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Abstract We investigate 3-dimensional almost Kenmotsu manifolds satisfying spe-
cial types of nullity conditions depending on two smooth functions κ, μ. When either
κ < −1 and μ = 0 or h = 0, such conditions coincide with the κ-nullity condition
which we show to be equivalent to the η-Einstein one. As an application of this result,
we obtain examples of N (κ)-quasi Einstein manifolds. Moreover, for the aforemen-
tioned manifolds, some complete local descriptions of their structure are established,
building local “models” for each of them.
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1 Introduction

The so-called nullity conditions on different kinds of almost contact metric manifolds
have known an increasing interest in the last 15 years and they were widely studied in
various recent papers. In [2] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou intro-
duced a nullity condition, called (κ, μ)-nullity condition with κ, μ ∈ R, on manifolds
endowed with a contact metric structure (ϕ, ξ, η, g). Afterwards, a natural general-
ization of this condition has been considered in [9,10,14], allowing κ, μ to be smooth
functions. This means that the curvature of the Levi–Civita connection satisfies
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438 V. Saltarelli

R(X, Y )ξ = κ
(
η(Y )X − η(X)Y

) + μ
(
η(Y )h X − η(X)hY

)
, (1.1)

for all vector fields X, Y and for some κ, μ in the ring F(M) of the smooth functions
on M , where h:=(1/2)Lξ ϕ, L denoting the Lie differentiation. In particular, in [14],
it is proved that only in dimension 3, there are examples of contact metric manifold
satisfying (1.1) with κ, μ non-constant functions. A similar problem has been studied
by P. Dacko and Z. Olszak [4] in the framework of almost cosymplectic manifolds
as well. In this paper, we deal with almost Kenmotsu manifolds, focusing mainly
on the 3-dimensional non-normal case. Normal almost Kenmotsu manifolds, known
as Kenmotsu manifolds, are closely related with warped products of two Riemannian
manifolds, which set up one of the classes of the Tanno’s classification [18]. In general,
the structure of normal almost contact metric manifolds of dimension 3 have been
recently further studied in [5].

Almost Kenmotsu manifolds satisfying (1.1) with κ, μ ∈ R were studied in [7],
proving that h = 0 and κ = −1. For this reason, a modified nullity condition involving
the tensor h′ = h ◦ ϕ was introduced and studied in the same paper. It has been
later generalized in [16], requiring that ξ belongs to the generalized (κ, μ)′-nullity
distribution, i.e. for all vector fields X, Y

R(X, Y )ξ = κ
(
η(Y )X − η(X)Y

) + μ
(
η(Y )h′X − η(X)h′Y

)
, (1.2)

for some κ, μ ∈ F(M). If an almost Kenmotsu manifold satisfies (1.2), then κ ≤ −1
[16]. When κ = −1 identically, then h′ = 0 and M is locally a warped product
of an almost Kähler manifold and an open interval. In the special case κ, μ ∈ R, it
was proved in [7] that if κ < −1, then μ = −2 and h′ admits 3 eigenvalues λ,−λ

and 0, with 0 as simple eigenvalue and λ = √−1 − κ . Furthermore, the following
classification theorem was established:

Theorem 1.1 ([7]) Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold such
that ξ belongs to the (κ,−2)′-nullity distribution and h′ �= 0. Then, M2n+1 is locally
isometric to the warped product H

n+1(κ −2λ)× f R
n or Bn+1(κ +2λ)× f ′ Rn, where

f = ce(1−λ)t and f ′ = c′e(1+λ)t , with c, c′ positive constants.

In [16] A. M. Pastore and the author proved that, in dimension greater than or
equal to 5, the functions κ and μ in (1.1) or (1.2) can vary only in the direction of ξ

(i.e. dκ ∧ η = 0) and the curvature is completely determined if κ < −1. In general,
similar results are not true in dimension 3. However, some explicit examples of almost
Kenmotsu manifolds satisfying (1.1) and (1.2) with non-constant κ, μ were given in
any dimension, thus showing a different behaviour with respect to the contact case.

The aim of the present paper is to carry on a deeper study of the three-dimensional
case. After a section containing basic information about almost Kenmotsu manifolds,
we will start by establishing some useful properties in Sect. 3. In particular, moti-
vated by the growing importance of N (κ)-quasi Einstein manifolds in the last years
(e.g. [17,20]), we prove that 3-dimensional almost Kenmotsu manifolds whose char-
acteristic vector field ξ belongs to a κ-nullity distribution are N (κ)-quasi Einstein
manifolds. With Sect. 4, we analyse a special class of almost Kenmotsu 3-manifolds
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Kenmotsu Manifolds Satisfying Nullity Conditions 439

satisfying (1.1), which are not Kenmotsu, and we present one of the main results of the
paper. We show that the structure of a 3-dimensional almost Kenmotsu generalized
(κ, μ)-manifold with h �= 0 is completely locally described provided that dκ ∧ η = 0
(Theorem 4.1). Section 5 deals an analogous situation for the class of almost Ken-
motsu generalized (κ, μ)′-manifolds of dimension 3 with κ < −1. A complete local
description of their structure is obtained (Theorem 5.1). In the last section, with a
different approach, we give other important characterizations (Theorem 6.1 and 6.2)
and explicit local models for the two classes considered.

All manifolds are assumed to be smooth (i.e. differentiable of class C∞) and
connected.

2 Preliminaries

In this section, we recall some basic data about almost Kenmotsu manifolds and
the main properties obtained in [16] for almost Kenmotsu manifolds satisfying the
generalized nullity conditions.

2.1 Almost Kenmotsu Manifolds

An almost contact metric manifold is a (2n + 1)-manifold M2n+1 endowed with a
structure (ϕ, ξ, η, g) given by a (1, 1)-tensor field ϕ, a vector field ξ , a 1-form η and
a Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) ∀X, Y ∈ �(T M).

The fundamental 2-form � associate with the structure is defined by �(X, Y ) =
g(X, ϕY ) for any vector fields X and Y . The structure is normal if the tensor field
N = [ϕ, ϕ] + 2dη ⊗ ξ vanishes, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ. For more
details, we refer the reader to [1].

According to [11], an almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is said to
be almost Kenmotsu manifold if

dη = 0, d� = 2η ∧ �. (2.1)

A normal almost Kenmotsu manifold is a Kenmotsu manifold (cf. [11,12]).
Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. Since dη = 0, the

canonical distribution D = ker(η) orthogonal to ξ is integrable. Denote by F the
1-codimensional canonical foliation of M generated by D. The tensor field ϕ induces
an almost complex structure J on any leaf M ′ of F and, if G is the Riemannian metric
induced by g on M ′, the pair (J, G) defines an almost Hermitian structure on M ′.
From (2.1), we infer that (J, G) is an almost Kählerian structure on M ′. Furthermore,
we have Lξ η = 0 and [ξ, X ] ∈ D for any X ∈ D. The Levi–Civita connection fulfils
the following relation (cf. [1]):

2g
(
(∇Xϕ)Y, Z

) = 2η(Z)g(ϕX, Y ) − 2η(Y )g(ϕX, Z) + g(N (Y, Z), ϕX), (2.2)
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for any vector fields X, Y, Z , from which we deduce that ∇ξ ϕ = 0, so that ∇ξ ξ = 0
and ∇ξ X ∈ D for any X ∈ D. From Lemma 2.2 in [13] we also have, for any
X, Y ∈ �(T M),

(∇Xϕ)Y + (∇ϕXϕ)ϕY = −2g(X, ϕY )ξ − η(Y )ϕX − η(Y )h X, (2.3)

where h:=(1/2)Lξ ϕ.
The (1, 1)-tensor fields h and h′:=h ◦ ϕ are both self-adjoint operators such that

h(ξ) = h′(ξ) = 0 and satisfy

η ◦ h = η ◦ h′ = 0, h ◦ ϕ + ϕ ◦ h = 0, h′ ◦ ϕ + ϕ ◦ h′ = 0, tr(h) = tr(h′) = 0.

It follows that non-vanishing h and h′ have the non-zero eigenvalues with opposite sign;
moreover, they admit the same eigenvalues, but different eigenspaces. If λ �= 0, we will
denote by [λ] and [λ]′, the distributions of eigenvectors of h and h′, respectively, with
eigenvalue λ. Moreover, for any vector field X , (2.2) implies the following relation:

∇Xξ = X − η(X)ξ − ϕh X. (2.4)

In [13], it is proved that the integral submanifolds of D are totally umbilical submani-
folds of M2n+1 if and only if h = 0, which is equivalent to the vanishing of h′. In this
case, the manifold is locally a warped product M ′ × f N 2n , where N 2n is an almost
Kähler manifold, M ′ is an open interval with coordinate t , and f (t) = cet for some
positive constant c (see [6]). If, in addition, the integral submanifolds of D are Kähler,
then M2n+1 is a Kenmotsu manifold. In particular, an almost Kenmotsu 3-manifold
with h = 0 is a Kenmotsu manifold.

Moreover, we recall that the Riemannian curvature R of an almost Kenmotsu man-
ifold satisfies the following general relations (cf. [6,7]):

R(Y, Z)ξ = η(Y )(Z − ϕh Z) − η(Z)(Y − ϕhY ) + (∇Zϕh)Y − (∇Y ϕh)Z (2.5)

ϕlϕ − l = 2(−ϕ2 + h2), (2.6)

where l is the self-adjoint operator defined by l(X):=R(X, ξ)ξ , for any vector field
X . The above relations can be also written in terms of h′ since ϕ ◦h = −h′, h = ϕ ◦h′
and h2 = h′2.

Finally, we recall that an almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is said
to be η-Einstein if its Ricci tensor satisfies

Ric = ag + bη ⊗ η

or equivalently
Q = aI + bη ⊗ ξ , (2.7)

where a and b are smooth functions on M2n+1. An its extension to every Riemannian
manifold is the notion of quasi Einstein manifold. A quasi Einstein manifold in the
sense of [3] is a non-flat Riemannian manifold (Mn, g) whose Ricci operator Q is not
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identically zero and satisfies (2.7) with b �= 0 for a suitable nowhere vanishing 1-form
η and unit vector field ξ such that η = g(·, ξ). Thus, in particular, any η-Einstein
almost Kenmotsu manifold is quasi Einstein.

2.2 Nullity Distributions

Let (M2n+1, ϕ, ξ, η, g) be an almost contact metric manifold and κ, μ ∈ F(M). The
generalized (κ, μ)-nullity distribution N (κ, μ) is the distribution defined by putting
for each p ∈ M2n+1

Np(κ, μ) ={Z ∈ Tp M2n+1 | R(X, Y )Z = κ(g(Y, Z)X − g(X, Z)Y )

+ μ(g(Y, Z)h X − g(X, Z)hY )} ,

where X and Y are arbitrary vectors in Tp M2n+1.
The generalized (κ, μ)′-nullity distribution N (κ, μ)′ is obtained by replacing h with

h′. If μ = 0 or h = 0, both distributions reduce to the well-known κ-nullity distribu-
tion N (κ). The generalized (κ, μ)-nullity condition (1.1) (resp. the nullity condition
(1.2)) is obtained by requiring that ξ belongs to some N (κ, μ) (resp. N (κ, μ)′). For
convenience, an almost contact metric manifold satisfying (1.1) (resp. (1.2)) will be
called generalized (κ, μ)-manifold (resp. generalized (κ, μ)′-manifold).

We observe that, in an almost Kenmotsu manifold, if ξ ∈ N (κ, μ) or ξ ∈ N (κ, μ)′,
(2.5) implies

(∇X h′)Y − (∇Y h′)X = 0, (2.8)

for any X, Y ∈ D. Furthermore, in [16], the following relations are found:

h2 = h′2 = (κ + 1)ϕ2, Q(ξ) = 2nkξ, (2.9)

Q being the Ricci operator. It follows that at every point of an almost Kenmotsu
manifold,

(a) κ ≤ −1;
(b) κ = −1 if and only if h = 0 or, equivalently, h′ = 0;
(c) if κ < −1, then the eigenvalues of h and h′ are 0 of multiplicity 1 and λ =√−1 − κ and −λ, both of them with multiplicity n.

In the case of the (κ, μ)-nullity condition, we also have

∇ξ h = −2h − μϕh, dλ(ξ) = −2λ, dκ(ξ) = −4(κ + 1). (2.10)

Whereas, the belonging of ξ to the (κ, μ)′-nullity distribution yields

∇ξ h′ = −(μ+2)h′, dλ(ξ) = −λ(μ+2), dκ(ξ) = −2(κ+1)(μ+2). (2.11)

Here we prove the following additional result.
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Proposition 2.1 Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. If ξ

belongs to the generalized (κ, μ)-nullity distribution, then one has:

Lξ h = 2λ2ϕ − 2h + μh′, Lξ h′ = −μh − 2h′. (2.12)

If ξ belongs to the generalized (κ, μ)′-nullity distribution, then one has:

Lξ h′ = −(μ + 2)h′, Lξ h = 2λ2ϕ − (μ + 2)h. (2.13)

Proof We remind that, given a (1, 1)-tensor field T on M , the following general
relation holds

LX T = ∇X T + T ◦ ∇ X − (∇ X) ◦ T,

for any X ∈ �(T M). Applying it to T = h and X = ξ , the required relation follows
from the first equation in (2.10). Now, using the equation just proved and the first
relation of (2.9) in

Lξ h′ = Lξ (h ◦ ϕ) = (Lξ h)ϕ + h(Lξ ϕ)

we get the second formula in (2.12). Analogously, taking into account that h = ϕ ◦ h′,
the relations in (2.13) are obtained. �

3 Some Further Properties

We first establish general formulas which hold on every almost Kenmotsu manifold,
without any restriction on the dimension.

Lemma 3.1 Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold. Then, for any
orthonormal frame {Xi }1≤i≤2n+1, one has

2n+1∑

i=1

(∇Xi h
′)Xi = Qξ + 2nξ (3.1)

2n+1∑

i=1

(∇Xi ϕ)Xi = 0. (3.2)
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Proof Let {Xi }1≤i≤2n+1 be an orthonormal frame. For any vector field X , putting
Y = Xi , replacing Z by ϕX in (2.5) and taking the inner product with Xi , we get

2n+1∑

i=1

g(R(Xi , ϕX)ξ, Xi ) =
2n+1∑

i=1

η(Xi )g(ϕX − h X, Xi ) +
2n+1∑

i=1

g((∇Xi h
′)ϕX, Xi )

+
2n+1∑

i=1

g((∇ϕX h′)Xi , Xi ).

(3.3)
By definition of the Ricci tensor, the left-hand side is equal to g(Qξ, ϕX); while the first
term on the right-hand side vanishes, since

∑2n+1
i=1 η(Xi )Xi = ξ and hξ = ϕξ = 0.

Since tr(h′) = 0, the last term vanishes as well. Therefore, using the symmetry of
∇Xi h

′ and the skew-symmetry of ϕ, (3.3) reduces to

2n+1∑

i=1

ϕ(∇Xi h
′)Xi = ϕQξ.

Applying ϕ to this equation, using ϕ2 = −I + η ⊗ ξ and taking into account that, by
definition, g(Qξ, ξ) = Ric(ξ, ξ) = tr l, we get

2n+1∑

i=1

(∇Xi h
′)Xi −

2n+1∑

i=1

η((∇Xi h
′)Xi )ξ = Qξ − (tr l)ξ. (3.4)

Now, using (2.4) and tr(h′) = 0, one has

2n+1∑

i=1

η((∇Xi h
′)Xi )ξ = −

2n+1∑

i=1

g(Xi , h′(∇Xi ξ))ξ = −
2n+1∑

i=1

g(Xi , h′ Xi + h′2 Xi )ξ

= −tr(h′)ξ − tr(h′2)ξ = −tr(h′2)ξ.

On the other hand, (2.6) implies K (ϕX, ξ) + K (X, ξ) = −2 − 2g(h2 X, X), from
which it follows that Ric(ξ, ξ) = −2n − tr(h2). Hence, tr(h′2) = tr(h2) = −2n − tr l
and so, from (3.4), we get (3.1). In order to obtain (3.2), we point out that the left-hand
side is independent of the particular choice of the orthonormal frame. We therefore may
compute it by choosing a ϕ-basis {Ei , ϕEi , ξ}1≤i≤n . By using (2.3) with X = Y = Ei ,
since η(Ei ) = 0, we have

n∑

i=1

(∇Ei ϕ)Ei +
n∑

i=1

(∇ϕEi ϕ)ϕEi = −
n∑

i=1

η(Ei )(ϕEi + hEi ) = 0,

from which, being ∇ξ ϕ = 0, (3.2) follows. �
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The next lemma concerns almost Kenmotsu manifolds having the canonical distri-
bution D with Kähler leaves for which the following formula holds (cf. [8]):

(∇Xϕ)Y = g(ϕX + h X, Y )ξ − η(Y )(ϕX + h X) , ∀X, Y ∈ �(T M). (3.5)

Lemma 3.2 Let (M2n+1, ϕ, ξ, η, g) be an almost Kenmotsu manifold and assume
that the distribution D has Kähler leaves. Then, the following formula holds

2n+1∑

i=1

(∇Xi h)Xi = ϕQξ,

where {Xi }1≤i≤2n+1 is an arbitrary orthonormal frame.

Proof The differentiation of the relation hϕ = −ϕh, together with (3.5), for any vector
fields X, Y yields

(∇X h)ϕY + ϕ(∇X h)Y = η(Y )(hϕX + h2 X) − {g(ϕX, hY ) + g(h X, hY )}ξ.

Taking X = Y = Xi , summing on i and using tr(hϕ) = 0 and h(ξ) = 0, we get

2n+1∑

i=1

{(∇Xi h)ϕXi + ϕ(∇Xi h)Xi } = −tr(h2)ξ. (3.6)

Now, (3.1) can be written in terms of h as

2n+1∑

i=1

(∇Xi h)ϕXi +
2n+1∑

i=1

h(∇Xi ϕ)Xi = Qξ + 2ξ,

from which, using (3.2), we get
∑2n+1

i=1 (∇Xi h)ϕXi = Qξ + 2ξ . Substituting this
expression in (3.6), we obtain

2n+1∑

i=1

ϕ(∇Xi h)Xi = −(2 + tr(h2))ξ − Qξ.

Finally, we get the required result acting by ϕ and using
∑2n+1

i=1 g((∇Xi h)Xi , ξ) = 0,
which, by direct computation, follows from the fact that g(h2 X, ϕX) = 0 for all vector
fields X and tr(h) = 0. �

In the three-dimensional case, we have:

Lemma 3.3 If (M3, ϕ, ξ, η, g) is an almost Kenmotsu manifold satisfying a general-
ized nullity condition, then one has

Q = aI + bη ⊗ ξ + μT (3.7)

T (grad μ) = grad κ − (ξκ)ξ, (3.8)
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where a = τ/2 − κ and b = 3κ − τ/2, τ being the scalar curvature of g and T is
either h or h′, according to which nullity condition is satisfied.

Proof Since we know that every Riemannian 3-manifold has vanishing Weyl confor-
mal tensor field, we have

R(X, Y )Z = g(Y, Z)Q X − g(X, Z)QY + g(QY, Z)X

− g(Q X, Z)Y − τ

2

(
g(Y, Z)X − g(X, Z)Y

)
.

(3.9)

Taking into account that Qξ = 2κξ (cf. (2.9) for n=1), we have

R(X, ξ)ξ = Q X − 2κη(X)ξ + 2k X − 2κη(X)ξ − τ

2

(
X − η(X)ξ

)
.

Comparing this expression with R(X, ξ)ξ = κ(X − η(X)ξ) + μT X , obtained by
means of (1.1) if T = h and (1.2) if T = h′, we get (3.7).

Let {X1 = ξ, X2 = X, X3 = ϕX} be an orthonormal local frame adapted to the
structure. Using (3.7) and (2.4), since η(∇X X + ∇ϕXϕX) = −2 and a + b = 2κ , one
has

3∑

i=1

(∇Xi Q)Xi =
3∑

i=1

(Xi (a)Xi ) +
3∑

i=1

(Xi (μ)T Xi ) + μ

3∑

i=1

(∇Xi T
)

Xi

+ η(grad b)ξ − b (η(∇X X)) ξ − b
(
η(∇ϕXϕX)

)
ξ

= grad a + T (grad μ) + μ

3∑

i=1

(∇Xi T
)

Xi + 2ξ(κ)ξ − ξ(a)ξ + 2bξ.

In the case of the (κ, μ)-nullity condition, T = h and Lemma 3.2 implies∑3
i=1

(∇Xi T
)

Xi = 0. Being a = τ/2 − κ and using the well-known formula

(1/2)grad τ = ∑3
i=1(∇Xi Q)Xi , from the above equation one gets

ξ(κ)ξ − grad κ + h(grad μ) + ξ(κ)ξ − ξ(a)ξ + 2bξ = 0.

Since the vector field ξ(κ)ξ − grad κ + h(grad μ) is orthogonal to ξ , (3.8) with
T = h follows. If ξ belongs to the (κ, μ)′-nullity distribution, then T = h′ and∑3

i=1

(∇Xi T
)

Xi = 2(κ + 1)ξ , as it follows from (3.1). Similar arguments as in
previous case show that (3.8) is still true. �

As a consequence of (3.7), we have the following result concerning the η-Einstein
condition.

Proposition 3.1 Let (M, ϕ, ξ, η, g) be a 3-dimensional almost Kenmotsu manifold.
Then, the following conditions are equivalent:

(a) M is η-Einstein;
(b) ξ ∈ N (κ) for some κ ∈ F(M).
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Proof Since the generalized (κ, μ)- and (κ, μ)′-nullity distributions coincide with the
κ-nullity distribution when μ = 0 or h = 0 (equivalently h′ = 0), the implication
(b) ⇒ (a) immediately follows from (3.7).
To prove (a) ⇒ (b), it suffices to use (3.9) and (2.7). From (2.7), we have Q(ξ) =
(a + b)ξ and τ = 3a + b. Using (3.9), by direct computation, one gets:

R(X, Y )ξ =
(

a + b

2

)
(η(Y )X − η(X)Y ),

for all vector fields X, Y , which means that ξ belongs to the generalized κ-nullity
distribution with κ = (a + b)/2. �

In [19], the concept of N (κ)-quasi Einstein manifold is introduced as a quasi
Einstein manifold with ξ belonging to some N (κ). In particular, it is proved that every
n-dimensional conformally flat quasi Einstein manifold is a N ((a + b)/(n − 1))-
quasi Einstein manifold. Therefore, the implication (a) ⇒ (b) of the above proposition
can be considered as a consequence of the quoted more general result. Furthermore,
we immediately deduce the following corollary of Proposition 3.1:

Corollary 3.1 Any almost Kenmotsu 3-manifold with ξ belonging to a κ-nullity dis-
tribution is a N (κ)-quasi Einstein manifold.

As proven in [15], a 3-dimensional almost Kenmotsu manifold with h = 0 always
is η-Einstein. Therefore, from now on, we will restrict our investigations mainly to the
more meaningful case h �= 0. Note that, in this case, in the N (κ)-distribution κ must
be a non-constant function.

4 A Class of Almost Kenmotsu Generalized (κ, μ)-Manifolds

In this section, we are interested in 3-dimensional almost Kenmotsu generalized (κ, μ)-
manifolds with κ such that dκ ∧ η = 0. For such manifolds, the following two typical
situations should be treated: either κ = −1 identically on M , case in which M is
Kenmotsu and locally a warped product of a Kähler manifold and an open interval, or
κ < −1 everywhere on M . This follows from the following fact.

Lemma 4.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)-manifold
with dκ ∧ η = 0. If κ = −1 at a certain point of M, then κ = −1 everywhere on M
and h vanishes identically.

Proof Let Z be the closed subset of M containing the points q at which κ = −1, which
is nonempty by hypothesis, and fix p ∈ Z . Then, λ(p) = √−1 − κ(p) = 0; further-
more dκ ∧ η = 0 implies the same condition for λ. Therefore, choosing a coordinate
neighbourhood U around p with coordinate (x, y, t) such that ξ = ∂/∂t and η = dt ,
the function λ restricted to U depends only on t and it satisfies the linear differential
equation dλ/dt = −2λ. So λ = ce−2t for some real constant c ≥ 0. Since λ(p) = 0,
we get c = 0, hence λ = 0 and κ = −1 on the whole U . It follows that U ⊂ Z and,
consequently, Z is also an open subset of M . Thus, Z = M since M is connected. �

In view of the above considerations, we focus our attention on the case κ < −1.
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Proposition 4.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)-
manifold with h �= 0. Then, for any unit eigenvector X of h with eigenvalue
λ = √−1 − κ , one has

(i) ∇Xξ = X − λϕX; ∇ϕXξ = ϕX − λX.

(ii) ∇ϕXϕX = X (λ)
2λ

X − ξ ; ∇X X = ϕX (λ)
2λ

ϕX − ξ .

(iii) ∇XϕX = λξ − ϕX (λ)
2λ

X; ∇ϕX X = λξ − X (λ)
2λ

ϕX.
(iv) ∇ξ X = −μ

2 ϕX; ∇ξ ϕX = μ
2 X.

Proof Both eigendistributions [λ] and [−λ] of h are 1-dimensional and integrable;
moreover, fixed a unit vector field X ∈ [λ], we notice that {X, ϕX, ξ} is an orthonormal
(local) frame for T M .

(i) The formulas are immediate consequences of (2.4).
(ii) By (2.9), we have ϕQξ = 0, so that Lemma 3.2 gives (∇X h)X+(∇ϕX h)ϕX = 0,

that is

X (λ)X + λ∇X X − h(∇X X) − ϕX (λ)ϕX − λ∇ϕXϕX − h(∇ϕXϕX) = 0. (4.1)

The inner product with X gives X (λ) − g(∇ϕXϕX, λX) − λg(∇ϕXϕX, X) = 0,
from which, being λ �= 0, it follows that g(∇ϕXϕX, X) = X (λ)/(2λ). Moreover,
we have g(∇ϕXϕX, ξ) = −g(ϕX,∇ϕX ξ) = −1. In this way, we obtain the first
formula. As for ∇X X , if we take the inner product of (4.1) with ϕX , we have
λg(∇X X, ϕX) − g(∇X X,−λϕX) − ϕX (λ) = 0 and hence g(∇X X, ϕX) =
ϕX (λ)/(2λ). Moreover, g(∇X X, ξ) = −g(X,∇X ξ) = −1, and the required
formula is obtained.

(iii) The equations follow from the previous ones, considering the following relations:

g(∇XϕX, X) = −g(ϕX,∇X X), g(∇ϕX X, ϕX) = −g(X,∇ϕXϕX),

g(∇XϕX, ξ) = −g(ϕX,∇X ξ) = λ, g(∇ϕX X, ξ) = −g(X,∇ϕXξ) = λ.

(iv) Obviously, we have g(∇ξ X, X) = 0 and g(∇ξ X, ξ) = 0 since ∇ξ ξ = 0. It
remains only to compute the component along ϕX . From (2.10), we have

ξ(λ)X + λ∇ξ X − h(∇ξ X) = −2λX − μϕ(λX).

The inner product with ϕX gives g(λ∇ξ X, ϕX)+g(∇ξ X, λϕX) = −μλ, from which,
being λ �= 0, it follows that g(∇ξ X, ϕX) = −μ/2. Finally, taking into account that
∇ξ ϕ = 0, we get ∇ξ ϕX = (μ/2)X . �

Locally, an almost Kenmotsu generalized (κ, μ)-manifold with dκ ∧ η = 0 and
κ < −1 can be described as follows.

Theorem 4.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)-
manifold with dκ ∧ η = 0 and κ < −1. Then, in a neighbourhood U of every
point p ∈ M3, there exist coordinates x, y, z with z < −1 and an orthonormal frame
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{ξ, X, ϕX} of eigenvectors of h with h X = λX, such that on U κ = z, μ only depends
on z and

X = ∂

∂x
, ϕX = ∂

∂y
, ξ = a

∂

∂x
+ b

∂

∂y
− 4(z + 1)

∂

∂z
,

where a = x − (1/2)(μ + 2
√−1 − z) + f and b = y + (1/2)(μ − 2

√−1 − z) + r ,
f, r being smooth functions of z on U.

Proof Notice that dκ ∧ η = 0 and (3.8) imply dμ ∧ η = 0, since h �= 0 and
ker(h) = Span{ξ}. Moreover, we have Z(λ) = 0, for all Z ∈ D. By Proposition
4.1, given an orthonormal local frame {ξ, X, ϕX} with h X = λX , we get [X, ϕX ] =
−(ϕX (λ)/2λ)X + (X (λ)/2λ)ϕX which implies [X, ϕX ] = 0. It follows that, fixed
a point p ∈ M3, there exist coordinates (x ′, y′, t) on an open neighbourhood V of p
such that

X = ∂

∂x ′ , ϕX = ∂

∂y′ and ξ = a
∂

∂x ′ + b
∂

∂y′ + c
∂

∂t
,

where a, b and c are smooth functions on V with c �= 0 everywhere. Now, from the
conditions [X, ξ ] ∈ D and [ϕX, ξ ] ∈ D we deduce that ∂c/∂x ′ = 0 and ∂c/∂y′ = 0.
Therefore, if we consider on V the linearly independent vector fields X , ϕX and
W :=c∂/∂t , we have

[X, ϕX ] = 0, [X, W ] = 0, [ϕX, W ] = 0.

This means that there exists a coordinate system {U, (x, y, z′)} around p in V such
that X = ∂/∂x , ϕX = ∂/∂y and W = ∂/∂z′. Thus, on the open set U we have
ξ = a∂/∂x + b∂/∂y + ∂/∂z′. From (2.10), since ∂λ/∂x = X (λ) = 0 and ∂λ/∂y =
ϕX (λ) = 0, it follows that λ = c′e−2z′

and κ = −1 − λ2 = −1 − c̄e−4z′
, for some

real constants c′, c̄ > 0. The change of coordinates z = −1 − c̄e−4z′
gives a chart

{U, (x, y, z)} at p such that κ = z < −1, μ = μ(z) and

X = ∂

∂x
, ϕX = ∂

∂y
and ξ = a

∂

∂x
+ b

∂

∂y
− 4(z + 1)

∂

∂z
.

To conclude the proof, we have to calculate the functions a, b. To this end, we have

[ξ, X ] = −∂a

∂x

∂

∂x
− ∂b

∂x

∂

∂y
, [ξ, ϕX ] = −∂a

∂y

∂

∂x
− ∂b

∂y

∂

∂y
.

On the other hand, by using Proposition 4.1, one has

[ξ, X ] = −X +
(
λ − μ

2

)
ϕX, [ξ, ϕX ] =

(
λ + μ

2

)
X − ϕX.
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The comparison of these relations with the previous leads to

∂a

∂x
= 1,

∂a

∂y
= −

(
λ + μ

2

)
,

∂b

∂x
= μ

2
− λ,

∂b

∂y
= 1.

By integration of this system, being λ,μ functions only depending on z, we get
a = x − (1/2)(μ + 2

√−1 − z) + f and b = y + (1/2)(μ − 2
√−1 − z) + r , for

some functions f = f (z), r = r(z). �

Remark 4.1 The above result allows us to obtain a complete local classification of
3-dimensional almost Kenmotsu generalized (κ, μ)-manifolds with dκ ∧ η = 0 and
κ < −1. In fact, we are going to construct in R

3 a model for each of them as follows.
Let M be the open submanifold of R

3 defined by M :={(x, y, z) ∈ R
3|z < −1}

and μ, f, r : M → R be three smooth functions of z. Let us denote again by x, y, z
the coordinates induced on M by the standard ones on R

3. We consider on M

ξ = α
∂

∂x
+ β

∂

∂y
− 4(z + 1)

∂

∂z
, η = − 1

4(1 + z)
dz,

the Riemannian metric g given by

g = dx ⊗ dx + dy ⊗ dy + (1 + α2 + β2)η ⊗ η − α(dx ⊗ η + η ⊗ dx)

−β(dy ⊗ η + η ⊗ dy)

and the (1, 1)-tensor field ϕ represented, with respect to the global coordinate vector
fields, by the following matrix

ϕ =
⎛

⎝
0 −1 −β/γ

1 0 α/γ

0 0 0

⎞

⎠ ,

where α = x − (1/2)(μ+2
√−1 − z)+ f (z), β = y + (1/2)(μ−2

√−1 − z)+r(z)
and γ = 4(1 + z). It is easy to check that (M, ϕ, ξ, η, g) is an almost Kenmotsu
manifold and that {E1 = ∂/∂x, E2 = ∂/∂y, E3 = ξ} make up a global ϕ-basis on M ,
that is a g-orthonormal global frame such that ϕE1 = E2. Moreover, by direct compu-
tation, putting λ = √−1 − z, we get [E1, E2] = 0, [E1, E3] = E1 − (λ − μ/2) E2,
[E2, E3] = − (λ + μ/2) E1+E2, and hence hE1 = λE1, hE2 = −λE2 and hE3 = 0.
Now, we remark that, putting X = E1 and using the Koszul’s formula for the Levi–
Civita connection ∇ of g, we find an orthonormal frame {ξ, X, ϕX} and the expres-
sions of ∇ as described in Proposition 4.1. Using these formulas and the definition of
the curvature tensor, we finally obtain that (M, ϕ, ξ, η, g) is a 3-dimensional almost
Kenmotsu generalized (κ, μ)-manifold with κ = z. By virtue of Theorem 4.1, any
3-dimensional almost Kenmotsu generalized (κ, μ)-manifold is locally isomorphic to
one of above manifolds.
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5 A Class of Almost Kenmotsu Generalized (κ, μ)′-Manifolds

Here we present a local description of the structure of almost Kenmotsu generalized
(κ, μ)′-manifolds of dimension 3 with κ such that dκ ∧ η = 0.

First of all, taking account of the second equation in (2.11) and arguing as in the
proof of Lemma 4.1, we obtain:

Lemma 5.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)′-manifold
with dκ ∧ η = 0. If κ = −1 at a certain point of M, then κ = −1 everywhere on M
and h′ = h = 0. In particular, it follows that M is locally a warped product of an
open interval and a Kähler manifold.

Therefore, also for almost Kenmotsu generalized (κ, μ)′-manifolds we shall discuss
the case κ < −1, or equivalently h′ �= 0 everywhere. We first obtain the following
proposition.

Proposition 5.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)′-
manifold with h′ �= 0. Then, for any unit X ∈ [λ]′, λ = √−1 − κ , one has

(i) ∇Xξ = (1 + λ)X; ∇ϕXξ = (1 − λ)ϕX

(ii) ∇XϕX = −ϕX (λ)
2λ

X; ∇ϕX X = − X (λ)
2λ

ϕX.

(iii) ∇ϕXϕX = X (λ)
2λ

X − (1 − λ)ξ ; ∇X X = ϕX (λ)
2λ

ϕX − (1 + λ)ξ .
(iv) ∇ξ X = 0; ∇ξ ϕX = 0.

Proof Let X be a unit eigenvector of h′ corresponding to the eigenvalue λ. Then,
since the distributions [λ]′ and [−λ]′ are 1-dimensional, {X, ϕX, ξ} is an orthonormal
(local) frame.

(i) This is a direct consequence of (2.4).
(ii) Obviously g(∇XϕX, ϕX) = 0 and g(∇XϕX, ξ) = −g(ϕX, (1 + λ)X) = 0, so

that ∇XϕX ∈ Span{X}. Equation (2.8) with Y = ϕX implies

−X (λ)ϕX −λ∇XϕX −h′(∇XϕX)−ϕX (λ)X −λ∇ϕX X +h′(∇ϕX X) = 0. (5.1)

By inner product with X , we get −g(λ∇XϕX, X)−g(∇XϕX, λX)−ϕX (λ) = 0.
Therefore, being λ �= 0, we find g(∇XϕX, X) = −ϕX (λ)/2λ. Analogously,
g(∇ϕX X, X) = 0, g(∇ϕX X, ξ) = 0 and the scalar product of (5.1) with ϕX
imply the second formula.

(iii) We get this using the previous equations. Indeed, we have

g(∇ϕXϕX, X) = −g(ϕX,∇ϕX X) = X (λ)

2λ
,

g(∇X X, ϕX) = −g(X,∇XϕX) = ϕX (λ)

2λ
,

g(∇ϕXϕX, ξ) = −g(ϕX,∇ϕX ξ) = −(1 − λ),

g(∇X X, ξ) = −g(X,∇X ξ) = −(1 + λ).

(iv) Since g(∇ξ X, ξ) = 0, we have ∇ξ X ∈ Span{ϕX}. Using the first equation in
(2.11), we obtain
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ξ(λ)X + λ∇ξ X − h′(∇ξ X) = −λ(μ + 2)X.

Taking the scalar product with ϕX , we get 2λg(∇ξ X, ϕX) = 0. Being λ �= 0, we have
∇ξ X = 0. From ∇ξ ϕ = 0, the remaining relation follows. �
Theorem 5.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)′-
manifold. If dκ ∧ η = 0 and κ < −1, then one has:

(i) If μ = −2, then κ is constant.
(ii) If μ �= −2, then in a neighbourhood U of every point p ∈ M3 there exist coordi-

nates x, y, z with z < −1 and an orthonormal frame {ξ, X, ϕX} of eigenvectors
of h′ with h′ X = λX, such that κ = z, μ only depends on z on U and

X = ∂

∂x
, ϕX = ∂

∂y
, ξ = a

∂

∂x
+ b

∂

∂y
− 2(z + 1)(μ + 2)

∂

∂z
,

where a = x(1 + √−1 − z) + f and b = y(1 − √−1 − z) + r , f, r being
smooth functions of z on U.

Proof Since λ2 = −1 − κ , the hypothesis dκ ∧ η = 0 implies dλ ∧ η = 0, or
equivalently Z(λ) = 0 for all Z ∈ D. From (2.11) we deduce dμ∧η = 0. If μ = −2,
by (2.11), we have ξ(λ) = 0 which implies λ constant and so κ constant.

Now, we assume μ �= −2. By Proposition 5.1, given an orthonormal local frame
{ξ, X, ϕX} with h′ X = λX , we get [X, ϕX ] = −(ϕX (λ)/2λ)X + (X (λ)/2λ)ϕX
which implies [X, ϕX ] = 0. Consequently, fixed a point p ∈ M3, there exist coordi-
nates (x̄, ȳ, t̄) on an open neighbourhood V of p such that

X = ∂

∂ x̄
, ϕX = ∂

∂ ȳ
and ξ = a

∂

∂ x̄
+ b

∂

∂ ȳ
+ c

∂

∂ t̄
,

where a, b and c are smooth functions on V with c �= 0 everywhere on V . From the
conditions [X, ξ ] ∈ D and [ϕX, ξ ] ∈ D, we deduce that ∂c/∂ x̄ = 0 and ∂c/∂ ȳ = 0.
Therefore, the Lie brackets of the vector field W :=c∂/∂ t̄ with the other two coordinate
vector fields vanish, thus obtaining coordinates (x ′, y′, t ′) on an open neighbourhood
U ′ of p in V such that X = ∂/∂x ′, ϕX = ∂/∂y′ and W = ∂/∂t ′. Thus on U ′, we
have ξ = a∂/∂x ′ +b∂/∂y′ +∂/∂t ′. Moreover, λ|U ′ depends only on t ′ and the second
equation in (2.11) reads

dλ

dt ′
= −λ(μ + 2), (5.2)

since ∂λ/∂x ′ = 0 and ∂λ/∂y′ = 0. Next, considering the vector field W ′:=
1/(μ + 2)∂/∂t ′, since μ independent of x ′ and y′, we have [X, W ′] = 0 and
[ϕX, W ′] = 0. It follows that it is possible to find a chart {U, (x, y, z′)} at p in U ′ such
that X = ∂/∂x , ϕX = ∂/∂y, W ′ = ∂/∂z′ and ξ = a∂/∂x + b∂/∂y + (μ + 2)∂/∂z′,
again denoting by a, b the restriction to U of these functions. With respect to these
coordinates, (5.2) becomes dλ/dz′ = −λ, from which we get λ = c′e−z′

, with c′ > 0
a real constant. Hence κ = −1 − c̄e−2z′

for some real constant c̄ > 0. Finally, the
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substitution z = −1 − c̄e−2z′
gives the desired chart {U, (x, y, z)} at p. To conclude

the proof, it remains to compute the functions a, b. To do this, let us explicit the Lie
brackets [ξ, ϕX ] and [ξ, X ], obtaining

[ξ, X ] = −∂a

∂x

∂

∂x
− ∂b

∂x

∂

∂y
, [ξ, ϕX ] = −∂a

∂y

∂

∂x
− ∂b

∂y

∂

∂y
.

On the other hand, using Proposition 5.1, we have

[ξ, X ] = −(1 + λ)X, [ξ, ϕX ] = −(1 − λ)ϕX.

Comparing these relations with the previous, we get

∂a

∂x
= 1 + λ,

∂a

∂y
= 0,

∂b

∂x
= 0,

∂b

∂y
= 1 − λ.

The integration of this system yields a = x(1 + √−1 − z) + f and b = y(1
− √−1 − z) + r , where f, r are arbitrary smooth functions of z on U . �
Remark 5.1 We may build local models for each 3-dimensional almost Kenmotsu
generalized (κ, μ)′-manifold with dκ ∧ η = 0, κ < −1 and μ �= −2. Let us consider
M3 = {(x, y, z) ∈ R

3|z < −1} and smooth functions μ, f, r : M → R depending
on z such that μ �= −2. We take the following vector fields

E1:= ∂

∂x
, E2:= ∂

∂y
, E3:=a

∂

∂x
+ b

∂

∂y
− 2(z + 1)(μ + 2)

∂

∂z
,

where a = x(1 + √−1 − z) + f (z) and b = y(1 − √−1 − z) + r(z). Setting
λ = √−1 − z, we have

[E1, E2] = 0, [E1, E3] = (1 + λ)E1, [E2, E3] = (1 − λ)E2. (5.3)

Let g be the Riemannian metric on M3 that makes the basis {E1, E2, E3} orthonormal.
The structure tensor fields ϕ, ξ, η are defined by putting

ξ = E3, η = − 1

2(1 + z)(μ + 2)
dz

ϕ(ξ) = 0, ϕ(E1) = E2, ϕ(E2) = −E1

Then, as one can easily prove, (M, ϕ, ξ, η, g) is in fact an almost Kenmotsu manifold.
Furthermore, computing the tensor field h′, we get h′E1 = λE1 and h′E2 = −λE2.
It follows that the Levi–Civita connection of g, computed by means of the Koszul’s
formula and (5.3), satisfies the equations stated in Proposition 5.1 with X = E1.
Finally, the direct computation of the curvature tensor shows that (M3, ϕ, ξ, η, g) is
an almost Kenmotsu generalized (κ, μ)′-manifold with κ = z and dκ ∧ η = 0.
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6 Further Characterizations and Local Models

This section is devoted to obtaining, using Darboux-like coordinates, another explicit
local description of 3-dimensional almost Kenmotsu generalized (κ, μ)- and (κ, μ)′-
manifolds with dκ ∧ η = 0. To this purpose, we need the following useful property.

Proposition 6.1 Let (M3, ϕ, ξ, η, g) be an almost Kenmotsu generalized (κ, μ)- or
(κ, μ)′-manifold with dκ ∧ η = 0 and κ < −1. Then the leaves of the canonical
foliation of M are flat Kählerian manifolds.

Proof Let M ′ be a leaf of D and (J, G) be the induced almost Hermitian structure.
Being almost Kähler of dimension 2, M ′ is obviously a Kähler manifold. In order to
prove the flatness of (M ′, G), we consider the Weingarten operator A of M ′ given by
AX = −X + ϕh X = −X − h′ X . For a unit vector field X ∈ [λ] (or X ∈ [λ]′), using
the Gauss equation, the sectional curvature K ′ of G is given by

K ′(X, ϕX) = K (X, ϕX) + 1 − λ2.

Now, using Proposition 4.1 for the case of an almost Kenmotsu generalized (κ, μ)-
manifold and Proposition 5.1 for the case of an almost Kenmotsu generalized (κ, μ)′-
manifold, since X (λ) = ϕX (λ) = 0, one gets R(X, ϕX)ϕX = −(1 − λ2)X . So we
obtain

K (X, ϕX) = g(R(X, ϕX)ϕX, X) = −(1 − λ2)

which implies K ′(X, ϕX) = 0. �
Let us now state the following characterization.

Theorem 6.1 Let (M3, ϕ, ξ, η, g) be an almost contact metric manifold with h �= 0,
and κ, μ ∈ F(M) such that dκ ∧η = 0. Then, M3 is an almost Kenmotsu generalized
(κ, μ)-manifold if and only if for any point p ∈ M, there exists an open neighbourhood
U of p with coordinates x1, x2, t such that κ = −1 − e−4t and μ only depends on t
and the tensor fields of the structure are expressed in the following way:

ϕ=
2∑

i, j=1

ϕi
j dx j ⊗ ∂

∂xi
, ξ = ∂

∂t
, η=dt, g =dt ⊗ dt+

2∑

i, j=1

gi j dxi ⊗ dx j , (6.1)

where ϕi
j , gi j are functions only of t; the fundamental 2-form � is given by

� = e2t dx1 ∧ dx2, (6.2)

and the non-zero components hi
j , Bi

j in U of h and B:=ϕh, respectively, are functions

of t satisfying the condition
∑

s Bi
s Bs

j = e−4tδi
j and the following system of differential

equations:
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dϕi
j

dt
= 2hi

j ,
dhi

j

dt
= 2λ2ϕi

j − 2hi
j − μBi

j ,
d Bi

j

dt
= μhi

j − 2Bi
j , (6.3)

where λ = e−2t .

Proof Let M be an almost Kenmotsu generalized (κ, μ)-manifold. Owing to the inte-
grabiliy of D and [ξ ], the decomposition T M = D ⊕ [ξ ] implies that any point of
M admits a coordinate neighbourhood U of the form U ′× ] − ε, ε[ with coordinates
x1, x2, t , where x1, x2 are cooordinate on U ′ and t on ] − ε, ε[, such that ξ = ∂/∂t
and η = dt . With respect to these coordinates, the shape of ϕ and g is as in (6.1),
where ϕi

j and gi j are functions of x1, x2, t in general. Denoting by hi
j , Bi

j the non-zero
components in U of h and B, from (2.12), we get

∂ϕi
j

∂t
= 2hi

j ,
∂hi

j

∂t
= 2λ2ϕi

j − 2hi
j − μBi

j ,
∂ Bi

j

∂t
= μhi

j − 2Bi
j . (6.4)

Now, let t0 ∈ ] − ε, ε[ and consider the subset U ′ × {t0} ⊂ U which is an open
submanifold of a leaf of D. Then, the induced complex structure J has components
ϕi

j (t0, ·) and, by virtue of Proposition 6.1, it can be assumed that x1, x2 are chosen in
such a way that on U ′ × {t0} one has J (∂/∂x1) = ∂/∂x2, J (∂/∂x2) = −∂/∂x1 and
the induced metric G has constant components. This implies that the ϕi

j ’s and gi j ’s

depend on t alone. Consequently, by (6.4), even hi
j and Bi

j are functions only of t .

Since dκ ∧ η = 0 and λ2 = −1 − κ , we have ∂λ/∂x1 = ∂λ/∂x2 = 0, so from (2.10),
we get λ = e−2t . Hence κ = −1 − e−4t . Moreover, from (3.8), we deduce that also μ

only depends on t . The components of � are all zero, except for �12. From (2.1), one
gets �12 = ce2t , for some real constant c �= 0. Up to change x1, x2 with x ′

1 = √|c|x1
and x ′

2 = √|c|x2, we can take c = 1. In this way, we get the desired chart around p.
Finally, (6.4) gives (6.3) and (2.9) gives

∑
s Bi

s Bs
j = e−4tδi

j .
Conversely, suppose that M carries a structure locally represented as in (6.1)–

(6.3). Obviously dη = 0, while d� = 2η ∧ � follows from (6.2). Now, we show
that M satisfies the generalized (κ, μ)-condition. In order to do this, we notice that
X1 = ∂/∂x1 and X2 = ∂/∂x2 are Killing vector fields. Hence g(∇Xi X j , Xq) = 0,
for any i, j, q ∈ {1, 2}. Since the distribution orthogonal to ξ = ∂/∂t is spanned by
X1 and X2, it follows that ∇Xi X j ∈ [ξ ] for all i, j ∈ {1, 2}, so that B(∇Xi X j ) = 0.
Consequently, for the Levi–Civita connection ∇ determined by g, we have

∇Xi X j = ∇X j Xi = −g(Xi , X j − B X j )ξ, ∇ξ Xi = ∇Xi ξ = Xi − B Xi , ∇ξ ξ = 0.

By (2.5), we compute

R(Xi , X j )ξ = (∇X j B)Xi − (∇Xi B)X j = ∇X j B Xi − ∇Xi B X j

=
2∑

q=1

(
Bq

i ∇X j Xq − Bq
j ∇Xi Xq

)
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= −
2∑

q=1

(
Bq

i g(X j , Xq − B Xq) − Bq
j g(Xi , Xq − B Xq)

)
ξ

= −g(X j , B Xi − B2 Xi )ξ + g(Xi , B X j − B2 X j )ξ = 0

and, using (6.3),

R(Xi , ξ)ξ = −∇ξ∇Xi ξ = −Xi + B Xi +
2∑

q=1

(
d Bq

i

dt
Xq + Bq

i ∇ξ Xq

)

= −Xi + B Xi + μh Xi − 2B Xi + B Xi − B2 Xi

= (−1 − λ2)Xi + μh Xi = κ Xi + μh Xi ,

thus concluding the proof. �

Following a method analogous to that used by Dacko and Olszak in [4] for almost
cosymplectic structures, we shall construct a model as follows.

Let us consider the following three constant matrices

M1 =
(

1 0
0 −1

)
, M2 =

(
0 1

−1 0

)
, M3 =

(
0 1
1 0

)
,

a smooth function μ̄ : R → R defined on the real line with coordinate t , and the
function λ̄ = e−2t . Then, we define three functional matrices F, H, B of order 2

F(t) = [ϕi
j (t)], H(t) = [hi

j (t)], B(t) = [bi
j (t)]

in such a way they satisfy the following system of linear differential equations with
the given initial conditions

F ′ = 2H, H ′ = 2λ̄2 F − 2H − μ̄B, B ′ = μ̄H − 2B,

F(0) = M2, H(0) = −M3, B(0) = M1.
(6.5)

Here A′ denotes the matrix whose coefficients are the derivatives with respect to t of
the entries of the matrix A.

Now, let ( fi , hi , bi )1≤i≤3 be the unique solution defined on an open interval ]a, b[,
a, b ∈ R, containing 0, of the system of linear differential equations

⎧
⎨

⎩

f ′
i = 2hi

h′
i = 2λ̄2 fi − 2hi − μ̄bi i = 1, 2, 3

b′
i = μ̄hi − 2bi

,
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satisfying the following initial conditions

f1(0) = 0, h1(0) = 0, b1(0) = 1,

f2(0) = 1, h2(0) = 0, b2(0) = 0,

f3(0) = 0, h3(0) = −1, b3(0) = 0.

It can be easily seen that

F(t) = f1(t)M1 + f2(t)M2 + f3(t)M3

H(t) = h1(t)M1 + h2(t)M2 + h3(t)M3

B(t) = b1(t)M1 + b2(t)M2 + b3(t)M3,

(6.6)

is the unique solution on ]a, b[ of (6.5).
Moreover, let G be the matrix defined on ]a, b[ by

G = −M2 F. (6.7)

Lemma 6.1 The matrices F, H, B are linked by the following algebraic relations

F2 = −I2, H2 = λ̄2 I2, B2 = λ̄2 I2,

H F = −FH, B F = −FB, B H = −HB,

F = λ̄−2BH, H = BF, B = FH,

(6.8)

where I2 denotes the unit real matrix. Moreover, the matrix G(t) is symmetric and
positive definite for any t ∈ ]a, b[. Explicitly, G is given by

G =
(

f2 − f3 f1
f1 f2 + f3

)
. (6.9)

Proof We consider the following auxiliary matrices:

X1 = F2, X2 = H2 X3 = B2,

X4 = HF + FH, X5 = BF + FB, X6 = BH + HB,

X7 = BH − λ̄2F, X8 = BF − H, X9 = FH − B.

Using (6.5), it is easy to check that the following homogeneous system of linear
differential equations is satisfied

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X ′
1 = 2X4, X ′

2 = 2λ̄2 X4 − 4X2 − μ̄X6, X ′
3 = μ̄X6 − 4X3

X ′
4 = 4λ̄2 X1 + 4X2 − 2X4 − μ̄X5, X ′

5 = μ̄X4 − 2X5 + 2X6

X ′
6 = 2μ̄X2 − 2μ̄X3 + 2λ̄2 X5 − 4X6,

X ′
7 = μ̄X2 − μ̄X3 − 4X7 + 2λ̄2 X8,

X ′
8 = 2λ̄2 X7 − 2X8 + μ̄X4 − μ̄X9,

X ′
9 = 2λ̄2 X1 + 2X2 + μ̄X5 − μ̄X8 − 2X9.

(6.10)
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with the initial conditions

X1(0) = −I2, X2(0) = I2, X3(0) = I2

X4(0) = X5(0) = X6(0) = X7(0) = X8(0) = X9(0) = O2.

Since this system admits a unique solution, a simple verification shows that

X1(t) = −I2, X2(t) = λ̄2 I2, X3(t) = λ̄2 I2

X4(t) = X5(t) = X6(t) = X7(t) = X8(t) = X9(t) = O2,

is the solution of (6.10) for any t ∈ ]a, b[, which gives (6.8).
Applying (6.6), we obtain G = f1 M3 + f2 I2 − f3 M1, which is equivalent to the

form presented in (6.9). Therefore, we immediately see that G(t) is symmetric for
any t ∈ ]a, b[. Computing F2 with (6.6), we find F2 = ( f 2

1 + f 2
3 − f 2

2 )I2. On the
other hand F2 = −I2, so that ( f2 + f3)( f2 − f3) = 1 + f 2

1 . Since f2(0) = 1 and
f3(0) = 0, it follows that f2 − f3 > 0 at any point of ]a, b[ and so G(t) is positive
definite for any t ∈ ]a, b[, completing the proof. �

Let now M = ]a, b[ × R
2 ⊂ R

3, and denote by (t, x1, x2) the coordinate global
system induced on M by the canonical one on R

3. We introduce on M a structure
(ϕ, ξ, η, g) by setting:

ξ := ∂

∂t
, η:=dt, g:=dt ⊗ dt + e2t

2∑

i, j=1

Gi j dxi ⊗ dx j ,

where the Gi j ’s are the coefficients of the matrix G, and ϕ represented, with respect

to the frame
{

∂
∂t ,

∂
∂x1

, ∂
∂x2

}
, by the matrix

ϕ =
⎛

⎜
⎝

0 0 0

0 ϕ1
1 ϕ1

2

0 ϕ2
1 ϕ2

2

⎞

⎟
⎠ ,

ϕi
j ’s being the coefficients of F . From Lemma 6.1, we have that g defines a Riemannian

metric tensor on M . Furthermore, consider the smooth functions μ, λ : M → R

defined by μ(t, x, y) = μ̄(t) and λ(t, x, y) = λ̄(t).

Proposition 6.2 (M, ϕ, ξ, η, g) is an almost Kenmotsu generalized (κ, μ)-manifold
with κ = −1 − e−4t and dκ ∧ η = 0.

Proof Routine computations show that (ϕ, ξ, η, g) is an almost contact metric struc-
ture on M . We shall prove that it is an almost Kenmotsu generalized (κ, μ)-structure
using Theorem 6.1. Let us choose the neighbourhood U = M for any point of M . By
(6.7) and (6.8), one has
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g

(
∂

∂x1
, ϕ

∂

∂x2

)
= e2t

2∑

r=1

ϕr
2g1r = e2t (G F)1

2 = e2t ,

so that the fundamental 2-form � satisfies (6.2). Computing the tensor field h, we see
that its components, with respect to the fixed coordinates, coincide exactly with the
coefficients of the matrix H . Furthermore, by virtue of B = F H (cf. (6.8)), the com-
ponents of the tensor field ϕh are just the coefficients of the matrix B. Therefore, since
the matrices F, H and B satisfy (6.5), the tensor fields ϕ, h, ϕh fulfil (6.3). Conse-
quently, by Theorem 6.1, the considered structure is an almost Kenmotsu generalized
(−1 − e−4t , μ)-structure on M . �

For the case of almost Kenmotsu generalized (κ, μ)′-manifolds, we suppose μ �=
−2, since if μ = −2, then from (2.11), we obtain κ constant and Theorem 1.1 applies.
By using (2.13) and Proposition 6.1, an analogue of Theorem 6.1 can be proved with
similar arguments. Thus, omitting the proof, we have the following Theorem:

Theorem 6.2 Let (M3, ϕ, ξ, η, g) be an almost contact metric manifold with h �= 0,
and κ, μ ∈ F(M) such that dκ ∧η = 0 and μ �= −2. Then, M is an almost Kenmotsu
generalized (κ, μ)′-manifold if and only if for any point p ∈ M, there exists an open
neighbourhood U of p with coordinates x1, x2, t such that μ only depends on t,
κ = −1 − e−2 f , where f satisfies the equation d f = (μ + 2)dt, and on U the tensor
fields of the structure can be written as

ϕ =
2∑

i, j=1

ϕi
j dx j ⊗ ∂

∂xi
, ξ = ∂

∂t
, η = dt, g = dt ⊗ dt +

2∑

i, j=1

gi j dxi ⊗ dx j ,

where ϕi
j , gi j are functions only of t; � is given by

� = e2t dx1 ∧ dx2,

and the non-zero components hi
j , Bi

j in U of h and h′, respectively, are functions of t

satisfying the condition
∑

s Bi
s Bs

j = e−2 f δi
j and the following system of differential

equations

dϕi
j

dt
= 2hi

j ,
dBi

j

dt
= −(μ + 2)Bi

j ,
dhi

j

dt
= 2λ2ϕi

j − (μ + 2)hi
j , (6.11)

where λ = e− f .

Remarks 1. As a particular case, we recover Example 6.3 from [16].
2. Clearly, a construction similar to that carried for almost Kenmotsu generalized

(κ, μ)-manifolds can also be made in this case, starting with the system of differ-
ential equations corresponding to (6.11).
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