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Abstract It is shown that a strong solution of the Degasperis–Procesi equation, ini-
tially decaying exponentially together with its spatial derivative, must be identically
equal to zero if it also decays exponentially at a later time. The decay rate of the
corresponding strong solution at infinity is also given for some kinds of initial data
with exponential decay.
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1 Introduction

Recently, Degasperis and Procesi [20] considered the following family of third order
dispersive conservation laws,

ut + c0ux + γ uxxx − α2uxxt =
(

c1u2 + c2u2
x + c3uuxx

)
x
, (1.1)

where α, γ , c0, c1, c2, and c3 are real constants. Within this family, only three equations
that satisfy asymptotic integrability condition up to third order are singled out, namely
the KdV equation,
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ut + ux + uux + uxxx = 0,

the Camassa–Holm equation,

ut − uxxt + 3uux = 2ux uxx + uuxxx ,

and a new equation (the Degasperis–Procesi equation, the DP equation, for simplicity)
which can be written as (after rescaling) the dispersionless form [20],

ut − uxxt + 4uux = 3ux uxx + uuxxx . (1.2)

It is worth noting that in [21], both the Camassa–Holm and DP equations are derived
as members of a one-parameter family of asymptotic shallow water approximations to
the Euler equations: this is important because it shows that (after the addition of linear
dispersion terms) both the Camassa–Holm and DP equations are physically relevant,
otherwise the DP equation would be of purely theoretical interest.

When α = c2 = c3 = 0 in (1.1), it becomes the well-known KdV equation, which
has been extensively studied by [3,4,26,27,33].

When c1 = −3c3/2α2 and c2 = c3/2 in (1.1), we recover the Camassa–Holm
equation derived physically by Camassa and Holm in [7] by approximating directly
the Hamiltonian for Euler’s equations in the shallow water regime, where u(x, t) rep-
resents the free surface above a flat bottom. Recently, the alternative derivations of
the Camassa–Holm equation as a model for water waves, respectively as the equation
for geodesic flow on the diffeomorphism group of the circle were presented by John-
son [25] and respectively by Constantin and Kolev [13]. The geometric interpretation
is important because it can be used to prove that the Least Action Principle holds
for the Camassa–Holm equation, cf. [14]. It is worth to point out that a fundamen-
tal aspect of the Camassa–Holm equation, the fact that it is a completely integrable
system, was shown in [15] for the periodic case and [1,12] for the nonperiodic case.
Some satisfactory results have been obtained for this shallow water equation recently.
Local well-posedness for the initial datum u0(x) ∈ Hs with s > 3/2 was proved by
several authors, see [28,31], and global existence was established for some kind of
initial datum in [9,11]. For the initial data with lower regularity, we refer to Molinet’s
paper [32] and also the recent paper [5]. Moreover, necessary and sufficient condition
for wave breaking is established in [29,30,37,38]. However, in [34], global existence
of weak solutions is proved but uniqueness is obtained only under an a priori assump-
tion that is known to hold only for initial data u0(x) ∈ H1 such that u0 − u0xx is a
sign-definite Radon measure (under this condition, global existence and uniqueness
were shown in [16] also). Also it is worth to note that global conservative solutions are
constructed for any initial data in H1 by Bressan and Constantin [5] recently. In [2]
and [18], it was proved that all solitary waves (peaked when c0 = 0 or smooth when
c0 �= 0 ) are solitons. The stabilities of the solitons are proved in [17] and [18] respec-
tively. Recently, in [22], among others, Himonas, Misiołek, Ponce, and Zhou showed
the infinite propagation speed for the Camassa–Holm equation in the sense that a strong
solution of the Cauchy problem with compact initial profile cannot be compactly sup-
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Asymptotic Profile of Solutions 335

ported at any later time unless it is the zero solution, which is an improvement of
previous results in this direction obtained in [10,24].

Although, the DP Eq. (1.2) has a similar form to the Camassa–Holm equation and
admits exact peakon solutions analogous to the Camassa–Holm peakons [19], these
two equations are pretty different. The isospectral problem for Eq. (1.2) is

�x − �xxx − λy� = 0,

while it for Camassa–Holm equation is

�xx − 1

4
� − λy� = 0,

where y = u − uxx for both cases. This implies the inside structures of the DP Eq.
(1.2) and the Camassa–Holm equation are truly different. However, we also have some
similar results on the DP equation, see [6,23,36]

Analogous to the Camassa–Holm equation, (1.2) can be written in Hamiltonian
form and have infinitely many conservation laws. Here we list some of the simplest
conserved quantities [19]:

H−1 = ∫
R

u3dx, H0 = ∫
R

ydx, H1 = ∫
R

yvdx,

H5 = ∫
R

y1/3dx, H7 = ∫
R

(
y2

x y−7/3 + 9y−1/3
)

dx,

where v = (4−∂2
x )−1u. So they are different from the invariants of the Camassa–Holm

equation,

E(u) =
∫

R

(u2 + u2
x )dx, F(u) =

∫

R

(u3 + uu2
x )dx .

Set Q = (1 − ∂2
x ), then the operator Q−1 in R can be expressed by

Q−1 f = G ∗ f = 1

2

∫

R

e−|x−y| f (y)dy.

Equation (1.2) can be written as

ut + uux + ∂x G ∗
(

3

2
u2

)
= 0, (1.3)

while the Camassa–Holm equation can be written as

ut + uux + ∂x G ∗
(

u2 + 1

2
u2

x

)
= 0. (1.4)

Due to the similarity of (1.3) and (1.4), just by following the argument for the
Camassa–Holm equation, it is easy to establish the following well-posedness theorem
for (1.3).
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Theorem 1.1 [35,36] Given u(x, t = 0) = u0 ∈ Hs(R), s > 3/2, then there exists a
T and a unique solution u to (1.2) (also (1.3)) such that

u(x, t) ∈ C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)).

It should be mentioned that due to the form of (1.3) (no derivative appears in the
convolution term), Coclite and Karlsen [8] established global existence and uniqueness
result for entropy weak solutions belonging to the class L1(R) ∩ BV (R).

2 Unique Continuation

We will formulate decay conditions on a solution, at two distinct times, which guaran-
tee that u ≡ 0 is the unique solution of (1.3). The idea of proving unique continuation
results for nonlinear dispersive equations under decay assumptions of the solution at
two different times was motivated by the recent works on the nonlinear Schrödinger
and the κ-generalized Korteweg-de Vries equations.

In order to prove the result, we have the following theorem.

Theorem 2.1 Assume that for some T > 0, and s > 3/2, u ∈ C([0, T ]; Hs(R))

is a strong solution of the initial value problem associated to Eq. (1.3), and that
u0(x) = u(x, 0) satisfies that for some θ ∈ (0, 1),

|u0(x)|, |∂x u0(x)| = O(e−θx ) as x ↑ ∞. (2.1)

Then
|u(x, t)|, |∂x u(x, t)| = O(e−θx ) as x ↑ ∞, (2.2)

uniformly in the time interval [0, T ].
Notation We shall say that

| f (x)| = O(eαx ) as x ↑ ∞ if lim
x→∞

| f (x)|
eαx

= L ,

and

| f (x)| = o(eαx ) as x ↑ ∞ if lim
x→∞

| f (x)|
eαx

= 0.

for some constant L .

Proof We introduce the following notations

F(u) = 3

2
u2 (2.3)

and
M = sup

t∈[0,T ]
‖u(t)‖H s . (2.4)
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Asymptotic Profile of Solutions 337

Multiplying Eq. (1.3) by u2p−1 with p ∈ Z+, and integrating the result in the x-
variable, one gets

∫ ∞

−∞
u2p−1ut dx +

∫ ∞

−∞
u2p−1uux dx +

∫ ∞

−∞
u2p−1∂x G ∗ F(u)dx = 0. (2.5)

The first term in (2.5) is

∫ ∞

−∞
u2p−1ut dx =

∫ ∞

−∞
1

2p

du2p

dt
dx

= 1

2p

d

dt

∫ ∞

−∞
u2pdx = ‖u(t)‖2p−1

2p
d‖u(t)‖2p

dt
, (2.6)

the rest are
∣∣∣∣
∫ ∞

−∞
u2p−1uux dx

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
u2pux dx

∣∣∣∣ ≤ ‖ux (t)‖∞‖u(t)‖2p
2p, (2.7)

and ∣∣∣∣
∫ ∞

−∞
u2p−1∂x G ∗ F(u)dx

∣∣∣∣ ≤ ‖u(t)‖2p−1
2p · ‖∂x G ∗ F(u)(t)‖2p. (2.8)

From above inequalities, we get

d

dt
‖u(t)‖2p ≤ ‖ux (t)‖∞‖u(t)‖2p + ‖∂x G ∗ F(u)(t)‖2p, (2.9)

and therefore, by Gronwall’s inequality

‖u(t)‖2p ≤
(

‖u(0)‖2p +
∫ t

0
‖∂x G ∗ F(u)(τ )‖2pdτ

)
eMt . (2.10)

Since f ∈ L1(R) ∩ L∞(R), implies

lim
q→∞‖ f ‖q = ‖ f ‖∞, (2.11)

taking the limits in (2.10)(note that ∂x G ∈ L1 and F(u) ∈ L1 ∩ L∞), from (2.11) we
get

‖u(t)‖∞ ≤
(

‖u(0)‖∞ +
∫ t

0
‖∂x G ∗ F(u)(τ )‖∞dτ

)
eMt . (2.12)

We shall now repeat the above arguments using the weight

ϕN (x) =

⎧⎪⎨
⎪⎩

1, x ≤ 0,

eθx , x ∈ (0, N ),

eθ N , x ≥ N ,

(2.13)
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where N ∈ Z
+. Observe that for all N we have

0 ≤ ϕ
′
N (x) ≤ ϕN (x) a.e. x ∈ R. (2.14)

Using notation in (2.3), from Eq. (1.3) we obtain

(uϕN )t + (uϕN )ux + ϕN ∂x G ∗ F(u) = 0. (2.15)

Hence, as in the weightless case (2.12), we get

‖u(t)ϕN ‖∞ ≤
(

‖u(0)ϕN ‖∞ +
∫ t

0
‖ϕN ∂x G ∗ F(u)(τ )‖∞dτ

)
eMt . (2.16)

A simple calculation shows that there exists C0 > 0 depending only on θ ∈ (0, 1)

such that for any N ∈ Z
+,

1

2
ϕN (x)

∫ ∞

−∞
e−|x−y| 1

ϕN (y)
dy ≤ C0 = 2

1 − θ
. (2.17)

Thus, for any appropriate function f one sees that

|ϕN ∂x G ∗ f 2(x)| =
∣∣∣∣
1

2
ϕN (x)

∫ ∞

−∞
sgn(x − y)e−|x−y| f 2(y)dy

∣∣∣∣

≤ 1

2
ϕN (x)

∫ ∞

∞
e−|x−y| 1

ϕN (y)
ϕN (y) f (y) f (y)dy

≤
(

ϕN (x)

2

∫ ∞

−∞
e−|x−y| 1

ϕN (y)
dy

)
‖ϕN f ‖∞‖ f ‖∞

≤ C0‖ϕN f ‖∞‖ f ‖∞. (2.18)

Combining (2.16), we get

‖u(t)ϕN ‖∞ ≤ eMt
(

‖u0ϕN ‖∞ +
∫ t

0

3C0

2
‖ϕN u‖∞‖u‖∞dτ

)

≤ eMt
(

‖u0ϕN ‖∞ +
∫ t

0

3C0

2
M‖ϕN u‖∞dτ

)

≤ C1

(
‖u0ϕN ‖∞ +

∫ t

0
‖ϕN u‖∞dτ

)
,

where C1 = C1(M; T, ) > 0. By Gronwall’s inequality, there exists a constant C̃ =
C̃(M; T ) for any N ∈ Z

+, and any t ∈ [0, T ] such that

‖ϕN u‖∞ ≤ C̃‖u0ϕN ‖∞ ≤ C̃‖u0 · max(1, eθx )‖∞. (2.19)
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Finally, taking the limit as N goes to infinity in (2.19) we find that for any t ∈ [0, T ]

|u(x, t)eθx | ≤ C̃‖u0 · max(1, eθx )‖∞. (2.20)

From (2.1), we get |u(x, t)| = O(e−θx ) as x ↑ ∞.
Next, differentiating (1.3) in the x-variable produces the equation

uxt + uuxx + u2
x + ∂2

x G ∗
(

3

2
u2

)
= 0. (2.21)

Again, multiplying Eq. (2.21) by u2p−1
x , (p ∈ Z

+), integrating the result in the x-
variable, and using integration by parts,

∫ ∞

∞
uuxx (ux )

2p−1dx =
∫ ∞

∞
u

(ux )
2p

2p
dx = − 1

2p

∫ ∞

∞
ux (ux )

2pdx, (2.22)

one gets the inequality

d

dt
‖ux (t)‖2p ≤ 2‖ux (t)‖∞‖ux (t)‖2p + ‖∂2

x G ∗ F(u)(t)‖2p, (2.23)

and therefore as before

‖ux (t)‖2p ≤
(

‖ux (0)‖2p +
∫ t

0
‖∂2

x G ∗ F(u)(τ )‖2pdτ

)
e2Mt . (2.24)

Since ∂2
x G = G − δ, we can use (2.11) and pass to the limit in (2.24) to obtain

‖ux (t)‖∞ ≤
(

‖ux (0)‖∞ +
∫ t

0
‖∂2

x G ∗ F(u)(τ )‖∞dτ

)
e2Mt , (2.25)

from (2.21) we get

∂t (uxϕN ) + uuxxϕN + (uxϕN )ux + ϕN ∂2
x G ∗ F(u) = 0. (2.26)

We need to eliminate the second derivatives in the second term in (2.26 ). Thus,
combining integration by parts and (2.14), we find

∣∣∣∣
∫ ∞

−∞
uuxxϕN (uxϕN )2p−1dx

∣∣∣∣

=
∣∣∣∣
∫ ∞

−∞
u(uxϕN )2p−1(∂x (uxϕN ) − uxϕ

′
N )dx

∣∣∣∣

=
∣∣∣∣
∫ ∞

−∞
u∂x

(
(uxϕN )2p

2p

)
dx −

∫ ∞

−∞
uuxϕ

′
N (uxϕN )2p−1dx

∣∣∣∣
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≤
∣∣∣∣
∫ ∞

−∞
u∂x

(
(uxϕN )2p

2p

)
dx

∣∣∣∣ +
∣∣∣∣
∫ ∞

−∞
uuxϕN (uxϕN )2p−1dx

∣∣∣∣
≤ (‖u(t)‖∞ + ‖∂x u(t)‖∞) ‖∂x uϕN ‖2p

2p. (2.27)

Since ∂2
x G = G − δ, the argument in (2.18) also shows that

|ϕN ∂2
x G ∗ f 2(x)| ≤ C0‖ϕN f ‖∞‖ f ‖∞. (2.28)

Similarly, we get

‖ux (t)ϕN ‖∞ ≤ C2

(
‖ux (0)ϕN ‖∞ +

∫ t

0
‖u(τ )ϕN ‖∞dτ

)
,

where C2 = C2(M; T )

Then taking the limit as N goes to infinity, we find that for any t ∈ [0, T ]

|ux (t)e
θx | ≤ C2

(
‖ux (0)eθx‖∞ +

∫ t

0
‖u(τ )eθx‖∞dτ

)
.

Since |u(x, t)| = O(e−θx ) x ↑ ∞ and (2.1), we get

|∂x u(x)| = O(e−θx ) x ↑ ∞.

��
Theorem 2.2 Assume that for some T > 0, and s > 3/2, u ∈ C([0, T ]; Hs(R)) is
a strong solution of the initial value problem associated to Eq. (1.3). If u0(x) = u(x, 0)

satisfies that for some α ∈ (1/2, 1)

|u0(x)| = o(e−x ), |∂x u0(x)| = O(e−αx ) as x ↑ ∞, (2.29)

and there exists t1 ∈ (0, T ] such that

|u(x, t1)| ∼ o(e−x ) as x ↑ ∞. (2.30)

Then u ≡ 0.

Proof Integrating Eq. (1.3) over the time interval [0, t1], we get

u(x, t1) − u(x, 0) +
∫ t1

0
uux (x, τ )dτ +

∫ t1

0
∂x G ∗ (

3

2
u2)(x, τ )dτ = 0. (2.31)

By hypothesis (2.29) and (2.30), we have

u(x, t1) − u(x, 0) = o(e−x ) as x ↑ ∞. (2.32)
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From (2.29) and Theorem 2.1, it follows that

∫ t1

0
uux (x, τ )dτ = O(e−2αx ) as x ↑ ∞, (2.33)

and so ∫ t1

0
uux (x, τ )dτ = o(e−x ) as x ↑ ∞. (2.34)

We shall show that if u �= 0, then the last term in (2.31) is O(e−x ) but not o(e−x ).
Thus, we have

∫ t1

0
∂x G ∗

(
3

2
u2

)
(x, τ )dτ = ∂x G ∗

∫ t1

0

3

2
u2dτ = ∂x G ∗ ρ(x), (2.35)

where by (2.29) and Theorem 2.1

0 ≤ ρ(x) = O(e−2αx ), so that ρ(x) = o(e−x ) as x ↑ ∞. (2.36)

Therefore,

∂x G ∗ ρ(x) = −1

2
e−x

∫ x

−∞
eyρ(y)dy + 1

2
ex

∫ ∞

x
e−yρ(y)dy. (2.37)

From (2.36) it follows that

ex
∫ ∞

x
e−yρ(y)dy = o(1)ex

∫ ∞

x
e−2ydy = o(1)e−x = o(e−x ),

and if ρ �= 0, one has that

∫ x

−∞
eyρ(y)that y ≥ c0 > 0, for x � 1. (2.38)

Hence the last term in (2.35) and (2.37) satisfies

∂x G ∗ ρ(x) ≤ −1

2
e−x , for x � 1, (2.39)

which combined with (2.31)–(2.34) yields a contradiction.
Thus, ρ(x) ≡ 0 and consequently u ≡ 0, see (2.35). ��

Remark 2.1 Theorem 2.2 holds with the corresponding decay hypothesis in (2.29)–
(2.30) stated for x < 0.

The following result establishes the optimality of Theorem 2.2 and tells us that a
strong non-trivial solution of (1.3) corresponding to data with fast decay at infinity
will immediately behave asymptotically, in the x-variable at infinity.
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Theorem 2.3 Assume that for some T > 0, and s > 3/2, u ∈ C([0, T ]; Hs(R)) is
a strong solution of the initial value problem associated to Eq. (1.3) and that u0(x) =
u(x, 0) satisfies that for some α ∈ (1/2, 1),

|u0(x)| = O(e−x ), |∂x u0(x)| = O(e−αx ) as x ↑ ∞.

Then
|u(x, t)| = O(e−x ) as x ↑ ∞,

uniformly in the time interval [0, T ].
Proof This proof is similar to the argument above, and therefore it will be omitted. ��

From the result of Theorem 2.1, we will know that, as long as it exists, the solution
u(x, t) corresponding to compactly supported initial data u0(x) is positive at infinity
and negative at minus infinity regardless of the profile of a fast-decaying data u0 �= 0.
We would like to list it as follows (We can see its proof in [22]).

Theorem 2.4 Assume that for some T > 0 and s > 5/2, u ∈ C([0, T ]; Hs(R)) is a
strong solution of the initial value problem associated to Eq. (1.3).

(a) If u0(x) = u(x, 0) has compact support, then for any t ∈ (0, T ],

u(x, t) =
{

c+(t)e−x , for x > η(b, t),

c−(t)ex , for x < η(a, t)
. (2.40)

(b) If for some μ > 0,

∂
j
x u0 ∼ O(e−(1+μ)|x |) as |x | ↑ ∞ j = 0, 1, 2, (2.41)

then for any t ∈ (0, T ],

h(x, t) = u(x, t) − uxx (x, t) ∼ O(e−(1+μ)|x |) as |x | ↑ ∞, (2.42)

and
lim

x→±∞e±x u(x, t) = c±(t), (2.43)

where in (2.40), (2.43), c+(·) and c−(·) denote continuous non-vanishing functions,
with c+(t) > 0 and c−(t) < 0 for t ∈ (0, T ). Furthermore, c+(·) is a strictly
increasing function, while c−(·) is strictly decreasing.

Remark 2.2 Here η = η(x, t) is the flow of u, that is

{ dη(x, t)

dt
= u(η(x, t), t), x ∈ R,

η(x, t = 0) = x, x ∈ R.
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