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Abstract A k-total-coloring of a graph G is a coloring of vertex set and edge set using
k colors such that no two adjacent or incident elements receive the same color. In this
paper, we prove that if G is a planar graph with maximum A > 8 and every 6-cycle
of G contains at most one chord or any chordal 6-cycles are not adjacent, then G has
a (A + 1)-total-coloring.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow
[2] for terminologies and notations not defined here. Let G be a graph. We use V (G),
E(G), A(G) and §(G) (or simply V, E, A and §) to denote the vertex set, the edge
set, the maximum degree and the minimum degree of G, respectively. For a vertex
v € V,let N(v) denote the set of vertices adjacent to v and let d(v) = |N(v)| denote
the degree of v. A k-vertex, a k™ -vertex or a kt-vertex is a vertex of degree k, at most
k or at least k, respectively. A k-cycle is a cycle of length k. We use (v1, v, ..., vg) to
denote a cycle (or a face) whose boundary vertices are vy, va, ..., vg in the clockwise
order. Note that all the subscripts in the paper are taken modulo d. We say that two
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cycles are adjacent (or intersecting) if they share at least one edge (or one vertex,
respectively). Let C = (vq, v2, ..., v)(k > 4) be a cycle. If there is an edge v;v;
with j #i &1 (mod k), then the edge v;v; is called a chord of C.

A k-total-coloring of a graph G = (V, E) is a coloring of V U E using k colors
such that no two adjacent or incident elements receive the same color. A graph G is
total-k-colorable if it admits a k-total-coloring. The total chromatic number x'(G) of
G is the smallest integer k such that G has a k-total-coloring. Clearly, x"(G) > A+1.
Behzad [1] and Vizing [11] conjectured independently that x”(G) < A + 2 for each
graph G. This conjecture was confirmed for graphs with A < 5. For planar graphs
the only open case is that of A = 6 (see [6,9]). In recent years, the study of total
colorings planar graphs has attracted considerable attention. For planar graphs with
large maximum degree, it is possible to determine x”(G) = A + 1. This first result
was given in [3] for A > 14, which was finally extended to A > 9 in [7]. Zhu [8]
proved that if G is a planar graph with maximum degree 8, and for each vertex x,
there is an integer k, € {3, 4,5, 6, 7, 8} such that there is no k,-cycle which contains
x, then x”(G) = 9. Wang et al. [13] extended this result to that there is at most one
ky-cycle which contains x. Chang [4] proved that for planar graph G with A > 7, if
there is an integer k, € {3, 4,5, 6} such that there is no k,-cycle which contains x
for each x € V(G), then x”(G) = A + 1. Wang et al. [12] proved x"(G) = A + 1
for some planar graphs with small maximum degree. Hou et al. [5] proved that every
planar graphs with A > 8 and without 6-cycles are total-9-colorable. Shen and Wang
[10] extended this result to planar graphs without chordal 6-cycles. In this paper, we
extend this result and get the following theorem.

Theorem 1 Let G be a planar graph with maximum degree A > 8. If every 6-cycle
of G contains at most one chord or chordal 6-cycles are not adjacent in G, then
x"(G)=A+1.

2 Proof of Theorem 1

First, we introduce additional notations and definitions here for convenience. Let G
be a planar graph having a plane drawing and let F' be the face set of G. For a face f
of G, the degree d( f) is the number of edges incident with it, where each cut-edge is
counted twice. A k-face, a k™ -face or a k™ -face is a face of degree k, at most k or at
least k, respectively. Denote by n4(v) the number of d-vertices adjacent to the vertex
v, fq(v) the number of d-faces incident with v.

Now, we begin to prove Theorem 1. According to [7], the theorem is true for
A > 9. So we assume in the following that A = 8. Let G = (V, E) be a minimal
counterexample to the planar graph G with maximum degree A = 8, suchthat |V |+|E]|
is minimal and G has been embedded in the plane. Then every proper subgraph of G
is total-9-colorable. First we give some lemmas for G.

Lemmal /3]

(a) G is 2-connected.
(b) If uv is an edge of G withd(u) < 4, thend(u) +d(v) > A +2 = 10.

By Lemma 1(b), any two neighbors of a 2-vertex are 8-vertices.
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Fig. 1 Forbidden configurations in G

(6

M @ 3)
Fig. 2 Forbidden configurations in G

Note that in all figures of the paper, vertices marked e have no edges of G incident
with them other than those shown and vertices marked o are 3" -vertices.

Lemma 2 G has no configurations depicted in Fig. 1, where v denotes the vertex of
degree of 7.

Proof The proof of (1), (2), (4) and (6) can be found in [14], (3) can be found in [10],

(5) can be found in [7]. O
Lemma 3 Suppose v is a d-vertex of G withd > 5. Let vy, ..., vg be the neighbor
of vand f1, fa, ..., fa be faces incident with v, such that f; is incident with v; and

viy1, fori € {1,2,...,d}. Let d(vi) = 2 and {v,u1} = N(v1). Then G does not
satisfy one of the following conditions (see Fig. 2).

(1) there exists an integer k (2 < k < d — 1) such that d(vk4+1) = 2, d(vj) = 3
Q=i=<kandd(fj) =41 =<j=<k).

(2) there exist two integers k andt (2 < k <t < d — 1) such that d(vy) = 2,
dw)=3k+1=<i<t),d(f;y) =3andd(fj)) =4k =<j=<t-1.

(3) there exist two integers k and t 3 < k <t < d — 1) such that d(v;) = 3
(k<i<n,d(fie) =d(f) =3andd(f}) =4 (k< j<i—1).

Proof Suppose G satisfies all of the conditions (1)-(3). If d(f;) = 4, then let u; be
adjacent to v; and v;y;. By the minimality of G, G' = G — vv; has a (A + 1)-
total-coloring ¢. Let C(x) = {¢(xy) : y € N(x)} U {¢(x)}. First we erase the
colors on all 37 -vertices adjacent to v. We have ¢ (viu1) € C(v), for otherwise, the
number of the forbidden colors for vv; is at most A, so vv; can be properly colored
and by properly recoloring the erased vertices, we get a (A + 1)-total-coloring of
G, a contradiction. Without loss of generality, assume that C(v) = {1,2,...,d}
with ¢ (vv;) =i (i € {2,3,...,d}), p(viu1) =d + 1 and ¢ (v) = 1. Thus we have
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d+1 e C(v;)foralli € {2,3,...,d}, forotherwise, we can recolor vv; withd+ 1 and
color vv; with i, and by properly recoloring the erased vertices, we geta (A + 1)-total-
coloring of G, a contradiction, too. In the following we consider (1)-(3) one by one.

(1) Sinced +1 € C(v;) foralli € {2,3,...,d}, there is a vertex uy (1 < s < k)
such that d + 1 appears at least twice on u;, a contradiction to ¢.

(2) Sinced +1 € C(v;) foralli € {2,3,...,d}, p(vkug) = ¢ (Vk1Up+1) = -+ =
¢ (i—qui—1) = ¢(vivs41) = d + 1. We also have ¢ (v;u;—1) = t + 1. For
otherwise, we can recolor v;v;41 with ¢ + 1, vv,41 with d + 1 and color vv;
with ¢t 4 1. By properly recoloring the erased vertices, we get a (A + 1)-total-
coloring of G, a contradiction. Similarly, ¢ (v;—1u;—2) = ¢ (vV—2u;—3) = --- =
¢ (Vk4+1ur) =t + 1. So we can recolor vv, 1 withd + 1, v;v,41 with t + 1, viu,—g
withd + 1, vi_ju;—y witht 4+ 1,. . ., Vg ugy1 With £ + 1, v 1ug withd + 1, veug
with ¢ 4 1 and color vv; with ¢ + 1. By properly recoloring the erased vertices,
we get a (A + 1)-total-coloring of G, also a contradiction.

3) Ifd+1 & {¢p(vk—1vk) Up (vrvr41)}, then there is a vertex ug (kK < s < t—1) such
that d + 1 appears at least twice on ug, a contradiction to ¢. So without loss of
generality, assume ¢ (vg—1vx) = d+1.If ¢ (Vi41ur) = d+1,thenp (Vkaur41) =
¢ (Vgp3Up+2) = - = ¢ (vrus—1) = d + 1. By the discussion of (2), we also have
¢ (Vpug) = ¢ (Vkr1utp+1) = -+ = ¢(Vr—1U—1) = ¢(Vvr41) = k — 1. Then we
can recolor vvg_1 with d + 1, vg_jvg with k — 1, vpuyg with d + 1, vgpqug with
k—1, ..., v_1u;—1 with d + 1, vu,—1 with k — 1, vyv,41 with 1 + 1, vusyg
with k — 1 and color vv; with # 4 1. By properly recoloring the erased vertices,
we get a (A + 1)-total-coloring of G, a contradiction. If ¢ (vi41ur+1) =d + 1,
then ¢ (vit2uk42) = @ (Vkt3up+3) = -+ = G(v—1us—1) = ¢(Vv41) =d + 1.
Similarly, we have ¢ (v;u;—1) = ¢ (v;—1u;—2) = - = ¢(vg1ux) =1t + 1. Let
¢ (vgur) = s. Then we can recolor vv,41 withd + 1, v;v,41 with ¢ + 1, veus—g
withd + 1, vj_qu;—y with t + 1, ..., vkp1up4q with t + 1, vgyug with s, vgug
with ¢ 4 1, and color vv; with ¢ 4 1. By properly recoloring the erased vertices,
we get a (A + 1)-total-coloring of G, a contradiction, too. |

By the Euler’s formula |V| — |E| + |F| = 2, we have

D Qdw) —6)+ D (d(f) —6) = —6(|V| — |E| +|F|) = =12 < 0

veV feF

We define ch the initial charge that ch(x) = 2d(x) — 6 for each x € V and
ch(x) =d(x) —6foreachx € F.So >’ .y pch(x) = —12 < 0. In the following,
we will reassign a new charge denoted by ch’(x) to each x € V U F according to the
discharging rules. If we can show that ¢h’(x) > 0 for each x € V U F, then we get
an obvious contradiction to 0 < >, pch'(x) = D cyup ch(x) = —12, which
completes our proof. Now we define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2.Let f be a3-face. If f isincident with a 3™ -vertex, then it receives % from each

of its two incident 7T -vertices. If f is incident with a 4-vertex, then it receives %

from each of its two incident 61 -vertices. If f is not incident with any 4~ -vertex,
then it receives 1 from each of its two incident 5™ -vertices.
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(6)) (6) (7
Fig. 3 Forbidden configurations in G

R3. Let f be a4-face. If f is incident with two 3™ -vertices, then it receives 1 from
each of its two incident 77 -vertices. If f is incident with only one 3~ -vertex, then
it receives % from each of its two incident 71 -vertices; and % from the left incident
4% _vertex. If f is not incident with any 37 -vertex, then it receives % from each of
its incident 41 -vertices.

R4. Each 5-face receives % from each of its incident 4T -vertices.

Next, we show that ch’ (x) = Oforallx € VUF.Itis easy to check that ch' (f)=0
forall f € F and ch'(v) > 0 for all 2-vertices v € V by the above discharging rules.
If d(v) = 3, then ch' (v) = ch(v) = 0.1f d(v) = 4, then ' (v) > ch(v) — § x4 =0
by R2 and R3. For d(v) > 5, we need the following structural lemma.

Lemma 4 (1) Suppose that every 6-cycle of G contains at most one chord. Then we
have the following results.
(a) G has no configurations depicted in Fig. 3(1), Fig. 3(2) and Fig. 3(3);
(b) Suppose G has a subgraph isomorphic to Fig. 3(4). Then d(f1) > 4 and
d(f2) # 4. More over if d(f1) = 4, thend(f,) > 5;
(¢) If G has a subgraph isomorphic to Fig. 3(5), then d(f1) > S and d(f;) > 5.
(2) Suppose that all chordal 6-cycles are not adjacent. Then we have the following
results.
(d) If G has a subgraph isomorphic to Fig. 3(5), then max{d(f1), d(f2)} > 4;
(e) G has no configurations depicted in Fig. 3(6) and Fig. 3(7).

Suppose d(v) = 5. Then f3(v) < 4 by Lemma 4. If f3(v) = 4, then fg+(v) >
1, so ch/(v) > ch(v) — 1 x4 = 0.If f3(v) < 3, then ch'(v) > ch(v) — 1 x
£ =1 x (G- ) = 2L > 0. Suppose d(v) = 6. Then f3(v) < 4
and ch' (V) > ch(v) — 3 x f3(0) — 1 x (6 — f3(v)) = 24=LY > 0 Suppose
d(w) = 7. Then f3(v) < 5. By Lemma 2(1), v is incident with at most two 3-
faces are incident with a 37 -vertex, that is, v sends % to each of the two 3-faces
and at most % to each other 3-face. If f3(v) = 5, then fs+(v) > 1, and ch/(v) >
ch) =3 x2-3x3—-2x1—3x1=1%>01I2< f3(v) <4, then
(V) = ch(v) =3 x2 =3 x (f3(1) =2) =1 x 5= f3(v) — 3 x2 = =LW >,
If f3(v) <2, then ch' (v) = ch(v) — 3 x f3(v) — 1 x (7 — f3(v)) = =L > 0.

Suppose d(v) = 8. Then ch(v) = 10. Let vy, ..., vg be neighbors of v in the
clockwise order and f1, f», ..., f3 be faces incident with v, such that f; is incident
with v; and v; 41, fori € {1,2,...,8},and fo = f.

Suppose n(v) = 0. Then f3(v) < 6.If f3(v) = 6, then fs5+(v) > 2, so ch’/(v) >
10—3x6—1x2= 1> 0.If f3(v) = 5, then fs+ (v) > 1,s0ch’(v) > 10—3 x5—1x
2—Ix1=1{>0.1If f3(v) <4 thench’(v) = 10— 3 x f3(v) — 1 x 8 — f3(v)) > 0.
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(1 2)
Fig.4 Claim

Suppose n2(v) = 1. Without loss of generality, assume d(v1) = 2.

Suppose v is incident with a 3-cycle fi.

By Lemma 4, f3(v) < 6 and all 3-faces incident with no 3™ -vertex except f| by
Lemma 2(6). If f3(v) = 6, then fs+(v) > 2,0 ch’(v) > 10 — 1 — % x 1 — ?T X
S5—1ix2=5>01If4< f3v) <S thench’(v) > 10—1—3 x1-3x
(f3) = D) =1 x (6~ f3(v) =3 x2 =LY > 0 If1 < f3(v) < 3, then
W) =10—-1=3x1=3x (-1 —1x @8- f3(0) ==LL >

Suppose v is not incident with a 3-cycle.

Suppose every 6-cycle of G contains at most one chord. Then f3(v) < 5 by
Lemma 2(2)—(4). If 4 < f3(v) < 5, then f5+(v) > 2,s0 ch’(v) > 10 — 1 — % X
() =) =1 x1—1x(6— f3(0) — 1 x2 =280 5 01 f30) = 3,
then fs+(v) = Lsoch/(v) =2 10 -1 -3 x3—1x4-41x1 =} > 0
If f3(v) = 2, then ch/(v) > 10—1—%x2—1x6 = 0. If fz3v) = 1,
then without loss of generality, d(f2) = 3, i.e. d(v3) = 3 and d(v2) > 7,
ch) 2 10-1-3x1-1x6-3x1=3>01I i) = O,then
ch)>10—1—-1x8=1>0.

Suppose any two chordal 6-cycles are not adjacent. Then f3(v) < Sby Lemma2(2)—
). If f3(v) = 4, thench’(v) > 10— 1 —3 x2—2 x (f3(v)) — 3 x (8 — f3(v)) =
=BW > 0. 1f f3(v) = 3, then ch'(v) > 10—1——x3——x5— 300
1 < f3(v) < 2,thench’(v) > 10— 1——x f)—1x(6— 2f3(v))——x(2+f3(v)) =
OB 5 0.1f f3(v) =0, then ch’(v) = 10— 1 — 1 x §=1> 0.

Note that next Lemma 5 is also true for general planar graphs if we just use the
above discharging rules.

D=

Lemma 5 Suppose d(v) = 8 and 2 < ny(v) < 8. Then ch’(v) > 0.
Proof Since d(v) = 8§, then ch(v) = 10. First we give a Claim for convenience.

Claim Suppose that d(v;) = d(Viyk+1) =2 andd(vj) >3 fori+1 < j <i+k
Then v sends at most ¢ (in total) to f; and fit1, fix2, .- fi+k, Where ¢ = —Skjl
(k=1,2,3,4,5), see Fig. 4.

By Lemma 2, d(f;) > 4 and d(fi+x) > 4.

Case 1.k = 1 By Lemma 3(1), we have d(v;i1+1) > 4 ormax{d(f;), d(fi+1)} =5,
S0 ¢ §max{% X 2, 1—}—%} = %byR3.

Case 2. k = 2 If d(fi+1) = 3, then min{d(viy+1), d(vit2)} > 4 or
max{d(f;), d(fi+2)} > 5 by Lemma 3(2), and it follows that ¢ < max{3 + 3 +
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3o 5+ 35 +3) = 4. Otherwise, d(fi+1) = 4, then min{d (vi+1), d(vi+2)} = 4

or max{d(fl) d(fi+1), d(fl+2)} > 5 by Lemma 3(1), and it follows that ¢ <
max{1l + —><2 1x24 % }_§<%

Case 3 k = 3 Suppose d(f,+1) =d(fit2) = 3. Thend(vi12) > 4. If d(viy1) =
d(viy3) = 3, then d(f;) > Sandd(f,+3) >S5s0¢ <3x2+4ix2=24If
min{d (vi4+1), d(viy3)} > 4,then¢ < 3 x 2+ x 2 = 4. Suppose d(fi+1) = 3 and
d(fi2) = 4.1fd(vi41) = 3,thend<v,+z) > 7andd(fi) >5,50¢ < {+3+3+1=
B I d(vis2) = 3, then d(viy1) = 7 and d(vig3) = 4,509 < 3+ 3+ 3 4
2 = B fmin{diy), dis2)} = 4, ¢ < 3+ 3+ 3+ 1 = 2. Itis similar
with d(fi42) = 3 and d(fi4+1) > 4. Suppose min{d(fi+1), d(fi+2)} > 4. Then
max{d(vi+1), d(vi4+2), d(v,+3)} > 40r max{d(ﬁ) d(ﬁ+1) d(ﬁ+2) d(fz+z)} >
5so¢><max{1x2+ x2, 1 x34+1 3= So¢<max{3, ,12, 4,2}_4

Case 4. k = 4 Suppose d(le) = d(fi+2) = d(fi+3) = 3. Then
min{d (vi42), d(vl+3)} > 4. If d(vz+1) = d(vit+4) = 3, then d(f;) = 5 and
d(fira4) 25,509 <3 x2+1x 1+ 1 x2 =Y Ifmin{d(vis1), dits)} = 4,
theng < 2 x3+3x2=2. Suppose d(fl-ﬂ) = d(fiz2) = 3,d(fip3) > 4
Then d(vis2) > 4. If d(vip1) = d(vis3) = 3. then d(viy4) > 4 and d(f;) > 5.
so ¢ < % x 2+ % x 2 + % x 1 = %. If min{d(vit+1), d(viy+3)} > 4, then
¢ < % x24+1x1+ 43'1 x 2 = 5. Similar with d(fij12) = d(fi+3) = 3, d(fi+1) > 4.
Suppose d(fi+1) = d(fi+3) = 3, d(fi+2) = 4. Then max{d(vi1+2), d(vi+3)} > 4
by Lemma 3(3), so ¢ < % x 14+ % x 1+ % x 3 = 5. Suppose d(fi+1) = 3,
d(fi+2) = 4 and d(fi43) = 4. If d(vi41) = 3, then d(vi42) = 7 and d(f;) = 5,
00 < 3+1x2+2x1+1x1 =23 1fdv) =3, then d(vi1) > 7
and max{d(v;13), d(viz4)} > 4, so ¢ < 3x1l+1x1+3x3=2L2 0th
erwise, p < 3 x 1 +1x2+ 3 x2 = L Itis similar with d(fi43) = 3,
d(fi+1) = 4 and d(fi1+2) = 4. Suppose d(fi1+2) = 3,d(fi+1) = 4 and d(fiy3) > 4.
Ifd(v,+2) =3or d(v,+3) = 3, then ¢ < % x1+1x1+ % X3 = 14—9. Otherwise,
¢ < x 1+1 x2+ X2 = .Supposemin{d(ﬁ+1), d(fi+2), d(fi+3)} = 4. Then
max{d(vz+1) d(UH-Z) d(vz+3), d(vit4)} = 4 or max{d(fi), d(fi+1), d(fi+2),
d(fiz3), d(fiza)} = 5, soqb < max{l x3+§x2, Ix44+1 =3 So
¢<max{¥, I T.5 F P =%

CaseS.k =51Ifk =5,then¢ < ﬁ. Itis similar to prove (e), we omit it here.

Next, we prove the Lemma.

If ny(v) = 8, then all faces incident with v are 6*-faces by Lemma 2(2)—(4), that
is, fg+(v) = 8, so ch/(v) 10—1x 8 = 2 > 0. If np(v) =7, then fe+(v) > 6 and
f3() =0,50ch’ (v) =210 -1 x7— 3 =3 > 0by Claim (a).

Suppose na(v) < 6. The possible distributions of 2-vertices adjacent to v are
illustrated in Fig. 5. For Fig. 5(1), we have fg+(v) > 5and ch/(v) > 10—1 x6—% =
2 > 0 by Claim (b).

For Fig. 5(2)—(4), we have fg+(v) > 4and ch/(v) > 10— 1 x 6—% x2 =1 > 0. For
Fig. 5(5), we have fg+(v) > 4andch’'(v) > 10— 1x5—-4=1 > 0 by Clalm (©).
For Fig. 5(6)—~(7), we have fg+(v) > 3andch/(v) > 10—1x5— 32 — L _35

Z 4 — 4
For Fig. 5(8)~(9), we have fg+(v) > 2and ch’(v) > 10— 1x5—3 x3 = § > 0.For

Sl
t\:|u|\3|u1
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Fig. 5(10), we have fg+ (v) > 3andch’(v) > 10—1x4—2' = 3 > 0by Claim (d). For
Fig. 5(11) and (13), we have fg+ (v) > 2and ch’'(v) > 10—1x4—%—4 = % > 0. For
Fig. 5(12) and (16), we have fg+(v) > 2andch’(v) > 10—1x4— L x2 = 1 > 0. For
Fig. 5(14) and (15), we have fg+ (v) > landch'(v) > 10—1x4—3 x2- =1 > 0.
For Fig. 5 (17), we have ch/(v) > 10 — 1 x 4 — % x 4 = 0. For Fig. 5(18), we have
fe+() > 2and ch’(v) > 10 — 1 x 3 — £ =1 > 0 by Claim (e). For Fig. 5(19),
we have fg+(v) > 1and ch’(v) = 10 — 1 x 3 — 3 — 21 = 1 > 0. For Fig. 5(20),
we have fg+(v) > 1and ch'(v) = 10 — 1 x 3 — 1L —4 = % > 0. For Fig. 5(21),
we have ch’'(v) > 10 — 1 x 3 — % x 2 — 4 = 0. For Fig. 5(22), we have ch’(v) >
10 — 1 x 3 —3 — L1 x 2 = 0. For Fig. 5(23), we have f+(v) > 1. Suppose d(f>) =
d(f3) = d(fs) = d(fs) = d(fs) = 3. Then min{d(v3), d(v4), d(vs), d(ve)} > 4.
If d(v2) = d(vg) = 3, then d(f1) > 5 and d(f7) > 5 by Lemma 3, so ch’(v) >
10-1x2-3x2-3x2-1x1-3x2=2>0.1If 5, f3, fa, f5 and f are
incident with no 3~ -vertex, then ch’(v) > 10 — 1 x 2 — % X5 — % X2 = % > 0. For
Fig. 5(24), we have ch’(v) > 10—1x2—3 — 1} = 0. For Fig. 5(25), we have ch’(v) >
10— 1 x 2 — L — 2L = 0. For Fig. 5(26), we have c/h'(v) > 10— 1 x 2 —4 x 2 = 0.

O

Hence we complete the proof of the theorem.
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