proved $\chi''(G) = \Delta + 1$ for some planar graphs with small maximum degree. Hou et al. [5] proved that every planar graphs with $\Delta \geq 8$ and without 6-cycles are total-9-colorable. Shen and Wang [10] extended this result to planar graphs without chordal 6-cycles. In this paper, we extend this result and get the following theorem.

Theorem 1 Let G be a planar graph with maximum degree $\Delta \ge 8$. If every 6-cycle of G contains at most one chord or chordal 6-cycles are not adjacent in G, then $\chi''(G) = \Delta + 1$.

2 Proof of Theorem 1

First, we introduce additional notations and definitions here for convenience. Let *G* be a planar graph having a plane drawing and let *F* be the face set of *G*. For a face *f* of *G*, the *degree* d(f) is the number of edges incident with it, where each cut-edge is counted twice. A *k*-face, a k^- -face or a k^+ -face is a face of degree *k*, at most *k* or at least *k*, respectively. Denote by $n_d(v)$ the number of *d*-vertices adjacent to the vertex v, $f_d(v)$ the number of *d*-faces incident with v.

Now, we begin to prove Theorem 1. According to [7], the theorem is true for $\Delta \ge 9$. So we assume in the following that $\Delta = 8$. Let G = (V, E) be a minimal counterexample to the planar graph *G* with maximum degree $\Delta = 8$, such that |V|+|E| is minimal and *G* has been embedded in the plane. Then every proper subgraph of *G* is total-9-colorable. First we give some lemmas for *G*.

Lemma 1 [3]

(a) G is 2-connected.

(b) If uv is an edge of G with $d(u) \le 4$, then $d(u) + d(v) \ge \Delta + 2 = 10$.

By Lemma 1(b), any two neighbors of a 2-vertex are 8-vertices.

Fig. 2 Forbidden configurations in G

Note that in all figures of the paper, vertices marked \bullet have no edges of *G* incident with them other than those shown and vertices marked \circ are 3⁺-vertices.

Lemma 2 *G* has no configurations depicted in Fig. 1, where v denotes the vertex of degree of 7.

Proof The proof of (1), (2), (4) and (6) can be found in [14], (3) can be found in [10], (5) can be found in [7]. \Box

Lemma 3 Suppose v is a d-vertex of G with $d \ge 5$. Let v_1, \ldots, v_d be the neighbor of v and f_1, f_2, \ldots, f_d be faces incident with v, such that f_i is incident with v_i and v_{i+1} , for $i \in \{1, 2, \ldots, d\}$. Let $d(v_1) = 2$ and $\{v, u_1\} = N(v_1)$. Then G does not satisfy one of the following conditions (see Fig. 2).

- (1) there exists an integer k $(2 \le k \le d 1)$ such that $d(v_{k+1}) = 2$, $d(v_i) = 3$ $(2 \le i \le k)$ and $d(f_i) = 4$ $(1 \le j \le k)$.
- (2) there exist two integers k and t $(2 \le k < t \le d 1)$ such that $d(v_k) = 2$, $d(v_i) = 3 \ (k+1 \le i \le t), \ d(f_t) = 3 \ and \ d(f_j) = 4 \ (k \le j \le t 1).$
- (3) there exist two integers k and t $(3 \le k \le t \le d 1)$ such that $d(v_i) = 3$ $(k \le i \le t), d(f_{k-1}) = d(f_t) = 3$ and $d(f_j) = 4$ $(k \le j \le t - 1).$

Proof Suppose *G* satisfies all of the conditions (1)-(3). If $d(f_i) = 4$, then let u_i be adjacent to v_i and v_{i+1} . By the minimality of *G*, $G' = G - vv_1$ has a $(\Delta + 1)$ -total-coloring ϕ . Let $C(x) = \{\phi(xy) : y \in N(x)\} \cup \{\phi(x)\}$. First we erase the colors on all 3⁻-vertices adjacent to *v*. We have $\phi(v_1u_1) \notin C(v)$, for otherwise, the number of the forbidden colors for vv_1 is at most Δ , so vv_1 can be properly colored and by properly recoloring the erased vertices, we get a $(\Delta + 1)$ -total-coloring of *G*, a contradiction. Without loss of generality, assume that $C(v) = \{1, 2, ..., d\}$ with $\phi(vv_i) = i$ ($i \in \{2, 3, ..., d\}$), $\phi(v_1u_1) = d + 1$ and $\phi(v) = 1$. Thus we have

 $d+1 \in C(v_i)$ for all $i \in \{2, 3, ..., d\}$, for otherwise, we can recolor vv_i with d+1 and color vv_1 with i, and by properly recoloring the erased vertices, we get a $(\Delta + 1)$ -total-coloring of G, a contradiction, too. In the following we consider (1)-(3) one by one.

- (1) Since $d + 1 \in C(v_i)$ for all $i \in \{2, 3, ..., d\}$, there is a vertex u_s $(1 \le s \le k)$ such that d + 1 appears at least twice on u_s , a contradiction to ϕ .
- (2) Since $d + 1 \in C(v_i)$ for all $i \in \{2, 3, ..., d\}$, $\phi(v_k u_k) = \phi(v_{k+1} u_{k+1}) = \cdots = \phi(v_{t-1} u_{t-1}) = \phi(v_t v_{t+1}) = d + 1$. We also have $\phi(v_t u_{t-1}) = t + 1$. For otherwise, we can recolor $v_t v_{t+1}$ with t + 1, vv_{t+1} with d + 1 and color vv_1 with t + 1. By properly recoloring the erased vertices, we get a $(\Delta + 1)$ -total-coloring of *G*, a contradiction. Similarly, $\phi(v_{t-1} u_{t-2}) = \phi(v_{t-2} u_{t-3}) = \cdots = \phi(v_{k+1} u_k) = t + 1$. So we can recolor vv_{t+1} with d + 1, $v_t v_{t+1}$ with t + 1, $v_t u_{t-1}$ with d + 1, $v_{t-1} u_{t-1}$ with t + 1, ..., $v_{k+1} u_{k+1}$ with t + 1, $v_{k+1} u_k$ with d + 1, $v_k u_k$ with t + 1 and color vv_1 with t + 1. By properly recoloring the erased vertices, we get a $(\Delta + 1)$ -total-coloring of *G*, also a contradiction.
- (3) If $d+1 \notin \{\phi(v_{k-1}v_k) \cup \phi(v_tv_{t+1})\}$, then there is a vertex u_s $(k \le s \le t-1)$ such that d + 1 appears at least twice on u_s , a contradiction to ϕ . So without loss of generality, assume $\phi(v_{k-1}v_k) = d+1$. If $\phi(v_{k+1}u_k) = d+1$, then $\phi(v_{k+2}u_{k+1}) = d+1$ $\phi(v_{k+3}u_{k+2}) = \cdots = \phi(v_tu_{t-1}) = d+1$. By the discussion of (2), we also have $\phi(v_k u_k) = \phi(v_{k+1} u_{k+1}) = \dots = \phi(v_{t-1} u_{t-1}) = \phi(v_t v_{t+1}) = k - 1$. Then we can recolor vv_{k-1} with d+1, $v_{k-1}v_k$ with k-1, v_ku_k with d+1, $v_{k+1}u_k$ with $k = 1, \ldots, v_{t-1}u_{t-1}$ with $d + 1, v_tu_{t-1}$ with $k = 1, v_tv_{t+1}$ with $t + 1, vv_{t+1}$ with k - 1 and color vv_1 with t + 1. By properly recoloring the erased vertices, we get a $(\Delta + 1)$ -total-coloring of G, a contradiction. If $\phi(v_{k+1}u_{k+1}) = d + 1$, then $\phi(v_{k+2}u_{k+2}) = \phi(v_{k+3}u_{k+3}) = \dots = \phi(v_{t-1}u_{t-1}) = \phi(v_tv_{t+1}) = d+1.$ Similarly, we have $\phi(v_t u_{t-1}) = \phi(v_{t-1} u_{t-2}) = \dots = \phi(v_{k+1} u_k) = t + 1$. Let $\phi(v_k u_k) = s$. Then we can recolor v_{t+1} with d+1, $v_t v_{t+1}$ with t+1, $v_t u_{t-1}$ with d + 1, $v_{t-1}u_{t-1}$ with t + 1, ..., $v_{k+1}u_{k+1}$ with t + 1, $v_{k+1}u_k$ with s, v_ku_k with t + 1, and color vv_1 with t + 1. By properly recoloring the erased vertices, we get a $(\Delta + 1)$ -total-coloring of G, a contradiction, too. П

By the Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0$$

We define *ch* the initial charge that ch(x) = 2d(x) - 6 for each $x \in V$ and ch(x) = d(x) - 6 for each $x \in F$. So $\sum_{x \in V \cup F} ch(x) = -12 < 0$. In the following, we will reassign a new charge denoted by ch'(x) to each $x \in V \cup F$ according to the discharging rules. If we can show that $ch'(x) \ge 0$ for each $x \in V \cup F$, then we get an obvious contradiction to $0 \le \sum_{x \in V \cup F} ch'(x) = \sum_{x \in V \cup F} ch(x) = -12$, which completes our proof. Now we define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. Let *f* be a 3-face. If *f* is incident with a 3^- -vertex, then it receives $\frac{3}{2}$ from each of its two incident 7⁺-vertices. If *f* is incident with a 4-vertex, then it receives $\frac{5}{4}$ from each of its two incident 6⁺-vertices. If *f* is not incident with any 4⁻-vertex, then it receives 1 from each of its two incident 5⁺-vertices.

Fig. 3 Forbidden configurations in G

R3. Let *f* be a 4-face. If *f* is incident with two 3⁻-vertices, then it receives 1 from each of its two incident 7⁺-vertices. If *f* is incident with only one 3⁻-vertex, then it receives $\frac{3}{4}$ from each of its two incident 7⁺-vertices; and $\frac{1}{2}$ from the left incident 4⁺-vertex. If *f* is not incident with any 3⁻-vertex, then it receives $\frac{1}{2}$ from each of its incident 4⁺-vertex.

R4. Each 5-face receives $\frac{1}{3}$ from each of its incident 4⁺-vertices.

Next, we show that $ch'(x) \ge 0$ for all $x \in V \cup F$. It is easy to check that $ch'(f) \ge 0$ for all $f \in F$ and $ch'(v) \ge 0$ for all 2-vertices $v \in V$ by the above discharging rules. If d(v) = 3, then ch'(v) = ch(v) = 0. If d(v) = 4, then $ch'(v) \ge ch(v) - \frac{1}{2} \times 4 = 0$ by R2 and R3. For $d(v) \ge 5$, we need the following structural lemma.

Lemma 4 (1) Suppose that every 6-cycle of G contains at most one chord. Then we have the following results.

- (a) G has no configurations depicted in Fig. 3(1), Fig. 3(2) and Fig. 3(3);
- (b) Suppose G has a subgraph isomorphic to Fig. 3(4). Then $d(f_1) \ge 4$ and $d(f_2) \ne 4$. More over if $d(f_1) = 4$, then $d(f_2) \ge 5$;
- (c) If G has a subgraph isomorphic to Fig. 3(5), then $d(f_1) \ge 5$ and $d(f_2) \ge 5$.
- (2) Suppose that all chordal 6-cycles are not adjacent. Then we have the following results.
 - (d) If G has a subgraph isomorphic to Fig. 3(5), then $\max\{d(f_1), d(f_2)\} \ge 4$;
 - (e) G has no configurations depicted in Fig. 3(6) and Fig. 3(7).

Suppose d(v) = 5. Then $f_3(v) \le 4$ by Lemma 4. If $f_3(v) = 4$, then $f_{6^+}(v) \ge 1$, so $ch'(v) \ge ch(v) - 1 \times 4 = 0$. If $f_3(v) \le 3$, then $ch'(v) \ge ch(v) - 1 \times f_3(v) - \frac{1}{2} \times (5 - f_3(v)) = \frac{3 - f_3(v)}{2} \ge 0$. Suppose d(v) = 6. Then $f_3(v) \le 4$ and $ch'(v) \ge ch(v) - \frac{5}{4} \times f_3(v) - \frac{1}{2} \times (6 - f_3(v)) = \frac{3(4 - f_3(v))}{4} \ge 0$. Suppose d(v) = 7. Then $f_3(v) \le 5$. By Lemma 2(1), v is incident with at most two 3-faces are incident with a 3⁻-vertex, that is, v sends $\frac{3}{2}$ to each of the two 3-faces and at most $\frac{5}{4}$ to each other 3-face. If $f_3(v) = 5$, then $f_5+(v) \ge 1$, and $ch'(v) \ge ch(v) - \frac{3}{2} \times 2 - \frac{5}{4} \times 3 - \frac{3}{4} \times 1 - \frac{1}{3} \times 1 = \frac{1}{6} > 0$. If $2 \le f_3(v) \le 4$, then $ch'(v) \ge ch(v) - \frac{3}{2} \times 2 - \frac{5}{4} \times (f_3(v) - 2) - 1 \times (5 - f_3(v)) - \frac{3}{4} \times 2 = \frac{4 - f_3(v)}{4} \ge 0$. If $f_3(v) \le 2$, then $ch'(v) \ge ch(v) - \frac{3}{2} \times f_3(v) - 1 \times (7 - f_3(v)) = \frac{2 - f_3(v)}{2} > 0$.

Suppose d(v) = 8. Then ch(v) = 10. Let v_1, \ldots, v_8 be neighbors of v in the clockwise order and f_1, f_2, \ldots, f_8 be faces incident with v, such that f_i is incident with v_i and v_{i+1} , for $i \in \{1, 2, \ldots, 8\}$, and $f_9 = f_1$.

Suppose $n_2(v) = 0$. Then $f_3(v) \le 6$. If $f_3(v) = 6$, then $f_{5^+}(v) \ge 2$, so $ch'(v) \ge 10 - \frac{3}{2} \times 6 - \frac{1}{3} \times 2 = \frac{1}{3} > 0$. If $f_3(v) = 5$, then $f_{5^+}(v) \ge 1$, so $ch'(v) \ge 10 - \frac{3}{2} \times 5 - 1 \times 2 - \frac{1}{3} \times 1 = \frac{1}{6} > 0$. If $f_3(v) \le 4$, then $ch'(v) \ge 10 - \frac{3}{2} \times f_3(v) - 1 \times (8 - f_3(v)) \ge 0$.

Fig. 4 Claim

Suppose $n_2(v) = 1$. Without loss of generality, assume $d(v_1) = 2$. Suppose v_1 is incident with a 3-cycle f_1 .

By Lemma 4, $f_3(v) \le 6$ and all 3-faces incident with no 3⁻-vertex except f_1 by Lemma 2(6). If $f_3(v) = 6$, then $f_{5^+}(v) \ge 2$, so $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 1 - \frac{5}{4} \times 5 - \frac{1}{3} \times 2 = \frac{7}{12} > 0$. If $4 \le f_3(v) \le 5$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 1 - \frac{5}{4} \times (f_3(v) - 1) - 1 \times (6 - f_3(v)) - \frac{3}{4} \times 2 = \frac{5 - f_3(v)}{4} \ge 0$. If $1 \le f_3(v) \le 3$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 1 - \frac{5}{4} \times (f_3(v) - 1) - 1 \times (6 - f_3(v)) - \frac{3}{4} \times 2 = \frac{5 - f_3(v)}{4} \ge 0$. If $1 \le f_3(v) \le 3$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 1 - \frac{5}{4} \times (f_3(v) - 1) - 1 \times (8 - f_3(v)) = \frac{3 - f_3(v)}{4} \ge 0$. Suppose v_1 is not incident with a 3-cycle.

Suppose every 6-cycle of G contains at most one chord. Then $f_3(v) \le 5$ by Lemma 2(2)–(4). If $4 \le f_3(v) \le 5$, then $f_{5^+}(v) \ge 2$, so $ch'(v) \ge 10 - 1 - \frac{3}{2} \times (f_3(v) - 1) - 1 \times 1 - 1 \times (6 - f_3(v)) - \frac{1}{3} \times 2 = \frac{17 - 3f_3(v)}{6} > 0$. If $f_3(v) = 3$, then $f_{5^+}(v) \ge 1$, so $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 3 - 1 \times 4 - \frac{1}{3} \times 1 = \frac{1}{6} > 0$. If $f_3(v) = 2$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 2 - 1 \times 6 = 0$. If $f_3(v) = 1$, then without loss of generality, $d(f_2) = 3$, i.e. $d(v_3) = 3$ and $d(v_2) \ge 7$, so $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 1 - 1 \times 6 - \frac{3}{4} \times 1 = \frac{3}{4} > 0$. If $f_3(v) = 0$, then $ch'(v) \ge 10 - 1 - 1 \times 6 - \frac{3}{4} \times 1 = \frac{3}{4} > 0$.

Suppose any two chordal 6-cycles are not adjacent. Then $f_3(v) \le 5$ by Lemma 2(2)– (4). If $f_3(v) \ge 4$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 2 - \frac{5}{4} \times (f_3(v)) - \frac{3}{4} \times (8 - f_3(v)) = \frac{5 - f_3(v)}{2} \ge 0$. If $f_3(v) = 3$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times 3 - \frac{3}{4} \times 5 = \frac{3}{4} > 0$. If $1 \le f_3(v) \le 2$, then $ch'(v) \ge 10 - 1 - \frac{3}{2} \times f_3(v) - 1 \times (6 - 2f_3(v)) - \frac{3}{4} \times (2 + f_3(v)) = \frac{6 - f_3(v)}{4} > 0$. If $f_3(v) = 0$, then $ch'(v) \ge 10 - 1 - 1 \times 8 = 1 > 0$.

Note that next Lemma 5 is also true for general planar graphs if we just use the above discharging rules.

Lemma 5 Suppose d(v) = 8 and $2 \le n_2(v) \le 8$. Then $ch'(v) \ge 0$.

Proof Since d(v) = 8, then ch(v) = 10. First we give a Claim for convenience.

Claim Suppose that $d(v_i) = d(v_{i+k+1}) = 2$ and $d(v_j) \ge 3$ for $i + 1 \le j \le i + k$. Then v sends at most ϕ (in total) to f_i and $f_{i+1}, f_{i+2}, ..., f_{i+k}$, where $\phi = \frac{5k+1}{4}$ (k = 1, 2, 3, 4, 5), see Fig. 4.

By Lemma 2, $d(f_i) \ge 4$ and $d(f_{i+k}) \ge 4$.

Case 1. k = 1 By Lemma 3(1), we have $d(v_{i+1}) \ge 4$ or max $\{d(f_i), d(f_{i+1})\} \ge 5$, so $\phi \le \max\{\frac{3}{4} \times 2, 1 + \frac{1}{3}\} = \frac{3}{2}$ by R3.

Case 2. k = 2 If $d(f_{i+1}) = 3$, then $\min\{d(v_{i+1}), d(v_{i+2})\} \ge 4$ or $\max\{d(f_i), d(f_{i+2})\} \ge 5$ by Lemma 3(2), and it follows that $\phi \le \max\{\frac{3}{4} + \frac{5}{4} + \frac{5}{4$

 $\frac{3}{4}, \ \frac{1}{3} + \frac{3}{2} + \frac{3}{4}\} = \frac{11}{4}. \text{ Otherwise, } d(f_{i+1}) \ge 4, \text{ then } \min\{d(v_{i+1}), \ d(v_{i+2})\} \ge 4 \text{ or } \max\{d(f_i), \ d(f_{i+1}), \ d(f_{i+2})\} \ge 5 \text{ by Lemma } 3(1), \text{ and it follows that } \phi \le \max\{1 + \frac{3}{4} \times 2, \ 1 \times 2 + \frac{1}{3}\} = \frac{5}{2} < \frac{11}{4}.$

Case 3. k = 3 Suppose $d(f_{i+1}) = d(f_{i+2}) = 3$. Then $d(v_{i+2}) \ge 4$. If $d(v_{i+1}) = d(v_{i+3}) = 3$, then $d(f_i) \ge 5$ and $d(f_{i+3}) \ge 5$, so $\phi \le \frac{3}{2} \times 2 + \frac{1}{3} \times 2 = \frac{11}{3}$. If $\min\{d(v_{i+1}), d(v_{i+3})\} \ge 4$, then $\phi \le \frac{5}{4} \times 2 + \frac{3}{4} \times 2 = 4$. Suppose $d(f_{i+1}) = 3$ and $d(f_{i+2}) \ge 4$. If $d(v_{i+1}) = 3$, then $d(v_{i+2}) \ge 7$ and $d(f_i) \ge 5$, so $\phi \le \frac{1}{3} + \frac{3}{2} + \frac{3}{4} + 1 = \frac{43}{12}$. If $d(v_{i+2}) = 3$, then $d(v_{i+1}) \ge 7$ and $d(v_{i+3}) \ge 4$, so $\phi \le \frac{3}{4} + \frac{3}{2} + \frac{3}{4} + \frac{3}{4} = \frac{15}{4}$. If $\min\{d(v_{i+1}), d(v_{i+2})\} \ge 4$, $\phi \le \frac{3}{4} + \frac{5}{4} + \frac{3}{4} + 1 = \frac{15}{4}$. It is similar with $d(f_{i+2}) = 3$ and $d(f_{i+1}) \ge 4$. Suppose $\min\{d(f_{i+1}), d(f_{i+2})\} \ge 4$. Then $\max\{d(v_{i+1}), d(v_{i+2}), d(v_{i+3})\} \ge 4$ or $\max\{d(f_i), d(f_{i+1}), d(f_{i+2}), d(f_{i+3})\} \ge 5$, so $\phi \le \max\{1 \times 2 + \frac{3}{4} \times 2, 1 \times 3 + \frac{1}{3}\} = \frac{7}{2}$. So $\phi \le \max\{\frac{11}{3}, 4, \frac{43}{12}, \frac{15}{4}, \frac{7}{2}\} = 4$. **Case 4.** k = 4 Suppose $d(f_{i+1}) = d(f_{i+2}) = d(f_{i+3}) = 3$. Then

Case 4. k = 4 Suppose $d(f_{i+1}) = d(f_{i+2}) = d(f_{i+3}) = 3$. Then $\min\{d(v_{i+2}), d(v_{i+3})\} \ge 4$. If $d(v_{i+1}) = d(v_{i+4}) = 3$, then $d(f_i) \ge 5$ and $d(f_{i+4}) \ge 5$, so $\phi \le \frac{3}{2} \times 2 + 1 \times 1 + \frac{1}{3} \times 2 = \frac{14}{3}$. If $\min\{d(v_{i+1}), d(v_{i+4})\} \ge 4$, then $\phi \le \frac{5}{4} \times 3 + \frac{3}{4} \times 2 = \frac{21}{4}$. Suppose $d(f_{i+1}) = d(f_{i+2}) = 3$, $d(f_{i+3}) \ge 4$. Then $d(v_{i+2}) \ge 4$. If $d(v_{i+1}) = d(v_{i+3}) = 3$, then $d(v_{i+4}) \ge 4$ and $d(f_i) \ge 5$, so $\phi \le \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3} \times 1 = \frac{29}{6}$. If $\min\{d(v_{i+1}), d(v_{i+3})\} \ge 4$, then $\phi \le \frac{5}{4} \times 2 + 1 \times 1 + \frac{3}{4} \times 2 = 5$. Similar with $d(f_{i+2}) = d(f_{i+3}) = 3$, $d(f_{i+1}) \ge 4$. Suppose $d(f_{i+1}) = d(f_{i+3}) = 3$, $d(f_{i+1}) \ge 4$. Suppose $d(f_{i+1}) = d(f_{i+3}) = 3$, $d(f_{i+1}) \ge 4$. Then max $\{d(v_{i+2}), d(v_{i+3})\} \ge 4$ by Lemma 3(3), so $\phi \le \frac{3}{2} \times 1 + \frac{5}{4} \times 1 + \frac{3}{4} \times 3 = 5$. Suppose $d(f_{i+1}) = 3$, $d(f_{i+2}) \ge 4$ and $d(f_{i+3}) \ge 4$. If $d(v_{i+1}) = 3$, then $d(v_{i+2}) \ge 7$ and $d(f_i) \ge 5$, so $\phi \le \frac{3}{2} + 1 \times 2 + \frac{3}{4} \times 1 + \frac{1}{3} \times 1 = \frac{55}{12}$. If $d(v_{i+2}) = 3$, then $d(v_{i+1}) \ge 7$ and max $\{d(v_{i+3}), d(v_{i+4})\} \ge 4$, so $\phi \le \frac{3}{2} \times 1 + 1 \times 1 + \frac{3}{4} \times 3 = \frac{19}{4}$. Otherwise, $\phi \le \frac{5}{4} \times 1 + 1 \times 2 + \frac{3}{4} \times 2 = \frac{19}{4}$. It is similar with $d(f_{i+3}) = 3$, $d(f_{i+1}) \ge 4$ and $d(f_{i+2}) \ge 4$. Suppose $d(f_{i+2}) = 3$, $d(f_{i+1}) \ge 4$ and $d(f_{i+3}) \ge 4$. If $d(v_{i+2}) = 3$, $d(f_{i+1}) \ge 4$ and $d(f_{i+2}) \ge 4$. Suppose $d(f_{i+2}) = 3$, $d(f_{i+1}) \ge 4$ and $d(f_{i+3}) \ge 4$. If $d(v_{i+2}) = 3$ or $d(v_{i+3}) = 3$, then $\phi \le \frac{3}{2} \times 1 + 1 \times 1 + \frac{3}{4} \times 3 = \frac{19}{4}$. Otherwise, $\phi \le \frac{5}{4} \times 1 + 1 \times 2 + \frac{3}{4} \times 2 = \frac{19}{4}$. Suppose $\min\{d(f_{i+1}), d(f_{i+2}), d(f_{i+3})\} \ge 4$. Then $\max\{d(v_{i+1}), d(v_{i+2}), d(v_{i+3}), d(v_{i+3})\} = 4$ or $\max\{d(f_i), d(f_{i+1}), d(f_{i+2}), d(f_{i+3})\} \ge 5$, so $\phi \le \max\{1 \times 3 + \frac{3}{4} \times 2, 1 \times 4 + \frac{1}{3}\} = \frac{9}{2}$. So $\phi \le \max\{\frac{14}{3}, \frac{24}{3}, \frac{29}{6}, 5, \frac{55}{12}, \frac{19}{4}, \frac{9}{2}\} = \frac{21}{4}$.

Case 5. k = 5 If k = 5, then $\phi \le \frac{13}{2}$. It is similar to prove (e), we omit it here. Next, we prove the Lemma.

If $n_2(v) = 8$, then all faces incident with v are 6^+ -faces by Lemma 2(2)–(4), that is, $f_{6^+}(v) = 8$, so $ch'(v) = 10 - 1 \times 8 = 2 > 0$. If $n_2(v) = 7$, then $f_{6^+}(v) \ge 6$ and $f_3(v) = 0$, so $ch'(v) \ge 10 - 1 \times 7 - \frac{3}{2} = \frac{3}{2} > 0$ by Claim (a).

Suppose $n_2(v) \le 6$. The possible distributions of 2-vertices adjacent to v are illustrated in Fig. 5. For Fig. 5(1), we have $f_{6^+}(v) \ge 5$ and $ch'(v) \ge 10 - 1 \times 6 - \frac{11}{4} = \frac{5}{4} > 0$ by Claim (b).

For Fig. 5(2)–(4), we have $f_{6^+}(v) \ge 4$ and $ch'(v) \ge 10 - 1 \times 6 - \frac{3}{2} \times 2 = 1 > 0$. For Fig. 5(5), we have $f_{6^+}(v) \ge 4$ and $ch'(v) \ge 10 - 1 \times 5 - 4 = 1 > 0$ by Claim (c). For Fig. 5(6)–(7), we have $f_{6^+}(v) \ge 3$ and $ch'(v) \ge 10 - 1 \times 5 - \frac{3}{2} - \frac{11}{4} = \frac{3}{4} > 0$. For Fig. 5(8)–(9), we have $f_{6^+}(v) \ge 2$ and $ch'(v) \ge 10 - 1 \times 5 - \frac{3}{2} \times 3 = \frac{1}{2} > 0$. For

Fig. 5 $n_2(v) \le 6$

Fig. 5(10), we have $f_{6^+}(v) \ge 3$ and $ch'(v) \ge 10-1 \times 4 - \frac{21}{4} = \frac{3}{4} > 0$ by Claim (d). For Fig. 5(11) and (13), we have $f_{6^+}(v) \ge 2$ and $ch'(v) \ge 10-1 \times 4 - \frac{3}{2} - 4 = \frac{1}{2} > 0$. For Fig. 5(12) and (16), we have $f_{6^+}(v) \ge 2$ and $ch'(v) \ge 10-1 \times 4 - \frac{11}{4} \times 2 = \frac{1}{2} > 0$. For Fig. 5(14) and (15), we have $f_{6^+}(v) \ge 1$ and $ch'(v) \ge 10-1 \times 4 - \frac{3}{2} \times 2 - \frac{11}{4} = \frac{1}{4} > 0$. For Fig. 5 (17), we have $ch'(v) \ge 10-1 \times 4 - \frac{3}{2} \times 4 = 0$. For Fig. 5(18), we have $f_{6^+}(v) \ge 2$ and $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} - \frac{21}{4} = \frac{1}{4} > 0$. For Fig. 5(19), we have $f_{6^+}(v) \ge 1$ and $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} - \frac{21}{4} = \frac{1}{4} > 0$. For Fig. 5(20), we have $f_{6^+}(v) \ge 1$ and $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} - \frac{21}{4} = \frac{1}{4} > 0$. For Fig. 5(21), we have $f_{6^+}(v) \ge 1$ and $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} - \frac{21}{4} = \frac{1}{4} > 0$. For Fig. 5(21), we have $f_{6^+}(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 3 - \frac{3}{2} \times 2 - 4 = 0$. For Fig. 5(22), we have $ch'(v) \ge 10-1 \times 2 - \frac{3}{2} \times 2 - \frac{5}{4} \times 2 - 1 \times 1 - \frac{1}{3} \times 2 = \frac{5}{6} > 0$. If f_2, f_3, f_4, f_5 and f_6 are incident with no 3^- -vertex, then $ch'(v) \ge 10-1 \times 2 - \frac{5}{4} \times 5 - \frac{3}{4} \times 2 = \frac{1}{4} > 0$. For Fig. 5(24), we have $ch'(v) \ge 10-1 \times 2 - \frac{3}{2} - \frac{12}{2} = 0$. For Fig. 5(25), we have $ch'(v) \ge 10-1 \times 2 - \frac{3}{2} - \frac{12}{4} = 0$. For Fig. 5(26), we have $ch'(v) \ge 10-1 \times 2 - 4 \times 2 = 0$.

Hence we complete the proof of the theorem.

Acknowledgments The total work is supported by a research Grant NSFC (11271006) of China. Huijuan Wang work is supported by a research Grant NSFC (11201440) of China.

References

- 1. Behzad, M.: Graphs and their chromatic numbers, Ph.D. Thesis, Michigan State University (1965)
- 2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. MacMillan, London (1976)
- 3. Borodin, O.V.: On the total coloring of planar graphs. J. Reine Angew. Math. 394, 180-185 (1989)
- 4. Chang, G.J., Hou, J.F., Roussel, N.: Local condition for planar graphs of maximum degree 7 to be 8-totally colorable. Discret. Appl. Math. **159**, 760–768 (2011)
- Hou, J.F., Zhu, Y., Liu, G.Z., Wu, J.L., Lan, M.: Total colorings of planar graphs without small cycles. Graphs Comb. 24, 91–100 (2008)
- Kostochka, A.V.: The total chromatic number of any multigraph with maximum degree five is at most seven. Discret. Math. 162, 199–214 (1996)
- Kowalik, L., Sereni, J.-S., Škrekovski, R.: Total coloring of plane graphs with maximum degree nine. SIAM J. Discret. Math. 22, 1462–1479 (2008)
- Roussel, N., Zhu, X.: Total coloring of planar graphs of maximum degree eight. Inform. Process. Lett. 110, 321–324 (2010)
- Sanders, D.P., Zhao, Y.: On total 9-coloring planar graphs of maximum degree seven. J. Graph Theory 31, 67–73 (1999)
- Shen, L., Wang, Y.Q.: Total colorings of planar graphs with maximum degree at least 8. Sci. China Ser. A 52(8), 1733–1742 (2009)
- Vizing, V.G.: Some unsolved problems in graph theory. Uspekhi Mat. Nauk 23, 117–134 (1968). (in Russian)
- Wang, B., Wu, J.L., Tian, S.F.: Total colorings of planar graphs with small maximum degree. Bull. Malays. Math. Sci. Soc. 36(3), 783–787 (2013)
- 13. Wang, H.J., Liu, B., Wu, J.L.: Total coloring of planar graphs without intersecting short cycles, submitted
- Wang, W.F.: Total chromatic number of planar graphs with maximum degree ten. J. Graph Theory 54(2), 91–102 (2007)