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Abstract This paper deals with critical exponents for a doubly degenerate nonlin-
ear parabolic system coupled via local sources and with inner absorptions under null
Dirichlet boundary conditions in a smooth bounded domain. The author first estab-
lishes the comparison principle and local existence theorem for the above problem.
Then under appropriate hypotheses, the author proves that the solution either exists
globally or blows up in finite time depends on the initial data and the relations of the
parameters in the system. The critical exponent of the system is simply described via
a characteristic matrix equation introduced.
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1 Introduction and Main Results

In this paper, we consider the following nonlocal doubly degenerate nonlinear par-
abolic system with inner absorptions

ut −�m,pu = uα1vβ1 − aur, (x, t) ∈ �T ,

vt −�n,qv = uα2vβ2 − bvs, (x, t) ∈ �T ,
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u(x, t) = v(x, t) = 0, (x, t) ∈ ∂�× (0, T ],
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �, (1.1)

where for k > 0, γ > 2 and N ≥ 1, �k,γ � = ∇ · (|∇�k |γ−2 · ∇�k), ∇�k =
k�k−1(�x1, . . . , �xN ), � ⊂ R

N (N ≥ 1) is a bounded domain with appropriately
smooth boundary ∂�; m, n, r, s ≥ 1, p, q > 2, αi , βi ≥ 0, i = 1, 2,�T = �×(0, T ]
and a, b are positive constants and u0, v0 satisfies compatibility and the following
conditions:

(H) um
0 ∈ C(�) ∩ W 1,p

0 (�), vn
0 ∈ C(�) ∩ W 1,q

0 (�) and ∇um
0 · ν < 0,

∇vn
0 · ν < 0 on ∂�, where ν is unit outer normal vector on ∂�.

Parabolic systems like (1.1) arise in many applications in the fields of mechanics,
physics, and biology like, for instance, the description of turbulent filtration in porous
media, the theory of non-Newtonian fluids perturbed by nonlinear terms and forced by
rather irregular period in time excitations, the flow of a gas through a porous medium in
a turbulent regime or the spread of biological (see [1,6,8,15] and references therein); In
the non-Newtonian fluids theory, the pair (p, q) is a characteristic quantity of medium.
When (m, n) ≥ (1, 1) and (p, q) > (2, 2), the system models the non-stationary,
polytropic flow of a fluid in a porous medium; it has been intensively studied (see
[2,10,13,16,18] and references therein).

The problems with nonlinear reaction term, absorption term, and nonlinear diffusion
include blow-up and global existence conditions of solutions, blow-up rates and blow-
up sets, etc. This degenerate system exhibiting a doubly nonlinearity generalizes the
porous medium system (p = q = 2) and the parabolic p-Laplace system (m = n = 1),
which has been studied by many authors. For p = q = 2, m = n = 1, it is a classical
reaction-diffusion system of Fujita type. Bedjaoui and Souplet [3] considered the
critical blow-up exponents for the following system

ut = �u + v p − b1ur , vt = �v + uq − b2v
s, x ∈ �, t > 0. (1.2)

By constructing self-similar weak subsolutions with compact supports, they obtained
the critical exponent: pq = max(r, 1)max(s, 1). Moreover scalar absorption-
diffusion equations of the style ut − �u = −ur have also been widely studied (see
[7,9,11] and references therein).

Zheng and Su [22] considered the quasilinear reaction-diffusion system with non-
local sources and inner absorptions of the form

ut = �um +
∫
�

v pdx − aur , vt = �vn +
∫
�

uqdx − bvs, x ∈ �, t > 0.

(1.3)

They established the critical exponent and the blow-up rate for the system subject to
homogeneous Dirichlet conditions and nonnegative initial data. It was found that the
critical exponent is determined by the interaction among all the six nonlinear exponents
from all the three kinds of the nonlinearities.
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For p-Laplacian systems, Yang and Lu [19] studied the following equations

ut − div(|∇u|p−2∇u) = uα1vβ1 , (x, t) ∈ �× (0, T ],
vt − div(|∇v|q−2∇v) = uα2vβ2 , (x, t) ∈ �× (0, T ], (1.4)

with the homogeneous Dirichlet boundary value conditions, they derived some esti-
mates near the blow-up point for positive solutions and non-existence of positive
solutions of the relate elliptic systems.

Very recently, Zhang et al. [21] further studied the blow-up properties of positive
solutions for system (1.1) with nonlocal sources

ut − div(|∇u|p−2∇u) =
∫
�

vmdx − ur, (x, t) ∈ �× (0, T ],

vt − div(|∇v|q−2∇v) =
∫
�

undx − vs, (x, t) ∈ �× (0, T ] (1.5)

in a smooth bounded domain� ⊂ R
N . Under appropriate hypotheses, they discussed

the global existence and blow-up of positive weak solutions using a comparison prin-
ciple. For r = s = 0, the system (1.1) is reduced to a local non-Newton polytropic
filtration system without inner absorptions. And the author [16], [17] dealt with it
under local and nonlocal sources. Under appropriate hypotheses, they all establish
local theory of the solutions and prove that the solution either exists globally or blows
up in finite time. More results for the non-Newton polytropic filtration system with
sources can be found in [12,20,23] and the references therein.

However, as far as we know, there is little literature on the blow-up properties for
problems (1.1) with the concentrated source and inner absorptions. Motivated by the
above works, in this paper, we investigate the blow-up properties of solutions of the
problem (1.1) and extend the results of [3,16,20,21,23] to more generalized cases.
Due to the nonlinear diffusion terms and doubly degeneration for u = v = 0 and
|∇u| = |∇v| = 0, we have some new difficulties to be overcome. Noticing that the
system (1.1) includes the Newtonian filtration system (p = q = 2) and the non-
Newtonian filtration system (m = n = 1) formally, so the method for it should be
synthetic. In fact, we can use the methods for the above two systems to deal with it. In
order to apply monotonicity, we establish the comparison principle for system (1.1) by
choosing suitable test function and Gronwall’s inequality. Then by the first eigenvalue
and its corresponding eigenfunctions to the eigenvalue problem for the non-Newtonian
filtration system, we construct a pair of well-ordered positive supersolution and subso-
lution. Using comparison principle, we achieve our purpose and obtain the global exis-
tence and blow-up of solutions to the problem. We will show that the critical exponent is
determined by the interaction among all the nonlinear exponents from all the three non-
linearities. Correspondingly, two kinds of characteristic algebraic systems are intro-
duced to get simple descriptions for the critical exponent and the blow-up considered.

In order to state our results, we introduce some useful symbols. Throughout this
paper, we let ζ(x) and ϑ(x) be the unique solution of the following elliptic equation
(see [4,23]),
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{−�m,pζ = 1, x ∈ �,
ζ = 0, x ∈ ∂�,

{−�n,qϑ = 1, x ∈ �,
ϑ = 0, x ∈ ∂�. (1.6)

Before starting the main results, we introduce a pair of parameters (μ1, μ2) solving
the following characteristic algebraic system

(−μ1 β1
α2 −μ2

)(
τ

θ

)
=

(
1
1

)
,

namely,

τ = β1 + μ2

β1α2 − μ1μ2
, θ = α2 + μ1

β1α2 − μ1μ2

with

μ1 = max{m(p − 1)− α1, r − α1}, μ2 = max{n(q − 1)− β2, s − β2}.

It is obvious that 1/τ and 1/θ share the same signs. We claim that the critical
exponent of problem (1.1) should be (1/τ, 1/θ) = (0, 0), described by the following
theorems.

Theorem 1.1 Assume that (1/τ, 1/θ) < (0, 0), then there exist solutions of (1.1)
being globally bounded.

Theorem 1.2 Assume that (1/τ, 1/θ) > (0, 0), then the nonnegative solution of (1.1)
blows up in finite time for sufficiently large initial values and exists globally for suffi-
ciently small initial values.

Theorem 1.3 Assume that (1/τ, 1/θ) = (0, 0), ζ(x) and ϑ(x) are defined in (1.6),
respectively.

(i) Suppose that r > m(p − 1) and s > n(q − 1). If

aα2 br−α1 ≥ 1,

then the solutions are globally bounded for small initial data; if

ϑβ1 > aζ r−α1 , ζ α2 > bϑ s−β2 ,

then the solutions blow-up in finite time for large data.
(ii) Suppose that r < m(p − 1) and s < n(q − 1). If

ζ
α2

n(q−1)−β2
+ α1
β1 ϑ

n(q−1)
n(q−1)−β2 ≤ 1,

then the solutions are globally bounded for small initial data; if

ζ α1ϑβ1 > 1, ζ α2ϑβ2 > 1,
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then the solutions blow-up in finite time for large data.
(iii) Suppose that r < m(p − 1) and s > n(q − 1). If

ζ
α2+ α1(s−β2)

β1 ≤ b,

then the solutions are globally bounded for small initial data; if

ζ α1ϑβ1 > 1, ζ α2 > bϑ s−β2 ,

then the solutions blow-up in finite time for large data.
(iv) Suppose that r > m(p − 1) and s < n(q − 1). If

ϑ
α1+ α2(r−β1)

β2 ≤ a,

then the solutions are globally bounded for small initial data; if

ϑβ1 > aζ r−α1 , ζ α2ϑβ2 > 1,

then the solutions blow-up in finite time for sufficiently large data.

The rest of this paper is organized as follows. In Sect. 2, we shall establish the
comparison principle and local existence theorem for problem (1.1). Theorems 1.1
and 1.2 will be proved in Sects. 3 and 4, respectively. Finally, we will give the proof
of Theorem 1.3 in Sect. 5.

2 Preliminaries

In order to study the globally existing and blowing-up solutions to problem (1.1), we
need to firstly prove the comparison principle for the weak solution of the system
(1.1). It worth to mention, this statement plays a crucial role in the investigation.
Additions, the existence of local-in-time weak solutions of (1.1) under appropriate
hypotheses is also studied in this section. From a physical point of view, we need only
to consider the non-negative solutions. Moreover, if we assume that u0(x), v0(x) ≥ 0
in �, by Lemma 2.1 (see it below), we can obtain that (u(x, t), v(x, t)) ≥ (0, 0) a.e.
in (�× (0, T ))× (�× (0, T )). Thus, we only consider the non-negative solutions in
later sections.

As it is well known that doubly degenerate equations need not have classical
solutions, we give a precise definition of a weak solution for problem (1.1). Let
�T = �× (0, T ], ST = ∂�× [0, T ], T > 0.

Definition 2.1 A pair of functions (u, v) is called a solution of the problem (1.1)
on �T × �T if and only if um(x, t) ∈ C(0, T ; L∞(�)) ∩ L p(0, T ; W 1,p

0 (�)),

vn(x, t) ∈ C(0, T ; L∞(�))∩Lq(0, T ; W 1,q
0 (�)), (um)t ∈ L2(0, T ; L2(�)), (vn)t ∈

123



420 J. Wang

L2(0, T ; L2(�)), u(x, 0) = u0(x), v(x, 0) = v0(x) and the equalities

∫
�

u(x, t2)ψ1(x, t2)dx −
∫
�

u(x, t1)ψ1(x, t1)dx =
∫ t2

t1

∫
�

uψ1t dxdt

−
∫ t2

t1

∫
�

|∇um |p−2∇um · ∇ψ1dxdt + a
∫ t2

t1

∫
�

ψ1(x, t)(uα1vβ1 − aur )dxdt, (2.1)

∫
�

v(x, t2)ψ2(x, t2)dx −
∫
�

v(x, t1)ψ2(x, t1)dx =
∫ t2

t1

∫
�

vψ2t dxdt

−
∫ t2

t1

∫
�

|∇vn|q−2∇vn · ∇ψ2dxdt + b
∫ t2

t1

∫
�

ψ2(x, t)(uα2vβ2 − bvs)dxdt (2.2)

hold for all 0 < t1 < t2 < T , where ψ1(x, t), ψ2(x, t) ∈ C1,1(QT ) such that
ψ1(x, T ) = ψ2(x, T ) = 0 and ψ1(x, t) = ψ2(x, t) = 0 on ST .

Similarly, to define a subsolution (u(x, t), v(x, t)) we need only to require that
ψ1(x, t) ≥ 0, ψ2(x, t) ≥ 0, (u(x, 0), v(x, 0)) ≤ (u0(x), v0(x)) on � × �,
(u(x, t), v(x, t)) ≤ (0, 0) on ST × ST and the equalities in (2.1) and (2.2) are replaced
by ≤. A supersolution can be defined similarly.

Definition 2.2 We say the solution (u, v) of the problem (1.1) blows up in finite time
if there exists a positive constant T � < ∞, such that

lim
t→T �−

(|u(·, t)|L∞(�) + |v(·, t)|L∞(�)) = +∞.

We say the solution (u, v) exists globally if

sup
t∈(0,+∞)

(|u(·, t)|L∞(�) + |v(·, t)|L∞(�)) < +∞.

By a modification of the method given in [16–18], we obtain the following results.

Theorem 2.1 Suppose that (u0, v0) ≥ (0, 0) and satisfies the conditions (H), then
there exists a constant T0 > 0 such that the problem (1.1) admits a unique solu-
tion (u, v) ∈ QT0 × QT0 , um ∈ C(0, T ; L∞(�)) ∩ L p(0, T ; W 1,p

0 (�)), vn ∈
C(0, T ; L∞(�)) ∩ Lq(0, T ; W 1,q

0 (�)).

Proof of Theorem 2.1 Consider the following approximate problems for the problem
(1.1):

uit − div((|∇um
i |2 + εi )

p−2
2 ∇um

i ) = uα1
i v

β1
i − aur

i , (x, t) ∈ �T ,

vi t − div((|∇vn
i |2 + σi )

q−2
2 ∇vn

i ) = uα2
i v

β2
i − bvs

i , (x, t) ∈ �T ,

ui (x, t) = εi , vi (x, t) = σi , (x, t) ∈ ST ,

ui (x, 0) = u0εi (x)+ εi , vi (x, 0) = v0σi (x)+ σi , x ∈ �. (2.3)
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Here εi , σi are strictly decreasing sequences, 0 < εi , σi < 1, and εi → 0+, σi →
0+ as i → +∞. u0εi , v0σi ∈ C∞

0 (�) are approximation functions for the initial
data u0(x) and v0(x), respectively. |u0εi +εi |L∞(�) ≤ |u0 +1|L∞(�), |∇um

0εi
|L∞(�) ≤

|∇um
0 |L∞(�), for all εi , and (u0εi +εi )

m → um
0 strongly in W 1,p

0 (�); |v0σi +σi |L∞(�) ≤
|v0 +1|L∞(�), |∇vn

0σi
|L∞(�) ≤ |∇vn

0 |L∞(�), for all σi , and (v0σi +σi )
n → vn

0 strongly

in W 1,q
0 (�).

(2.3) is a non-degenerate problem for each fixed εi and σi ; it is easy to prove that
it admits a unique classic solution (ui , vi ) using the Schauder’s fixed point theorem
and (ui , vi ) ≥ (εi , σi ) > (0, 0) by the classical theory for parabolic equations(see
[10]). To find limit function u(x, t) and v(x, t) of the sequence {(ui , vi )}, we need
some priori estimates for the nonnegative approximate solutions by carefully choosing
special test functions and a scaling argument. The left arguments are as same as those
of Theorem 1 in [16], so we omit them. We complete the existence part by a standard
limiting process.

The uniqueness of the solution is obvious. In fact, assume that (u1, v1), (u2, v2)

are two non-negative solutions of (1.1), using Lemma 2.1 repeatedly, we can get
u1 = u2, v1 = v2 a.e. in �× [0, T0]. 
�

We first give a comparison lemma for the non-degenerate parabolic system, which
plays a crucial role in the proof of our results.

Proposition 2.1 (Comparison Principle) Suppose that (u(x, t), v(x, t)) and (u(x, t),
v(x, t)) are the lower and upper solution of problem (1.1) on �T ×�T , respectively.
Then (u(x, t), v(x, t)) ≤ (u(x, t), v(x, t)) a.e. on �T ×�T .

Proof of Proposition 2.1 For small σ > 0, set ψσ (ξ) = min{1,max{ξ/σ, 0}}, ξ ∈ R.
Then ψσ (ξ) is a piecewise differentiable function. Let ψ1 = ψσ (um − um), ψ2 =
ψσ (v

n − vn), it is easy to verify that ψ1 and ψ2 are admissible test functions in (2.1)
and (2.2).

Since (u, v) and (u, v) are subsolution and supersolution of (1.1), let t1 = τ ,
t2 = τ + h, τ, h > 0, τ + h < T and w = u − u, z = v − v, w1 = um − um ,
z1 = vn − vn , then we obtain

∫
�

w(x, τ + h)ψ1(x, τ + h)dx −
∫
�

w(x, τ )ψ1(x, τ )dx

=
∫ τ+h

τ

∫
�

wψ1t dxds −
∫ τ+h

τ

∫
�

(|∇um |p−2∇um − |∇um |p−2∇um) · ∇ψ1dxds

+
∫ τ+h

τ

∫
�

ψ1(x, t)
[
(uα1vβ1 − uα1vβ1)− a(ur − ur )

]
dxds, (2.4)

∫
�

z(x, τ + h)ψ2(x, τ + h)dx −
∫
�

z(x, τ )ψ2(x, τ )dx

=
∫ τ+h

τ

∫
�

zψ2t dxds −
∫ τ+h

τ

∫
�

(|∇vn|q−2∇vn − |∇vm |q−2∇vn) · ∇ψ2dxds

+
∫ τ+h

τ

∫
�

ψ2(x, t)
[
(uα2vβ2 − uα2vβ2)− b(vs − vs)

]
dxds, (2.5)
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Dividing (2.4) and (2.5) by h and integrating τ over (0, t) gives∫ t

0

1

h

∫
�

(w(x, τ + h)ψ1(x, τ + h)− w(x, τ )ψ1(x, τ ))dxdτ

=
∫ t

0

1

h

∫ τ+h

τ

∫
�

wψ1t dxdsdτ

−
∫ t

0

1

h

∫ τ+h

τ

∫
�

(|∇um |p−2∇um − |∇um |p−2∇um) · ∇ψ1dxdsdτ

+
∫ t

0

1

h

∫ τ+h

τ

∫
�

ψ1(x, t)[(uα1vβ1 − uα1vβ1)− a(ur − ur )]dxdsdτ, (2.6)

∫ t

0

1

h

∫
�

z(x, τ + h)ψ2(x, τ + h)dx −
∫
�

z(x, τ )ψ2(x, τ )dxdτ

=
∫ t

0

1

h

∫ τ+h

τ

∫
�

zψ2t dxdsdτ

−
∫ t

0

1

h

∫ τ+h

τ

∫
�

(
|∇vn|q−2∇vn − |∇vm |q−2∇vn

)
· ∇ψ2dxdsdτ

+
∫ t

0

1

h

∫ τ+h

τ

∫
�

ψ2(x, t)
[
(uα2vβ2 − uα2vβ2)− b(vs − vs)

]
dxdsdτ. (2.7)

By the properties of Steklov’s averages ([5], Lemma 1.3.2), we get
∫ t

0

1

h

∫ τ+h

τ

∫
�

wψ1t dxdsdτ →
∫ t

0

∫
�

wψ1t dxds as h → 0+, (2.8)

∫ t

0

1

h

∫ τ+h

τ

∫
�

zψ2t dxdsdτ →
∫ t

0

∫
�

zψ2t dxds as h → 0+, (2.9)

∫ t

0

1

h

∫ τ+h

τ

∫
�

(|∇um |p−2∇um − |∇um |p−2∇um) · ∇ψ1dxdsdτ

→
∫ t

0

∫
�

(|∇um |p−2∇um − |∇um |p−2∇um) · ∇ψ1dxds as h → 0+, (2.10)

∫ t

0

1

h

∫ τ+h

τ

∫
�

(|∇vn|q−2∇vn − |∇vm |q−2∇vn) · ∇ψ2dxdsdτ

→
∫ t

0

∫
�

(|∇vn|q−2∇vn − |∇vm |q−2∇vn) · ∇ψ2dxds as h → 0+, (2.11)

∫ t

0

1

h

∫ τ+h

τ

∫
�

ψ1(x, t)[(uα1vβ1 − uα1vβ1)− a(ur − ur )]dxdsdτ

→
∫ t

0

∫
�

ψ1(x, t)[(uα1vβ1 − uα1vβ1)− a(ur − ur )]dxds as h → 0+,
∫ t

0

1

h

∫ τ+h

τ

∫
�

ψ2(x, t)[(uα2vβ2 − uα2vβ2)− b(vs − vs)]dxdsdτ,

→
∫ t

0

∫
�

ψ2(x, t)[(uα2vβ2 − uα2vβ2)− b(vs − vs)]dxds as h → 0+. (2.12)
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Now, we claim that

∫ t

0

1

h

∫
�

(w(x, τ + h)ψ1(x, τ + h)− w(x, τ )ψ1(x, τ ))dxdτ

→
∫
�

(w(x, t)ψ1(x, t)− w(x, 0)ψ1(x, 0))dx, (2.13)

∫ t

0

1

h

∫
�

z(x, τ + h)ψ2(x, τ + h)dx −
∫
�

z(x, τ )ψ2(x, τ )dxdτ

→
∫
�

z(x, t)ψ2(x, t)dx −
∫
�

z(x, 0)ψ2(x, 0)dx . (2.14)

By (2.4)–(2.14), we obtain

∫
�

w(x, t)ψσ (w1(x, t))dx ≤
∫
�

w(x, 0)ψσ (w1(x, 0))dx+
∫ t

0

∫
�

wψ ′
σ (w1)w1sdxds

−
∫ t

0

∫
�

(|∇um |p−2∇um − |∇um |p−2∇um) · ∇ψσ (um − um)dxds

+
∫ t

0

∫
�

ψσ (w1(x, t))[(uα1vβ1 − uα1vβ1)− a(ur − ur )]dxds, (2.15)

∫
�

z(x, t)ψσ (z1(x, t))dx ≤
∫
�

z(x, 0)ψσ (z1(x, 0))dx +
∫ t

0

∫
�

zψ ′
σ (z1)z1sdxds

−
∫ t

0

∫
�

(|∇vn|q−2∇vn − |∇vn|q−2∇vn) · ∇ψσ (vn − vn)dxds

+
∫ t

0

∫
�

ψσ (z1(x, t))[(uα2vβ2 − uα2vβ2)− b(vs − vs)]dxds. (2.16)

Now, we deal with the terms in (2.15) and (2.16). First, we have

∫ t

0

∫
�

ψσ (w1(x, t))[(uα1vβ1 − uα1vβ1)− a(ur − ur )]dxds

≤ β1 Mα1
1 Mβ1−1

2

∫ t

0

∫
�

(v − v)+dx + α1 Mα1−1
1 Mβ1

2

∫ t

0

∫
�

(u − u)+dxds

+ ar Mr−1
1

∫ t

0

∫
�

(u − u)+dxds,

∫ t

0

∫
�

ψσ (z1(x, t))[(uα2vβ2 − uα2vβ2)− b(vs − vs)]dxds

≤ α2 Mα2−1
1 Mβ2

2

∫ t

0

∫
�

(u − u)+dx + β2 Mα2
1 Mβ2−1

2

∫ t

0

∫
�

(v − v)+dxds

+ bs Ms−1
2

∫ t

0

∫
�

(v − v)+dxds
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for some positive constants M1,M2, and as σ → 0+,

∣∣∣∣
∫ t

0

∫
�

wψ ′
σ (w1)w1sdxds

∣∣∣∣ ≤
∫ t

0

∫
�

w+|ψ ′
σ (w1)||w1s |dxds

= 1

σ

∫ σ

0

∫
�

w+|w1s |dxds → 0,
∣∣∣∣
∫ t

0

∫
�

zψ ′
σ (z1)z1sdxds

∣∣∣∣ ≤
∫ t

0

∫
�

z+|ψ ′
σ (z1)||z1s |dxds

= 1

σ

∫ σ

0

∫
�

z+|z1s |dxds → 0.

Second, by Lemma 1.4.4 in [5], we get

(|∇um |p−2∇um − |∇um |p−2∇um) · ∇ψσ (um −um) ≥ min
{
0, γ1|∇(um − um)+|p} ,

(|∇vn|q−2∇vn − |∇vn|q−2∇vn) · ∇ψσ (vn − vn) ≥ min
{
0, γ2|∇(vn − vn)+|q}

for some γ1, γ2 > 0.
Finally, we have

∫
�
w(x, 0)ψσ (w1(x, 0))dx ≡ 0,

∫
�

z(x, 0)ψσ (z1(x, 0))dx ≡ 0
and ψ ′

σ ≥ 0 a.e. in R, wψ ′
σ (w1)w1s , zψ ′

σ (z1)z1s increase and tend to w+, z+ as
σ → 0+, respectively. Hence, we may let σ → 0+ in (2.15) and (2.16) to yield

∫
�

w+(x, t)dx ≤ C1

∫ t

0

∫
�

w+(x, s)dxds + C2

∫ t

0

∫
�

z+(x, s)dxds,

∫
�

z+(x, t)dx ≤ C3

∫ t

0

∫
�

w+(x, s)dxds + C4

∫ t

0

∫
�

z+(x, s)dxds.

Hence,
∫
�

(w+(x, t)+ z+(x, t))dx ≤ C
∫ t

0

∫
�

(w+(x, s)+ z+(x, s))dxds.

By the Gronwall’s inequality, we obtain
∫
�
(w+(x, t)+ z+(x, t))dx = 0, i.e. u ≤ u,

v ≤ v, a.e. on �T . This completes the proof. 
�

3 Proof of Theorem 1.1

In this section, we investigate the global existence property of the solutions to Prob-
lem (1.1) and prove Theorem 1.1. The main method is constructing a globally upper
solution and using comparison principle to achieve our purpose.

In order to study the globally existing solutions to Problem (1.1), we need to study
the following elliptic system

−�k,γ � = 1, x ∈ �, � = 1, x ∈ ∂�, (3.1)

where �k,γ � is defined in (1.1), and we obtain the following lemma.
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Lemma 3.1 problem (3.1) has a unique solution �(x), and satisfies the following
relations,

�(x) > 1 in �, ∇� · ν < 0 on ∂�, sup
x∈�

� = M < +∞,

where M is a positive constant.

Proof of this lemma is similar to that given in [23], we omit it here.

Proof of Theorem 1.1 Let ϕ(x) and ψ(x) be the unique solution of the following
elliptic problem

{−�m,pϕ = 1, x ∈ �,
ϕ = 1, x ∈ ∂�,

{−�n,qψ = 1, x ∈ �,
ψ = 1, x ∈ ∂�. (3.2)

Then from Lemma 3.1, we obtain the following relations

ϕ(x), ψ(x) > 1 in �, ∇ϕ · ν,∇ψ · ν < 0 on ∂�, (3.3)

M1 = min{ inf
x∈�ϕ, inf

x∈�ψ} < +∞,M2 = max{sup
x∈�

ϕ, sup
x∈�

ψ} < +∞, (3.4)

where M1,M2 > 0 is a positive constant.
Notice that (1/τ, 1/θ) < (0, 0) implies

β1α2 < μ1μ2 = max{m(p − 1)− α1, r − α1} max{n(q − 1)− β2, s − β2}.

We will prove Theorem 1.1 in four subcases.

(a) For μ1 = r − α1, μ2 = s − β2, we then have β1α2 < (r − α1)(s − β2). Let
(u, v) = (�1,�2), where �1 ≥ max

x∈�
u0(x), �2 ≥ max

x∈�
v0(x) will be determined

later. After a simple computation, we have

ut −�m,pu − uα1vβ1 + aur = a�r
1 −�

α1
1 �

β1
2 ,

vt −�n,qv − uα2vβ2 + bvs = b�s
2 −�

α2
1 �

β2
2 .

So, (u, v) = (�1,�2) is a time-independent supersolution of problem (1.1) if

a�r−α1
1 ≥ �

β1
2 and b�s−β2

2 ≥ �
α2
1 ,

i.e.

�

β1
r−α1
2 (

1

a
)

1
r−α1 ≤ �1 ≤ �

s−β2
α2

2 (b)
1
α2 .

(b) For μ1 = m(p − 1)− α1, μ2 = n(q − 1)−β2, we then have β1α2 < mn(p − 1)
(q − 1). Let (u, v) = (�1ϕ(x),�2ψ(x)), where �1,�2 > 0 will be determined
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later. Then with a direct computation we obtain

ut −�m,pu − uα1vβ1 + aur ≥ �
m(p−1)
1 −�

α1
1 �

β1
2 Mα1+β1

2 ,

vt −�n,qv − uα2vβ2 + bvs ≥ �
n(q−1)
2 −�

α2
1 �

β2
2 Mα2+β2

2 ,

So, (u(x, t), v(x, t)) is an upper solution of problem (1.1), if

�
m(p−1)
1 ≥ �

α1
1 �

β1
2 Mα1+β1

2 , �
n(q−1)
2 ≥ �

α2
1 �

β2
2 Mα2+β2

2 ,

u(x, t) |∂�≥ 0, v(x, t) |∂�≥ 0, u(x, 0) = u0(x), v(x, 0) = v0(x). (3.5)

Then (3.5) holds if we choose �1, �2 large enough such that

�1 > max

⎧⎨
⎩max

x∈�
u0(x),

(
M
α1+β1+ (α2+β2)β1

n(q−1)−β2
2

) 1

m(p−1)−α1− α2β1
n(q−1)−β2

⎫⎬
⎭ ,

�2 > max

⎧⎨
⎩max

x∈�
v0(x),

(
M
α2+β2+ (α1+β1)α2

m(p−1)−α1
2

) 1

n(q−1)−β2− α2β1
m(p−1)−α1

⎫⎬
⎭ .

(c) Forμ1 = r−α1,μ2 = n(q−1)−β2, we then haveβ1α2 < (r−α1)[n(q−1)−β2].
Choose �1 ≥ max

x∈�
u0(x) and �2 ≥ max

x∈�
v0(x) satisfy

(�
α2
1 Mβ2

2 )
1

n(q−1)−β2 ≤ �2 ≤ (a�r−α1
1 M−β1

2 )
1
β1 .

Let (u, v) = (�1,�2ψ(x)) with ψ(x) defined by (3.2). By direct computation,
we arrive at

ut −�m,pu − uα1vβ1 + aur ≥ a�r
1 −�

α1
1 �

β1
2 Mβ1

2 ≥ 0,

vt −�n,qv − uα2vβ2 + bvs ≥ �
n(q−1)
2 −�

α2
1 �

β2
2 Mβ2

2 ≥ 0. (3.6)

(d) For μ1 = m(p − 1) − α1, μ2 = s − β2, we then have β1α2 < [m(p − 1) −
α1](s − β2). Let (u, v) = (�1ϕ(x),�2) with ϕ(x) defined by (3.2), where�1 ≥
max
x∈�

u0(x) and �2 ≥ max
x∈�

v0(x). Then, (3.6) hold if

(�
α1
2 Mβ1

2 )
1

m(p−1)−β1 ≤ �1 ≤ (b�s−α2
2 M−β2

2 )
1
β2 .

The proof of Theorem 1.1 is complete. 
�

4 Proof of Theorem 1.2

In this section, we investigate the blow-up property of the solutions to problem (1.1)
and prove Theorem 1.2. The main method is constructing a blowing-up lower solution
and using the comparison principle to achieve our purpose.
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Proof of Theorem 1.2 Observe that (1/τ, 1/θ) > (0, 0) implies

β1α2 > μ1μ2 = max{m(p − 1)− α1, r − α1} max{n(q − 1)− β2, s − β2}.

For μ1 = r − α1, μ2 = s − β2. Choosing

�1 = 1

2

[
(

1

a
)

1
r−α1 �

β1
r−α1
2 + b

1
α2 �

s−β2
α2

2

]
,�2 = (

aα2 br−α1
) 1
β1α2−(r−α1)(s−β2) ,

then (u, v) = (�1,�2) is a global supersolution for problem (1.1) provided that
�1 ≥ max

x∈�
u0(x) and �2 ≥ max

x∈�
v0(x).

For μ1 = m(p − 1)− α1, μ2 = n(q − 1)− β2. Let (u, v) = (�1ϕ(x),�2ψ(x)),
where ϕ(x) and ψ(x) satisfying (3.2), respectively. Choosing

�1 = 1

2

(
M

α1+β1
m(p−1)−α1

2 �

β1
m(p−1)−α1
2 + M

− α2+β2
α2

2 �

n(q−1)−β2
α2

2

)
,

�2 =
(

M
α2+β2+ (α1+β1)α2

m(p−1)−α1
2

) 1

n(q−1)−β2− α2β1
m(p−1)−α1 ,

therefore, (u, v) is a global supersolution for system (1.1) if �1 ≥ max
x∈�

u0(x) and

�2 ≥ max
x∈�

v0(x).

For other cases, the solutions of (1.1) should be global due to the above discussion.
Next, we begin to prove our blow-up conclusion under large enough initial data. Due

to the requirement of the comparison principle, we will construct blow-up subsolutions
in some subdomain of � in which u, v > 0. We use an idea from Souplet [14] and
apply it to degenerate equations. Since problem (1.1) does not make sense for negative
values of (u, v), we actually consider the following problem

Pu(x, t) ≡ ut −�m,pu − uα1+ v
β1+ + aur+, x ∈ �, t > 0,

Qv(x, t) ≡ vt −�n,qv − uα2+ v
β2+ + bvs+, x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

where u+ = max{0, u}, v+ = max{0, v}. Let �(x) be a nontrivial nonnegative
continuous function and vanish on ∂�. Without loss of generality, we may assume
that 0 ∈ � and �(0) > 0. We shall construct a self-similar blow-up subsolution to
complete our proof.
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Set

u(x, t) = (τ − t)−γ1 V1(ξ), ξ = |x |(τ − t)−σ1, V1(ξ) =
(

1 + A

2
− ξ2

2A

)1/m

+
,

v(x, t) = (τ − t)−γ2 V2(η), η = |x |(τ − t)−σ2 , V2(η) =
(

1 + A

2
− η2

2A

)1/n

+
,

where γi , σi > 0(i = 1, 2), A > 1 and 0 < τ < 1 are parameters to be determined.
It is easy to see that u(x, t), v(x, t) blow-up at time τ , so it is enough to prove that
(u(x, t), v(x, t)) is a lower solution of problem (1.1). If we choose τ small enough
such that

suppu(·, t) = B(0, R(τ − t)σ1) ⊂ B(0, Rτσ1) ⊂ �,

suppv(·, t) = B(0, R(τ − t)σ2) ⊂ B(0, Rτσ2) ⊂ �,

where R = (A(2 + A))1/2, then u(x, t) |∂�= 0, v(x, t) |∂�= 0. Next if we choose
the initial data large enough such that

u0(x) ≥ 1

τγ1
V1(

|x |
τσ1

), v0(x) ≥ 1

τγ2
V2(

|x |
τσ2

),

then (u(x, t), v(x, t)) is a lower solution of problem (1.1) if for any (x, t) ∈ �×(0, τ ],

ut −�m,pu ≤ auα1vβ1 , (4.1)

vt −�n,qv ≤ buα2vβ2 . (4.2)

After a direct computation, we obtain

ut =
γ1V1(ξ)+ σ1ξV ′

1(ξ)

(τ − t)γ1+1 , ∇um = x

A(τ − t)mγ1+2σ1
,−�um = N

A(τ − t)mγ1+2σ1
,

vt = γ2V2(η)+ σ2ηV ′
2(η)

(τ − t)γ2+1 ,∇vn = x

A(τ − t)nγ2+2σ2
,−�vn = N

A(τ − t)nγ2+2σ2
,

(4.3)

−�m,pu = |∇um |p−2�um + (p − 2)|∇um |p−4(∇um)τ · (Hx (u
m)) · ∇um

= |∇um |p−2�um + (p − 2)|∇um |p−4
N∑

j=1

N∑
i=1

∂um

∂xi

∂2um

∂xi∂x j

∂um

∂x j
, (4.4)

−�n,qv = |∇vn|q−2�vn + (q − 2)|∇vn|q−4(∇vn)τ · (Hx (v
n)) · ∇vn

= |∇vn|q−2�vn + (q − 2)|∇vn|q−4
N∑

j=1

N∑
i=1

∂vn

∂xi

∂2vn

∂xi∂x j

∂vn

∂x j
, (4.5)

where Hx (um), Hx (v
n) denote the Hessian matrix of um(x, t), vn(x, t), respectively.
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Use the notation d(�) = diam(�), then from (4.4) and (4.5), we obtain

|�m,pu| ≤ N

A(τ − t)mγ1+2σ1

(
d(�)

(τ − t)mγ1+2σ1

)p−2

+ (p − 2)

(
d(�)

(τ − t)mγ1+2σ1

)p−4 (
d(�)

(τ − t)mγ1+2σ1

)2 N

A(τ − t)mγ1+2σ1

= N (p − 1)(d(�))p−2

A(τ − t)(mγ1+2σ1)(p−1)
. (4.6)

Similarly, from (4.4) and (4.5) we obtain

|�n,qv| ≤ N

A(τ − t)nγ2+2σ2

(
d(�)

(τ − t)nγ2+2σ2

)q−2

+ (q − 2)

(
d(�)

(τ − t)nγ2+2σ2

)q−4 (
d(�)

(τ − t)nγ2+2σ2

)2 N

A(τ − t)nγ2+2σ2

= N (q − 1)(d(�))q−2

A(τ − t)(nγ2+2σ2)(q−1)
. (4.7)

Next, we compute the local term of (4.1)

uα1vβ1 = 1

(τ − t)γ1α1+γ2β1
V α1

1

( |x |
(τ − t)σ1

)
V β1

2

( |x |
(τ − t)σ2

)
,

uα2vβ2 = 1

(τ − t)γ1α2+γ2β2
V α2

1

( |x |
(τ − t)σ1

)
V β2

2

( |x |
(τ − t)σ2

)
. (4.8)

If 0 ≤ ξ, η ≤ A, then 1 ≤ V1(ξ) ≤ (1 + A/2)1/m , 1 ≤ V2(η) ≤ (1 + A/2)1/n and
V ′

1(ξ) ≤ 0, V ′
2(η) ≤ 0. Combining the above inequalities, we obtain

Pu(x, t) ≤ γ1(1 + A
2 )

1/m

(τ − t)γ1+1 + N (p − 1)(d(�))p−2

A(τ − t)(mγ1+2σ1)(p−1)
+ a

(
1 + A

2

)r/m

(τ − t)rγ1

− 1

(τ − t)γ1α1+γ2β1
, (4.9)

Qv(x, t) ≤ γ2(1 + A
2 )

1/n

(τ − t)γ2+1 + N (q − 1)(d(�))q−2

A(τ − t)(nγ2+2σ2)(q−1)
+ b

(
1 + A

2

)r/n

(τ − t)sγ2

− 1

(τ − t)γ1α2+γ2β2
. (4.10)
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If ξ, η ≥ A, since m, n ≥ 1, we obtain V1(ξ) ≤ 1, V2(η) ≤ 1 and V ′
1(ξ) ≤ −1/m,

V ′
2(η) ≤ −1/n. Combining the above inequalities (4.3)–(4.8), we obtain

Pu(x, t) ≤ γ1 − 1
m σ1 A

(τ − t)γ1+1 + N (p − 1)(d(�))p−2

A(τ − t)(mγ1+2σ1)(p−1)
+ a

(τ − t)rγ1
, (4.11)

Qv(x, t) ≤ γ2 − 1
nσ2 A

(τ − t)γ2+1 + N (q − 1)(d(�))q−2

A(τ − t)(nγ2+2σ2)(q−1)
+ b

(τ − t)sγ2
. (4.12)

If 0 ≤ ξ ≤ A and η ≥ A, we have that (4.9) and (4.12) hold. If ξ ≥ A and 0 ≤ η ≤ A,
we have that (4.10) and (4.11) hold.

So, from the above discussions, (4.1) hold if the right-hand sides of (4.9)–(4.12)
are nonpositive.

Since 1/τ, 1/θ < 0, we see that β1α2 > μ1μ2. In addition, it is clear that

μ1

β1
<
α2 + 1

β1 + 1
or
μ2

α2
<
β1 + 1

α2 + 1
. (4.13)

For μ1/β1 < (α2 + 1)/(β1 + 1), we choose γ1 and γ2 such that

μ1

β1
<
γ2

γ1
< min{α2 + 1

β1 + 1
,
α2

μ2
},

α1 + μ1 <
1 + γ1

γ1
< min{ r

γ1(r − 1)
,
β1γ2 + α1γ1

γ1
}. (4.14)

Recall that μ1 = max{m(p − 1)−α1, r −α1} and μ2 = max{n(q − 1)−β2, s −β2},
then (4.14) implies

β1γ2 + α1γ1 > rγ1, β1γ2 + α1γ1 > m(p − 1)γ1, β1γ2 + α1γ1 > γ1 + 1 > rγ1,

β2γ2 + α2γ1 > sγ2, β2γ2 + α2γ1 > n(q − 1)γ2, β2γ2 + α2γ1 > γ2 + 1 > sγ2.

Next, we can choose positive constants σ1, σ2 sufficiently small such that

σ1 = σ2 < min

{
β1γ2 + α1γ1 − γ1 − 1

2N
,
β1γ2 + α1γ1 − m(p − 1)γ1

2(N + p − 1)
,

β1γ2 + α1γ1 − rγ1

2N
,
γ1 + 1 + m(p − 1)γ1

2(p − 1)
,
β2γ2 + α2γ1 − γ2 − 1

2N
,

β2γ2 + α2γ1 − n(q − 1)γ2

2(N + q − 1)
,
β2γ2 + α2γ1 − sγ2

2N
,
γ2 + 1 + n(q − 1)γ2

2(q − 1)

}
,
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consequently, we have

β1γ2 + α1γ1 > max
{
γ1 + 1, (mγ1 + 2σ1)(p − 1), rγ1

}
,

β2γ2 + α2γ1 > max
{
γ2 + 1, (nγ2 + 2σ2)(q − 1), sγ2

}
,

γ1 + 1 > max
{

rγ1, (mγ1 + 2σ1)(p − 1)
}
,

γ2 + 1 > max
{

sγ2, (mγ2 + 2σ2)(q − 1)
}
. (4.15)

For μ2/α2 < (β1 + 1)/(α2 + 1), we fix γ1 and γ2 to satisfy

μ2

α2
<
γ1

γ2
< min{β1 + 1

α2 + 1
,
β1

μ1
},

β2 + μ2 <
1 + γ2

γ2
< min{ s

γ2(s − 1)
,
β2γ2 + α2γ1

γ2
}, (4.16)

then we can also select σ1, σ2 small enough such that (4.15) holds.
Furthermore, if we choose A > max{1,mγ1/σ1, nγ2/σ2}, then for τ > 0 suffi-

ciently small, the right-hand sides of (4.9)–(4.12) are nonpositive, so (4.1) and (4.2)
holds, and we obtain Theorem 1.2. 
�

5 Proof of Theorem 1.3

Proof of Theorem 1.3 In the critical case of (1/τ, 1/θ) = (0, 0), we have

β1α2 = μ1μ2 = max{m(p − 1)− α1, r − α1} max{n(q − 1)− β2, s − β2}.

(i) For r > m(p − 1), s > n(q − 1), we know β1α2 = (r − α1)(s − β2). Thanks to
aα2 br−α1 ≥ 1, we can choose�1 and�2 sufficiently large such that�1 ≥ max

x∈�
u0(x),

�2 ≥ max
x∈�

v0(x) and

�

β1
r−α1
2 (

1

a
)

1
r−α1 ≤ �1 ≤ �

s−β2
α2

2 b
1
α2 .

Clearly, (u, v) = (�1,�2) is a supersolution of problem (1.1), then by comparison
principle, the solution of (1.1) should be global.

Next, we begin to prove our blow-up conclusion.
Since β1α2 = μ1μ2, we can choose constants l1, l2 > 1 such that

n(q − 1)− β2 − 1

r − α1 − 1
<

s − β2

α2
= l1

l2
= β1

r − α1
<

s − β2 − 1

m(p − 1)− α1 − 1
. (5.1)

According to Proposition 2.1, we only need to construct a suitable blow-up subso-
lution of problem (1.1) on�T ×�T . Let γ (t) be the solution of the following ordinary
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differential equation

γ ′(t) = c1γ
δ1 − c2γ

δ2 , γ (0) = γ0 > 0, t > 0,

where

c1 = min

{
ζ α1ϑβ1 − aζ r

l1ζ
,
ζ α2ϑβ2 − bϑ s

l2ϑ

}
, c2 = max

{
1

l1ζ
,

1

l2ϑ

}
,

δ1 = min {l1(r − 1)+ 1, (s − 1)l2 + 1} ,
δ2 = max {[m(p − 1)− 1]l1 + 1, [n(q − 1)− 1]l2 + 1} .

Since ϑβ1 > aζ r−α1 and ζ α2 > bϑ s−β2 , we have c1 > 0. On the other hand, by
virtue of (5.1), it is easy to see that δ1 > δ2. Then, it is obvious that there exists a
constant 0 < T � < +∞ such that

lim
t→T �

γ (t) = +∞.

Construct

(u(x, t), v(x, t)) = (γ l1(t)ζ(x), γ l2(t)ϑ(x)),

where ζ(x), ϑ(x) satisfying (1.6). Moreover, by the assumptions on initial data, we
can take small enough constant γ0 such that

u0(x) ≥ γ
l1
0 M1 and v0(x) ≥ γ

l2
0 M2 for all x ∈ �, (5.2)

where M1 = max
x∈� ζ(x), M2 = max

x∈� ϑ(x).
Now, we begin to verify that (u(x, t), v(x, t)) is a blow-up subsolution of the

problem (1.1) on �T × �T , T < T �. In fact, ∀(x, t) ∈ �T × (0, T ), a series of
computations show

Pu(x, t) ≡ ut −�m,pu − uα1vβ1 + aur

= l1ζγ
l1−1γ ′(t)+ γm(p−1)l1 − γ l1α1+l2β1ζ α1ϑβ1 + aγ rl1ζ r (5.3)

= l1ζγ
l1−1

(
γ ′(t)+ 1

l1ζ
γm(p−1)l1−l1+1 − ζ α1ϑβ1 − aζ r

l1ζ
γ l1(r−1)+1

)

≤ 0.

Similarly, we also have

Qv(x, t) ≡ vt −�n,qv − uα2vβ2 + bvs ≤ 0. (5.4)

On the other hand, ∀t ∈ [0, T ], we have

u(x, t)|x∈∂� = γ l1(t)ζ(x)|x∈∂� = 0, v(x, t)|x∈∂� = γ l2(t)ϑ(x)|x∈∂� = 0. (5.5)
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Combining now (5.2)-(5.5), we see that (u, v) is a subsolution of (1.1) and (u, v) <
(u, v) on �T ×�T by comparison principle, thus (u, v) must blow-up in finite time
since (u, v) does.

(ii) For r < m(p−1), s < n(q−1), we knowβ1α2 = [m(p−1)−α1][n(q−1)−β2].
Under the assumption (ζ α2ϑβ2)1/[n(q−1)−β2](ζ α1ϑβ1)1/β1 ≤ 1, we can choose�1,�2
such that

�

α2
n(q−1)−β2
1 (ζ α2ϑβ2)

1
n(q−1)−β2 ≤ �2 ≤ �

m(p−1)−α1
β1

1 (ζ α1ϑβ1)
− 1
β1 .

Then (u, v) = (�1,�2) is a global supersolution of (1.1).
Since β1α2 = [m(p − 1)−α1][n(q − 1)−β2], we can choose constants l1, l2 > 1

such that

s − 1

m(p − 1)− 1
<

n(q − 1)− β2

α2
= l1

l2
= β1

m(p − 1)− α1
<

n(q − 1)− 1

r − 1
. (5.6)

Next, we consider the following ordinary differential equation

γ ′(t) = c1γ
δ1 − c2γ

δ2 , γ (0) = γ0 > 0, t > 0,

where

c1 = min{ζ α1ϑβ1 − 1, ζ α2ϑβ2 − 1}, c2 = max

{
aζ r−1

l1
,

bϑ s−1

l2

}
,

δ1 = min {[m(p − 1)− 1]l1 + 1, [n(q − 1)− 1]l2 + 1} ,
δ2 = max{l1(r − 1)+ 1, (s − 1)l2 + 1}.

Since ζ α1ϑβ1 > 1, ζ α2ϑβ2 > 1, we have c1 > 0. On the other hand, in light of
(5.6), it is easy to show that δ1 > δ2. Then, it is clear that γ (t) will become infinite in
a finite time T � < +∞.

Let

(u(x, t), v(x, t)) = (γ l1(t)ζ(x), γ l2(t)ϑ(x)),

where ζ(x), ϑ(x) satisfying (1.6). Similar to the arguments for the case r > m(p−1),
s > n(q − 1), we can prove that (u(x, t), v(x, t)) is a blow-up subsolution of the
problem (1.1) on �T × �T , T < T �. Then, the solution (u, v) of (1.1) blows up in
finite time.

(iii) For r < m(p − 1), s > n(q − 1), we know β1α2 = [m(p − 1)− α1][s − β2].
Since (ζ α2)(ζ α1)(s−β2)/β1 ≤ b, we can choose �1,�2, such that

b
− 1

s−β2 �

α2
s−β2
1 (ζ α2)

1
s−β2 ≤ �2 ≤ �

m(p−1)−α1
β1

1 (ζ α1)
− 1
β1 .

We can check (u, v) = (�1ζ,�2) is a global supersolution of (1.1).
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Thanks to β1α2 = [m(p − 1) − α1][s − β2], we can choose constants l1, l2 > 1
such that

n(q − 1)− β2

α2
<

s − β2

α2
= l1

l2
= β1

m(p − 1)− α1
<

β1

r − α1
.

Let

(u(x, t), v(x, t)) = (γ l1(t)ζ(x), γ l2(t)ϑ(x)),

where ζ(x), ϑ(x) are defined in (1.6), and�(t) satisfies the following Cauchy problem

γ ′(t) = c1γ
δ1 − c2γ

δ2 , γ (0) = γ0 > 0, t > 0,

where

c1 = min

{
ζ α1ϑβ1 − 1,

ζ α2ϑβ2 − bϑ s

l2ϑ

}
, c2 = max

{
aζ r−1

l1
,

1

l2ϑ

}
,

δ1 = min {[m(p − 1)− 1]l1 + 1, (s − 1)l2 + 1} ,
δ2 = max {l1(r − 1)+ 1, [n(q − 1)− 1]l2 + 1} .

Then, the left arguments are the same as those for the case r > m(p − 1), s >
n(q − 1), so we omit them.

(iv) The proof of this case is parallel to (iii). The proof of Theorem 1.3 is complete.
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